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THE LENGTH OF DUCCI’S FOUR-NUMBER GAME

RON BROWN AND JONATHAN L. MERZEL

ABSTRACT. The length of a Ducci 4-number game, defined
immediately below, is at most six if the initial vector is not
cyclically monotone. If it is cyclically monotone, then the
length is shown here to be, with error at most 5.4, a linear
function of the logarithm of the Euclidean distance from the
initial vector (normalized) to the unique normalized vector of
infinite length.

1. The main theorem. Define T : R4 → R4 by the formula

T (a, b, c, d) = (|b − a|, |c − b|, |d − c|, |d − a|).
For each v ∈ R4 the sequence (Tn(v))n≥0 is called a Ducci sequence, or
4-number game. A minimal n ≥ 0 with Tn(v) = 0 is called the length
of v, or of the 4-number game; if there is no such n, then v is said to
have infinite length. Lengths of 4-number games, and more generally
of n-number games, have been one of the major topics in the study of
Ducci sequences. (See any of the references below, but especially [1,
4, 6, 7].) In this paper we give a simple method for estimating with
error less than 5.4 the length of any 4-number game.

As in [6], a vector v ∈ R4 is said to be equivalent to w ∈ R4 if
w is in the orbit of v under the action on R4 of the group generated
by the permutations R, S, Af (for f ∈ R) and Me (for 0 �= e ∈ R)
of R4 defined by the formulas R(a, b, c, d) = (d, c, b, a), S(a, b, c, d) =
(d, a, b, c), Me(v) = ev, and Af (v) = v + (f, f, f, f). We also call v
normalized if it has the form (0, x, y, 1) where 0 < x < y ≤ 1 − x.

In Section 3 we will see that the problem of estimating length reduces
to the case of normalized vectors. (Briefly, if a vector is cyclically
monotone, then its length equals that of an equivalent normalized
vector, and otherwise the length is at most 6 and hence is known to
within 5.4.) We now state our main theorem and give a simple estimate
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for the length of a normalized vector. This estimate will be illustrated
by examples in Section 2. In Sections 4 and 5 we will prove the theorem
and show that the estimate has error less than 5.4.

In the theorem below and throughout the rest of the paper, we let

r =
(

2 − 2
√

33
9

)1/3

+
(

2 +
2
√

33
9

)1/3

≈ 2.38

denote the unique real zero of x3 − 4x − 4 and also set

μ =
2

ln(r + 1)
≈ 1.64

and

v∞ =
(

0,
6 − r2

2
,

r2 − 2r

2
, 1

)
≈ (0, .16, .46, 1).

1.1 Theorem. There exist constants C and D such that if d is the
Euclidean distance from a normalized vector v to v∞, where v �= v∞,
then the length L of v satisfies

C < L − μ ln
1
d

< D.

1.2 Remark : The simple estimate. The proof of the above theorem
will show that one can choose C = −2.4 and D = 8.4, so that

∣∣∣∣L −
(

3 + μ ln
1
d

)∣∣∣∣ < 5.4.

We will refer to 3+μ ln 1/d as the simple estimate for L. For example,
the vector (0,

√
2, e +

√
3, π2) has length 10 and the simple estimate

of its length (rounded) is 9.6. More examples appear in Section 2
including one of a vector in Z4 of length 3782 (the simple estimate is
about 3782.1). The lower bound −2.4 + μ ln 1/d for L is of interest
only if d < e−7.4/µ ≈ 0.011, since otherwise −2.4 + μ ln 1/d ≤ 5 and,
by Lemma 3.3 below, normalized vectors always have length at least
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5. The above values for C and D can be improved by more careful
numerical work; see Remark 5.2.

Note that Theorem 1.1 implies that, if v ∈ Z4, then v has finite
length. This observation is attributed to Professor Ducci in [2] and the
observation is generalized to arbitrary 2n-number games and proven.
Theorem 1.1 of course implies that all vectors v ∈ R4 have finite length
except for those equivalent to v∞. The fact that up to equivalence there
is exactly one element of R4 of infinite length was first proved by Lotan
[3]. One can give a rather short proof of this fact using ideas in this
paper but without using the sledgehammer of Theorem 1.1. Such a
proof is sketched in Section 6.

2. Examples. In this section we give some examples based on the
“simple estimates” of Remark 1.2.

2.1 Example: Tribonacci numbers. The Tribonacci numbers
t0, t1, t2, . . . are defined by the equations t0 = 0, t1 = t2 = 1 and
for n ≥ 3, tn = tn−1 + tn−2 + tn−3. Webb [7] has shown that the
“Tribonacci vector” Tn = (tn, tn−1, tn−2, tn−3) has length 3 [n/2] for
all n ≥ 3 and that any vector in Z4 whose coordinates all are between
0 and tn (inclusive) has length at most 3 [n/2]+1. Each Tn is equivalent
to the normalized vector(

0,
tn−2 − tn−3

tn − tn−3
,

tn−1 − tn−3

tn − tn−3
, 1

)
.

The following tables record the length of Tn for all n from 5 to 24,
together with the simple estimate of its length, rounded to the nearest
tenth.

n 5 6 7 8 9 10 11 12 13 14

length 6 9 9 12 12 15 15 18 18 21

estimate 8.1 9.3 10.2 12.3 14.1 14.7 16.5 18.9 19.4 20.8

n 15 16 17 18 19 20 21 22 23 24

length 21 24 24 27 27 30 30 33 33 36

estimate 23.3 24.1 25.2 27.6 28.8 29.7 31.8 33.6 34.3 36.0
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2.2 Example: Decimal approximations. Here are lengths and
estimated lengths for the vectors (0, xn, yn, 1) where xn and yn are
obtained by truncating to n digits the decimal expansions of the second
and third coordinates of v∞, respectively. Thus, for example, x2 = 0.16
and y2 = 0.45.

n 4 5 6 7 8 9 10 100 1000

length 22 24 27 29 34 38 41 382 3782

estimate 21.0 23.7 25.6 29.5 33.5 37.3 41.0 381.5 3782.1

If a normalized vector has small length, then the simple estimate for
its length is both unnecessary and uninformative. Theorem 1.1 shows
that the normalized vectors of large length are those close to v∞. The
previous example focused on one way of coming up with vectors close
to v∞; the next gives a more natural way to do this.

2.3 Example: Convergents. In the mth row and nth column of
the table below we have listed the length and the simple estimate of
length, respectively, of the vector (0, xm, yn, 1), where xm and yn are
the mth and nth convergents to the continued fraction expansions of the
second and third coordinates of v∞, respectively. Because convergents
give good approximations relative to the size of their denominators,
by multiplying (0, xm, yn, 1) by the product of the denominators of xm

and yn, we can hope to get elements of Z4 of large length relative to
the magnitude of their coordinates.

1 2 3 4 5 6

1 6, 8.1 11, 11.3 11, 11.4 11, 11.4 11, 11.4 11, 11.4

2 6, 8.1 13, 12.3 15, 14.8 15, 14.9 15, 14.9 15, 14.9

3 6, 8.1 13, 13.4 17, 16.9 25, 25.5 25, 25.6 25, 25.6

4 6, 8.1 13, 13.4 17, 16.9 27, 27.6 35, 35.1 34, 35.2

5 6, 8.1 13, 13.4 17, 16.9 27, 27.6 37, 37.1 39, 38.6

6 6, 8.1 13, 13.4 17, 16.9 27, 27.6 37, 37.2 41, 40.7

One might observe that the fourth row of the above table gives an
example of a pair of vectors for which the vector closer to v∞ actually
has the smaller length. Note that
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(0, x3, y4, 1) =
(

0,
9
56

,
47
103

, 1
)

is equivalent to
(0, 927, 2632, 5768) = (0, t13, t13 + t14, t16),

which is essentially the vector (in the case n = 16) that Webb constructs
[7, last displayed formula, p. 35] to give a vector of maximal length
among those vectors in Z4 with largest coordinate at most t16. It
might be interesting to see if there are other connections between the
examples arising from Tribonacci numbers and from convergents.

2.4 Last example. The largest discrepancy we have observed
between actual length and the simple estimate of length occurs with
vectors of the form (0, ε, (1/3) + ε, 1) where ε is chosen very small and
positive. Then the lengths are all eight but the estimated lengths are
about 5.6. That the simple estimate predicts length as well as it does
in the above examples suggests that tighter bounds are possible for
length and, further, that the upper and lower bounds for length that
we have given are, essentially by accident, about equally far from these
hypothesized tighter upper and lower bounds.

3. Normalization. In this section, for which we make no great
claim to originality, we prove some basic lemmas, including for the
sake of completeness some proofs of known results. We use the maps
R, S, Af and Me from Section 1.

Let v ∈ R4.

3.1 Definition. We say v is cyclically monotone if for some i ≥ 0
we have Siv = (e, f, g, h) where e < f < g < h or e > f > g > h.

The reduction of the problem of estimating lengths to the normalized
case is accomplished by the next two lemmas.

3.2 Lemma. If v is cyclically monotone, then it is equivalent to a
normalized vector of R4, and any normalized vector equivalent to v has
the same length as v.
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In Proposition 6.1 below we will show that a cyclically monotone
vector is equivalent to only one normalized vector. The proof of
Lemma 3.2 indicates at least implicitly how to construct this normalized
vector.

Proof. By the definition of equivalence we may assume without
loss of generality, i.e., after suitable applications of R and S, that
v = (a, b, c, d) where a < b < c < d. Applying M1/(d−a)A−a we may
assume v has the form (0, b, c, 1). If b+c ≤ 1 we are finished, so suppose
b + c > 1. Then

RA1M−1(v) = (0, 1 − c, 1 − b, 1),

which is clearly normalized, so there is a normalized vector equivalent
to v. That equivalent cyclically monotone vectors have the same length
follows from the fact that the bijections R, S, Me and Af clearly
preserve length when applied to nonconstant vectors, i.e., to vectors
not of the form (g, g, g, g).

The cyclically monotone vector (0, 1, 2, 3) has length 5 and the vector
(0, 2, 5, 1) has length 6. The next lemma gives a sense in which these
lengths are extremal.

3.3 Lemma. If v is not cyclically monotone, then its length is at
most 6. If it is cyclically monotone, then its length is at least 5.

Proof. The first assertion of the lemma is a standard result [5,
Property F] and can be easily proved by considering in the order given
below the cases of vectors in R4 of the following forms: (a, b, a, b);
(a, b, a, c); (a, m, b, M) where M ≥ a ≥ m, M ≥ b ≥ m; and,
(M, a, b, m) where m ≤ a ≤ b ≤ M . Any vector which is not cyclically
monotone is equivalent to a vector in one of the last two forms.

Now suppose v is cyclically monotone; by the previous lemma we
may suppose that v is a normalized vector (0, x, y, 1). Note that
1−x ≥ y ≥ 2x−y, and 1−x > y−2x, so that in any case 1−x ≥ |2x−y|.
It follows easily that the third coordinate of T 4(v) is the absolute value
of y − |2x − y|, which is clearly nonzero. Thus the length of v is at
least 5.



THE LENGTH OF DUCCI’S FOUR-NUMBER GAME 51

We end this section with two lemmas in the spirit of the two above.
We say a vector (a, b, c, d) ∈ R4 is monotone if 0 ≤ a < b < c < d
and subnormal if it is monotone and in addition b + c ≤ a + d. Thus
normalized vectors are subnormal; subnormal vectors are monotone;
and monotone vectors are cyclically monotone.

3.4 Lemma. If v = (a, b, c, d) is subnormal and T (v) is cyclically
monotone, then T (v) is subnormal.

Proof. Since v is monotone, T (v) = (b − a, c − b, d − c, d − a). If
T (v) is not monotone, then since d− a is clearly its largest coordinate,
we therefore must have b − a > c − b > d − c, which contradicts
the hypothesis that b + c ≤ a + d. Also, because b > a, we have
(c− b) + (d− c) ≤ (b− a) + (d− a), so T (v) is indeed subnormal.

3.5 Lemma. Define U : R4 → R4 by the formula U(a, b, c, d) =
(b−a, c− b, d− c, d−a). If v is subnormal and Un(v) is not monotone
for some n ≥ 1, then Tn+6(v) = 0.

Proof. Note that T (v) = U(v) whenever v is monotone. By
Lemma 3.3 it suffices to show that T k(v) is not cyclically monotone for
some k ≤ n. Suppose otherwise. Then by the previous lemma T k(v) is
monotone for all k ≤ n, and so Un(v) = Tn(v). This contradicts the
hypothesis that Un(v) is not monotone.

4. The main lemma. In this section we give a geometric interpreta-
tion of the point v∞; this leads to our main lemma, Lemma 4.5, which
shows how bounds on the distances from ((6 − r2)/2, (r2 − 2r)/2) to
various geometric objects lead to bounds on the lengths of normal-
ized vectors. Related geometric methods are used in [6] to study the
distribution of lengths.

4.1 Notation. Define the linear map U : R4 → R4 (cf. Lemma 3.5)
by the rule

U(a, b, c, d) = (b − a, c − b, d − c, d − a).
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Let v = (0, x, y, 1) ∈ R4 and for each n ≥ 0 write

Un(v) = (an, bn, cn, dn).

By inspection,

a0 = 0, a1 = x, a2 = y − 2x, a3 = 3x − 3y + 1.

Also for each n ≥ 0,

(an+1, bn+1, cn+1, dn+1) = (bn − an, cn − bn, dn − cn, dn − an)

so

bn = an + an+1,

cn = bn + bn+1 = an + 2an+1 + an+2,

and

dn = cn + cn+1 = an + 3an+1 + 3an+2 + an+3.

But also dn+1 = dn − an, and hence

an+4 + 3an+3 + 3an+2 + an+1 = 3an+1 + 3an+2 + an+3,

so the sequence (an)n≥0 satisfies what we will call the first recursion
relation

(1) Xn+4 = 2(Xn+1 − Xn+3).

We now define a sequence of linear polynomials An = An(X, Y ) ∈
R[X, Y ] by setting

A0 = 0, A1 = X, A2 = Y − 2X, A3 = 3X − 3Y + 1

and requiring the sequence (An)n≥0 to satisfy the first recursion relation
(1) for all n ≥ 0. Thus,

An(x, y) = an for all n ≥ 0.

Note that A4 = 2(A1 − A3) = 6Y − 4X − 2.
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4.2 Notation. We let z̄ and Tr (z) = z + z̄ denote the complex
conjugate and trace of a complex number z, respectively. Recall the
real zero r of x3 − 4x − 4; write

(2) x3 − 4x − 4 = (x − r)(x − s)(x − s̄),

where s denotes the nonreal zero whose coefficient of i is positive, so
s ≈ −1.19 + 0.51 i. We also let

α =
9r2 − 8r − 24

44
and β =

9s2 − 8s − 24
44

,

so α ≈ 0.18 and β ≈ −0.09 − 0.34 i. For all n ≥ 0, let

Mn = αrn + βsn + β̄ s̄n = αrn + Tr (βsn),

Nn = (1/2)Mn+2 and

Dn = Nn + Mn + Mn+1 = Mn + Mn+1 +
1
2

Mn+2.

We also set Pn = (Mn/Dn, Nn/Dn). In the next lemma we examine
the values of the polynomials Am on the points Pn.

4.3 Lemma. For all n ≥ 0, An+1(Pn) = An+2(Pn) = An(Pn+1) =
0. Also, for all n > 0, An(Pn+j) > 0 whenever j = 0 or j ≥ 2. Finally,
for all n ≥ 0, An+3(Pn) > 0.

The proof of Lemma 4.3 will develop a useful recursion relation
satisfied by the Mn, Nn and Dn sequences, and will also give a table
(which will be needed below) of values of Mn, Nn, Dn and Pn for small
n. Together these will imply that for all n the numbers Mn, Nn and
Dn are nonnegative integers with Dn > 0.

Proof. Note that the last fact of the lemma is implied by the earlier
ones, since by the first recursion relation (1) if n ≥ 1, then

An+3(Pn) = 2(An(Pn) − An+2(Pn)) > 0,

and also A3(P0) = 1 > 0.
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Since by definition r3 = 4r + 4 and similarly for s and s̄, it follows
that the sequence (Mn)n≥0 satisfies the recursion relation

(3) Xn+3 = 4Xn+1 + 4Xn

for all n ≥ 0. We call (3) the second recursion relation. It is of course
also satisfied by the sequences (Nn)n≥0 and (Dn)n≥0. By equation (2)
we have r + s + s̄ = 0, rss̄ = 4, rs + rs̄ + ss̄ = −4, and hence

r2 + s2 + s̄2 = (r + s + s̄)2 − 2(rs + rs̄ + ss̄) = 8.

Using these identities, the definitions of Mn, Nn and Dn, and their
recursion relation (3), one easily verifies the values in the following
table.

n 0 1 2 3 4
Mn 0 1 0 4 4
Nn 0 2 2 8 16
Dn 1 3 6 16 36
Pn (0, 0) (1/3, 2/3) (0, 1/3) (1/4, 1/2) (1/9, 4/9)

For each pair m, n of nonnegative integers we set Km,n = DnAm(Pn).

Fix m for the moment and write Am = aX + bY + c. Then

Km,n = aMn + bNn + cDn.

Therefore, the sequence (Km,n)n≥0 satisfies the second recursion rela-
tion (3) since the sequences (Mn), (Nn) and (Dn) all satisfy it.

Also, for fixed n the sequence (Km,n)m≥0 satisfies the first recursion
relation (1) since the polynomials Am satisfy it.

Claim. For all n ≥ 1, Kn,n = 2n−1 and Kn,n±1 = 0.

Proof of Claim. Using the values of Dn, An and Pn computed
explicitly above, it is routine to verify the claim for all n ≤ 3. Now
suppose inductively that n > 3 and that the claim is valid for all smaller
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integers. Using this hypothesis and the second recursion relation (3)
on sequences of the form (Km,n)n≥0, we deduce in turn that

Kn−3,n−1 = 4(Kn−3,n−3 + Kn−3,n−4) = 4(2n−4 + 0) = 2n−2

and similarly that Kn−3,n = 2n−2, Kn−3,n+1 = 2n, Kn−2,n = 2n−1,
Kn−2,n+1 = 2n−1, and Kn−1,n+1 = 2n. Now using the fact that
sequences of the form (Km,n)m≥0 satisfy the first recursion relation
(1), we deduce that

Kn,n−1 = 2(Kn−3,n−1 − Kn−1,n−1) = 2(2n−2 − 2n−2) = 0

and, similarly, that Kn,n = 2n−1 and Kn,n+1 = 0. The claim is proved.

We can now verify the assertions of the lemma. Without loss of
generality, we may assume that n ≥ 1 (since A0 = 0). Then by the
claim An(Pn) = Kn,n/Dn > 0 and An+1(Pn) = Kn+1,n/Dn = 0.
Similarly, An(Pn+1) = Kn,n+1/Dn+1 = 0. If n = 1, then one checks
that An+2(Pn) = 0; if n > 1, then the first recursion relation shows
that

An+2(Pn) = 2(An−1(Pn) − An+1(Pn)) = 0.

Finally, an easy induction argument using the above claim and the fact
that the sequences (Dn)n≥0 and (Km,n)n≥0 satisfy the second recursion
relation establishes that for j ≥ 2, An(Pn+j) = Kn,n+j/Dn+j > 0.

Let P∞ = ((6 − r2)/2, (r2 − 2r)/2), so that the coordinates of P∞
are just the middle coordinates of v∞.

4.4 Lemma.

P∞ = lim
n→∞Pn.
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Proof. First,

Mn

Dn
=

Mn

Mn + Mn+1 + (1/2)Mn+2

=
αrn + Tr (βsn)

α(1 + r + r2/2)rn + Tr ((1 + s + s2/2)snβ)

=
α + Tr ((s/r)nβ)

α(1 + r + r2/2) + Tr ((s/r)n(1 + s + s2/2)β)

−→ 1
1 + r + r2/2

=
6 − r2

2

as n → ∞ since |s/r| < 1. Similarly,

Nn

Dn
=

1
2

Mn+2

Dn

=
αrn+2 + Tr (βsn+2)

α(2 + 2r + r2)rn + Tr (β(2 + 2s + s2)sn)

−→ r2

r2 + 2r + 2
=

2
r + 2

=
r2 − 2r

2
.

This completes the proof that Pn → P∞ as n → ∞.

For any line L in R2 and any points P , Q in R2, we let dist (P, Q)
and dist (P, L) denote the Euclidean distance from P to Q and to L,
respectively. We also write

ω = (r + 1)−1/2 =
∣∣∣s
r

∣∣∣ ≈ 0.544.

Finally, Ln will denote the line whose equation is An = 0.

4.5 Lemma. Suppose B and G are positive numbers such that for
all n ≥ 0,

dist (Pn, P∞) ≤ Bωn and B ≥ ω dist (P∞, (1, 0)),

and for all n ≥ 1,
dist (P∞, Ln) ≥ Gωn.



THE LENGTH OF DUCCI’S FOUR-NUMBER GAME 57

Then the length L of any normalized vector v = (0, x, y, 1) �= v∞
satisfies

ln d

ln ω
− ln G

ln ω
+ 1 ≤ L <

ln d

ln ω
− ln B

ln ω
+ 9,

where d = dist ((x, y), P∞).

Proof. We will use the notation of Notation 4.1 so that for all n ≥ 0
we write an = An(x, y) and Un(v) equals

(an, an + an+1, an + 2an+1 + an+2, an + 3an+1 + 3an+2 + an+3).

Since v is normalized, (x, y) lies in the triangular region bounded by
x = 0, y = 0, and x+y = 1. The point of this triangular region farthest
from P∞ is (1, 0), so

B ≥ ω dist (P∞, (1, 0)) > ω d,

where the first inequality is a hypothesis of the lemma. Since ω < 1,
there exists a least n ≥ 0 with d ≥ Bωn. If n > 0, then of course
d < Bωn−1; this is also true if n = 0 by the remarks above.

If k ≥ 0, then

dist (P∞, Pn+k) ≤ Bωn+k ≤ Bωn ≤ d.

Hence (x, y) is not inside the triangle PnPn+1Pn+2. (The closed disk
with center P∞ and radius d = dist (P∞, (x, y)) contains this triangle.)
The sides of this triangle are the lines Ln+1, Ln+2, Ln+3 by Lemma 4.3.
Thus, for some k ∈ {1, 2, 3}, the point (x, y) cannot be on the same
side of Ln+k as Pn+k (if k �= 3) or Pn (if k = 3). (The interior of
the triangle is the intersection of the open half planes An+j > 0 for
j = 1, 2, 3.) Hence, An+k(x, y) ≤ 0. Thus, there is a smallest positive
t ≤ n + 3 with At(x, y) ≤ 0. Therefore, the first coordinate of U t(v)
is not positive, so U t−1(v) cannot be monotone. Thus, there exists a
least j ≤ t−1 ≤ n+2 with U j(v) not monotone. Hence by Lemma 3.5,
(0, x, y, 1) has length at most j + 6 ≤ n + 8. Now, by the choice of n,

ln B + (n − 1) ln ω > ln d
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so, keeping in mind that ln ω < 0,

L ≤ 8 + n < 8 + 1 +
ln d

ln ω
− ln B

ln ω
,

proving the upper bound for L in Lemma 4.5.

We may assume that there exists a unique integer n ≥ 1 with

(4) G ωn+1 ≤ d < G ωn.

(The use of the symbol n here has no connection with its use in the
previous paragraph.) After all, if this is not true, then d ≥ Gω, so that

1 +
ln d

ln ω
− ln G

ln ω
≤ 2 ≤ L

(Lemma 3.3), proving the lemma in this case. But then (4) implies
that

(5) dist (P∞, (x, y)) < Gωn ≤ dist (P∞, Ln)

so (x, y) lies on the same side of Ln as P∞. Now, for large N ,
An(PN ) > 0, so by Lemma 4.4 we have An(P∞) ≥ 0. But (5) then
implies that An(P∞) > 0, so An(x, y) > 0. Similarly, if 1 ≤ k ≤ n,
then

dist (P∞, (x, y)) < Gωn ≤ Gωk ≤ dist (P∞, Lk),

so ak = Ak(x, y) > 0. Therefore, if 1 ≤ k ≤ n − 2, then

Uk(v) = (ak, ak + ak+1, ak + 2ak+1 + ak+2, ak + 3ak+1 + 3ak+2 + ak+3)

has its first three terms positive. Hence, for all k ≤ n − 3, Uk(v) is
monotone and hence T k(v) = Uk(v). Thus, by Lemma 3.3, Tn−3(v)
has length at least 5, so v has length at least (n− 3) + 5 = n + 2. But,
from (4) we have (ln G/ln ω) + n + 1 ≥ (ln d/ln ω), so

L ≥ n + 2 ≥ 1 +
ln d

ln ω
− ln G

ln ω
.

5. Proof of Theorem 1.1. In this section we will find numbers
B and G satisfying the conditions of Lemma 4.5, thereby proving
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Theorem 1.1. The bounds found will be sharp enough to imply the
assertion of Remark 1.2 that the simple estimate of length differs from
true length by less than 5.4. In particular, we will show that for all
n ≥ 0,

(6) dist (Pn, P∞) < 0.685 ωn

and that for all n ≥ 1 we have

(7) dist (P∞, Ln) > 0.135 ωn.

The inequality (6) is easily checked when n ≤ 2 using the values
of Pn in the table in the proof of Lemma 4.3. (The value 0.685
was obtained by rounding upward the exact value of dist (P2, P∞)/ω2,
namely,

√
7r2 − 4r − 26/3.) Now suppose n ≥ 3. Then ω3 ≥ ωn

and 1.116rn < Dn, as is easily checked using the fact that both the
sequences (Dn) and (rn) satisfy the second recursion relation. It is
convenient to write

δr = r2/2 + r + 1 and δs = s2/2 + s + 1,

so that P∞ = (1/δr, r
2/2δr), as was noted in the proof of Lemma 4.4.

The triangle inequality implies the useful formula

(Tr (z))2 + (Tr (w))2 ≤ 2
(|z|2 + |w|2 + |z2 + w2|).

Combining these observations we can calculate that

dist (P∞, Pn)2

=
(

Mn

Dn
− 1

δr

)2

+
(

1
2

Mn+2

Dn
− r2

2δr

)2

=
1

(2δrDn)2
[
4(δrMn − Dn)2 + (δrMn+2 − r2Dn)2

]

=
1

(2δrDn)2
[
(Tr (2snβ(δr − δs)))2 + (Tr (snβ(δrs

2 − δsr
2)))2

]

≤ 1
(2.232δrrn)2

|snβ|2E

=
( |β|√E

2.232δr
ωn

)2

< (0.663ωn)2,
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where E = 8|δr − δs|2 +2|δrs
2 − δsr

2|2 +2|4(δr − δs)2 +(δrs
2 − δsr

2)2|.
This proves the inequality (6).

We begin the proof of formula (7) by finding the distance from P∞
to Ln for any n ≥ 2. It is convenient to set

ρn = Dn−1Dn−2 dist (Pn−1, Pn−2)

=
√

(Mn−1Dn−2 − Dn−1Mn−2)2 + (Nn−1Dn−2 − Dn−1Nn−2)2.

Suppose that n ≥ 2 and k ≥ 1. Now by Lemma 4.3 Ln is the line
through Pn−1 and Pn−2, so

dist (Pn+k, Ln) =
1

dist (Pn−1, Pn−2)

∣∣∣∣∣∣

∣∣∣∣∣∣
Mn+k/Dn+k Nn+k/Dn+k 1
Mn−1/Dn−1 Nn−1/Dn−1 1
Mn−2/Dn−2 Nn−2/Dn−2 1

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣Φn,k

∣∣
ρnDn+k

,

where on the first line of the above display the double vertical lines
indicate the absolute value of the determinant of the matrix and where

Φn,k =

∣∣∣∣∣∣
Mn+k Nn+k Dn+k

Mn−1 Nn−1 Dn−1

Mn−2 Nn−2 Dn−2

∣∣∣∣∣∣ .

Since the sequences (Mn), (Nn) and (Dn) all satisfy the second recur-
sion relation (3), we have

(8) Φn,1 = 0 and Φn,2 = 4Φn,0.

Also Φn+1,0 = 4Φn,0 and hence by induction

(9) Φn,0 = 4n−2Φ2,0 = 4n−2

∣∣∣∣∣∣
0 2 6
1 2 3
0 0 1

∣∣∣∣∣∣ = − 4n

8
.

We next claim that for all n ≥ 2 and k ≥ 0,

(10) Φn,k = − 4nMk+1

8
.
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This is obvious from formula (9) if k = 0 since M1 = 1. It is true for
k = 1 and k = 2 by the formulas in (8) since M2 = 0 and M3 = 4.
That (10) holds for all k ≥ 0 now follows from the fact that the
sequences (Mk)k≥0 and (Φn,k)k≥0 both satisfy the second recursion
relation. Thus,

dist (Pn+k, Ln) =
4nMk+1

8ρnDn+k

=
rk+1α + Tr (sk+1β)

rn+kαδr + Tr (sn+kδsβ)
4n

8ρn
−→ 4nr

8rnδrρn

as k → ∞. Hence by Lemma 4.4

(11) dist (P∞, Ln) =
4nr

8rnδrρn
.

We now give an upper bound for ρn. We will use the identity

Tr (aΔ)Tr (bΔ) − Tr (abΔ)Tr (Δ) = ΔΔ(a − a)(b − b).

For any nonnegative i, j, we have

∣∣Mi+1Dj − Dj+1Mi

∣∣
=

∣∣∣∣(ri+1α + Tr
(
si+1β

))(
rjδrα + Tr

(
sjδsβ

))

− (
rj+1δrα + Tr

(
sj+1δsβ

))(
riα + Tr

(
siβ

))∣∣∣∣
=

∣∣∣∣Tr
(
ri+1sjαβδs + rjsi+1αβδr − rj+1siαβδr − risj+1αβδs

)

+ Tr
(
si+1β

)
Tr

(
sjδsβ

) − Tr
(
sj+1δsβ

)
Tr

(
siβ

)∣∣∣∣
=

∣∣∣∣Tr
(
αβ(rs)j

(
ri+1−jδs + si−j+1δr − rsi−jδr − ri−jsδs

))

+ βsiβ̄ s̄i
(
s̄ − s

)(
δs sj−i − δ̄ss̄

j−i
)∣∣∣∣
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= |rs|j
∣∣∣∣Tr

(
αβ

(
s

|s̄|
)j(

ri+1−jδs + si−j+1δr − rsi−jδr − ri−jsδs

))

+ ββ̄
(
s̄ − s

)( s̄

|s|
)j(

s

r

)j(
δss̄

i−j − δ̄ss
i−j

)∣∣∣∣
≤ |rs|j

(
2|αβ| ∣∣ri−j+1δs + si−j+1δr − rsi−jδr − ri−jsδs

∣∣

+ |β|2∣∣s̄ − s
∣∣
∣∣∣∣sr

∣∣∣∣
j∣∣δss̄

i−j − δ̄ss
i−j

∣∣).

We apply the last inequality with i = j = n−2 and with i−2 = j = n−2
to see that for any k ≤ n − 2

ρ2
n = (Mn−1Dn−2 − Dn−1Mn−2)2 +

1
4
(Mn+1Dn−2 − Dn−1Mn)2

≤ |rs|2(n−2)Ek

where

Ek =
(
2|αβ| |rδs + sδr − rδr − sδs| + |β2||s̄ − s| |δs − δ̄s|ωk

)2

+
1
4
(
2|αβ| |(4r + 4)δs + (4s + 4)δr − rs2δr − r2sδs|

+ |β|2|s̄ − s| |δss̄
2 − δ̄ss

2| ωk
)2

.

Thus, for any k ≤ n − 2

dist (P∞, Ln)2 ≥
( |rs|nr

8δr

)2
ω2n

|rs|2(n−2)Ek
,

so

dist (P∞, Ln) ≥ 2(r + 1)ωn

rδr

√Ek

=
2

r + 2
ωn

√Ek

.

Hence, if n ≥ 7 we have (taking k = 5)

dist (P∞, Ln) ≥ 2
r + 2

ωn

√E5

> 0.135 ωn.

The validity of formula (7) now follows by directly checking all cases in
which n ≤ 6 using formula (11).
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We now turn very directly to Theorem 1.1 (and Remark 1.2). If the
normalized vector v = (0, x, y, 1) has distance d from v∞, then the
vector (x, y) also has distance d from P∞. Using the bounds B = 0.685
and G = 0.135 from formulas (6) and (7) we can apply Lemma 4.5 to
conclude that v has length L satisfying

− 2.30 < L − μ ln
1
d

< − 0.62 + 9,

so that

− 5.30 < L −
(

3 + μ ln
1
d

)
< 5.38.(12)

Theorem 1.1 and Remark 1.2 follow immediately.

5.1 Last example. Using the second recursion relation (3) it is easy
to verify that the vectors Vn = (0, Mn, Nn, Dn) have length L = n + 4
for all n ≥ 0. Thus, we have a family of vectors whose lengths are
unbounded and easy to compute (the Tribonacci vectors give another
such family). For these vectors the error in estimating length by
the simple estimate is less than 1.3. Indeed, suppose n > 1. The
simple estimate of length for Vn, applied to the normalization of Vn, is
L∗ = 3 + μ ln(1/d) where d = dist (P∞, Pn). By Lemma 4.3 Pn is on
Ln−1 so d ≥ dist (P∞, Ln−1). Hence by the inequalities (6) and (7),

0.135ωn−1 < d < 0.685ωn.

It follows easily that

− 1.29 < L − L∗ = n + 1 + μ ln d < 0.38.

For n ≤ 30 we found no examples in which |L−L∗ | was more than 0.9.

5.2 Remark. Formula (12) implies but is slightly stronger than the
result in Remark 1.2. One could improve the inequality (12) of course
by less crude estimates for the parameters B and G in Lemma 4.5.

6. Uniqueness proofs. In this section we give two arguments
which were referred to earlier in the paper, but which were not actually
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needed in the proof of Theorem 1.1. Combined with Lemma 3.2, the
first shows that each cyclically monotone vector is equivalent to exactly
one normalized vector.

6.1 Proposition. If v, w ∈ R4 are normalized and equivalent, then
v = w.

Proof. For any cyclically monotone vector u, denote the entries of
u by mu, au, bu, nu where mu < au < bu < nu. Call u smooth if
au + bu < mu + nu and rough if au + bu > mu + nu. (A normalized
vector may not be smooth, but it is never rough.)

That v is equivalent to w implies that w can be obtained from v by
applying a sequence of operators of the types R, S, Me (e > 0), Af ,
and M−1. Let I denote the identity map on R4. R and S generate
a dihedral group G whose elements commute with all other generators
above. Using this fact and the additional relations

M−1Af = A−fM−1, M−1Me = MeM−1, M2
−1 = I

and

MeAf = AfeMe,

we can write w = MeAfΔM i
−1v where e > 0, Δ ∈ G, and i ∈ {0, 1}.

If v is smooth, then we must have i = 0 since M−1 interchanges
smoothness and roughness, while Me, Af and Δ preserve them, and
since w cannot be rough. On the other hand, if v is not smooth, then
we have av + bv = 1 and hence M−1v = A−1Rv, so without loss of
generality in this case we may also suppose i = 0. Also Δ = I since
M−1

e and A−1
f preserve monotonicity and all elements of G except I

destroy it. Then f = 0 (otherwise mw = ef �= 0) and finally e = 1
(otherwise nw = e �= 1). Therefore, v = w.

We end this section by sketching a short proof (promised at the end of
Section 1) of Lotan’s theorem [3] that up to equivalence there is only one
vector of infinite length. This result and the above proposition together
show that v∞ is the unique normalized vector of infinite length. (That
v∞ has infinite length follows from the easily verified identity

T (v∞) = (λ, λ, λ, λ) + (1 − λ)v∞
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where λ = (6 − r2)/2, since this identity implies that for all n ≥ 1,

Tn(v∞) = (1 − λ)n−1(λ, λ, λ, λ) + (1 − λ)nv∞ �= 0.)

Now suppose that v is any normalized vector of infinite length.
Then for all k ≥ 0 the vector Uk(v) is monotone (Lemma 3.5), so
Uk(v) = T k(v) for all k ≥ 0. The complex eigenvalues of U have the
form 0, t, u, ū where t is real and strictly between 0 and 1 and u is
nonreal with modulus greater than 1. Let corresponding eigenvectors
be v1, v2 (both in R4), v3, and v4 = v3, respectively. Since the
eigenvalues are distinct, the vi are a basis for C4, so we can write
v = av1 + bv2 + cv3 + c̄ v3 for some a, b (both in R), and c ∈ C. For
all n ≥ 1 we have Tnv = b tnv2 + cunv3 + c̄ ūnv3. Now on the one
hand (Tn(v))n≥0 is bounded (no coordinate of any Tn(v) is larger than
the maximal coordinate of v), and, on the other hand, tn → 0 and
|u|n = |ū|n → ∞ as n → ∞. It follows that c = 0 and so v = av1 + bv2.
(The basic observation here is that if e ∈ C, then Tr (eun) can be
bounded only if e = 0.) Since clearly b �= 0, v is equivalent to v2. Thus,
all vectors of infinite length are equivalent.
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