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EXACT STRUCTURE OF POSITIVE SOLUTIONS
FOR A P-LAPLACIAN PROBLEM INVOLVING
SINGULAR AND SUPERLINEAR NONLINEARITIES

SHIN-HWA WANG AND TZUNG-SHIN YEH

ABSTRACT. We study the structure of positive solutions
for a p-Laplacian boundary value problem involving singular
and superlinear nonlinearities. We prove that there exists
A* > 0 such that the problem has exactly two positive
solutions for 0 < A < A*, exactly one positive solution for
A = A*, and no positive solution for A > A*. More precisely,
we give a complete description of the structure of the solution
set. Our result partially generalizes some results of Wei [12].

1. Introduction. In this paper we study the structure of positive
solutions u € C*[—1,1]NC?(—1, 1) of the nonlinear two point boundary
value problem

(1.1)

{ (pp(u' (@) + A% au® + 370 bju™ =0, —1<z<1,
u(—1) =u(l) =0,

where p > 1, ¢,(y) = |y[P"%y, (pp(u'))" is the one-dimensional p-
Laplacian, A > 0 is a bifurcation parameter, and fy =AD", a;u® +
> =1 bju’i satisfies

“/p+ )< <@p<-<g.<p-1
<rp<rg < -+ <ry, mmn>1,

(1.2) <0, rp,>p—1, a;>0 fori=1,2,...,m
and b; >0 forj=1,2,...,n,
and (either 11 > p—1or by < (p — 1)((7/p) csc (7/p))P).

Note that, in (1.2),
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(a) If 4 = p—1and by > (p— 1)((w/p)csc(m/p))P, then it can
be easily proved that (1.1) has no positive solution for any A >
0. (Note that (p — 1)((7/p)csc(n/p))P is the first eigenvalue of the
one-dimensional operator —(¢,(u'))’ on (—1,1) with zero Dirichlet
boundary conditions.)

(b) Assume that p = 2. If ry = p — 1 = 1, then nonlinearity
= A0 au® + 370 bju's contains a linear term. In addition,
for fixed A > 0, fi(u) is either a convez-concave-convex or a convex
function on (0,00) if 0 < ¢, < 1. If —1/3 < ¢, < 0, then fy(u) is a
convez function on (0, 00).

(c) We allow g, to be positive, zero or negative.

Sun, Wu, and Long [5] studied combined effects of singular and
superlinear nonlinearities in a singular problem

(1.3) {Au +Aul+ou" =0 in Q,

u =0 on 012,

where Q ¢ RY, N > 3, is a bounded domain. They [5, Theorem 2]
mainly proved

Theorem 1.1. Let -1 < ¢ < 0,1 <r < (N+2)/(N—-2) and
N > 3. Then, for every o > 0, there exists \* > 0 such that, for all

A € (0, \*], problem (1.3) possesses at least one weak positive solution
u € H}(Q).

Recently, Wang and Yeh [9, Theorem 2.2] studied the exact structure
of positive solutions of (1.1) by applying modified time-map techniques
for fx =AY 0, aud + Z?Zl bju"i satisfying
(1.4)

O<gi <@<---<gn<p-—-1

<ri<rg< - <ry,, mmn>1 r,>p—1,

a;>0 fori=1,2,...,m and b; >0 forj=1,2,...,n,
and (either 1 >p—1or by < (p—1)((7/p) csc (7/p))P).

To (1.1), we generalize [9, Theorem 2.2] for nonlinearities f) €
C[0,00) N C?(0,00) satisfying (1.4) to nonlinearities fy € C?(0,00)
satisfying (1.2) as in Theorem 2.1 stated behind. Note that, to study
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(1.1), we first study the structure of positive solutions of

(1.5)

{(@p( u'(x) '+/\( iy a4 3T 1bu’“J)zO, “l<z<1,
u(—1) = u(l) =0,

where f = Y71 aju® + 377 bju’i satisfies

(1.6)
“1/p+) < << <gn<p-1
<rp<rg< - <ry, mmn>1 r,>p—1,
a;>0 fori=1,2,...,m and b; >0 forj=1,2,...,n

Very recently, motivated by a result of Agarwal and O’Regan [1], Wei
[12] studied the exact multiplicity and properties of positive solutions
of the singular problem

(1.7) {u”(x)+)\(uq+ku+u’”) =0, —-l<zx<l,

u(—1) =u(l) =0,

where A > 0 is a bifurcation parameter, £k > 0, and ¢, r satisfy either
(A1) —1/3<¢<0,1<r <oo,or
(A2) -1 < ¢q¢< —1/3, and

1<r<1+{ -1 )} [(3+5q)+\/(3+5q)2—8(1+3q)(1+q) .

2(1+ 3¢
Wei [12, Theorem 1] mainly proved

Theorem 1.2. Consider (1.7) and assume that (Al) and (A2)
are satisfied. Then there exists \* > 0 such that (1.7) has exactly
two positive solutions uy, vy with uy < vy for 0 < A < \*, exactly
one positive solution ux~ for X = X* and no positive solution for
A > X, Moreover, if we denote ux~ = vy~ when A\ = \*, then for
0 < A1 < A2 < X%, the positive solutions of (1.7) satisfy

(@) [loaslloo > flons oo

(b) un, () < up,(x) for —1 < x <1,
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(C) CO¥! ((E) > (>‘1/>‘2)1/2 VX, (1') fO?” -1<z< ]-7

(d) limy o+ ux (z) =0 and limy g+ vy () = 00 for —1 <z < 1.

Remark 1. Consider (1.7). If —1 < ¢ < 0, then (classical) positive
solutions u € C'[—1,1]. However, if ¢ < —1, then positive solutions
u ¢ C[—1,1]. See [3, 6, 7).

The paper is organized as follows. Section 2 contains the statement
of Theorems 2.1 and 2.2 which are the main results in this paper.
Section 3 contains the lemmas needed to prove Theorems 2.1 and 2.2.
Section 4 contains the proofs of Theorems 2.1 and 2.2. Finally, in
Section 5, to Theorem 2.1 and (1.2), we give an example to demonstrate
that the hypotheses of positive coefficients a; and b; in nonlinearities
fr= A0 a4+ 377 bju"s can be weakened.

2. Main results. The main results in this paper are following
Theorems 2.1 and 2.2. In Theorem 2.2, we first study the exact
structure of positive solutions of (1.5) for f = 371", au + 377, bju'i
satisfying (1.6). It extends Wang and Yeh [9, Theorem 2.1] for p-
Laplacian problem (1.5) from ¢; > 0to g1 > —1/(p+1), and it partially
generalizes some results of Theorem 1.2 for Laplacian problem (1.7) to
p-Laplacian problem (1.5). Then in Theorem 2.1, we apply Theorem 2.2
to study the exact multiplicity and structure of positive solutions of
(1.1) for fax = AT, aud + 377 bju'i satisfying (1.2). It partially
generalizes some results of Theorem 1.1 in the one-dimensional case,
and it extends Wang and Yeh [9, Theorem 2.2] for the p-Laplacian
problem (1.1).

Recall the Beta function as follows, see e.g., [4, p. 18]:

1
B(z,y) = / N1 =ty tdt, x,y>0.
0

Theorem 2.1. (See Figure 1). Consider (1.1) where fy =
AYimy aiu® + 370 byju'i satisfies (1.2). Then

(i) There exists A* > 0 such that (1.1) has ezxactly two positive
solutions uy, vy, with uy < vy for 0 < A < X*, exactly one positive
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FIGURE 1. Bifurcation diagram of (1.1).

solution ux~ for A = \*, and no positive solution for X > \*. Moreover,
if we denote uy- = vy« when A = A*, then for 0 < Ay < Ag < X*, the
positive solutions of (1.1) satisfy

(@) [lux, lloo < llun, lloo and [lvx, [loo > [, llsos

(b) un, (z) < ur,(x) for =1 <z <1,

(c) va, (x) > (A1 /A2) Py, (x) for —1 <2 < 1.

(ii) Let u be a positive solution of (1.1). Then there exists a unique

positive number B* defined by (4.6) below such that ||u|l.c < B*. In
addition, if n =1,

1 e 11
B |(—2=L ) 5 <P_ )
pby (11 +1)F p r+l

(iii) For 0 < A < A*, let uyx, v be the two positive solutions of (1.1)
with uy < vx. Then ||uxlloo < [[ur]loo < [|Ualloos imy_o+ [|ur]lco = 0,
and limy_g+ ||[valleo = B*.

(iv) If i = p— 1, then for fized a;, bj, ¢;, rj, 1 < i < m and
2 < j < n, positive numbers \* = X*(by) and B* = B*(by) are both
strictly decreasing in by € (0, (p — 1)((7/p) csc (7 /p))P). In addition,
(2.1)

™ \"\ "~
A (1) — 0 and B*(by) — 0asb — <<p—1) (— csc —) ) .
p p

p/(r1—p+1)
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FIGURE 2. Bifurcation diagram of (1.5).

Theorem 2.2. (See Figure 2.) Consider (1.5) where f =
doimy aiu® 4+ 370 byju'i satisfies (1.6). Then
(i) There exists A* > 0 such that (1.5) has exactly two positive
solutions uy, vy with uy < vy for 0 < A < X*, exactly one positive
solution ux~ for A = X*, and no positive solution for A > \*. Moreover,
if we denote ux«~ = vy« when A = X*, then for 0 < A\ < Ay < X\*, the
positive solutions of (1.5) satisfy

(@) [lu, lloo < llualloo and [, lloo > [loa; lloc

(b) ux, () < up, () for —1 <z <1,

(c) va, () > (A1 /A2)YPuy, (2) for —1 <2 < 1.

(if) For 0 < A < A%, let uy and vy be the two positive solu-

tions of (1.5) with uy < vx. Then |lurlloo < [Jurslloo < [Vrlloos
limy Lo+ [Jualleo = 0, and limy o+ ||va]lco = 00. More precisely,

(2.2)

pal(q1 + 1)p71 1/(p—1—q1)

) . 1/(p—1—q1)
s (p—1)(B(1/)(qn +1),(p—1)/p))" 4

as A— 0T,
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(2.3)
pbn(rn + l)p—l 1/(p—1-rn)

AL/ (p—1=70)
(p—1)(B(1/(rn+1),(p—1)/p))"

[oall o ~

as A— 0T,

3. Lemmas. To prove Theorem 2.1, we modify the time-map
techniques applied to prove [10, Theorems 2.1 and 2.2]. We need the
following six lemmas. Consider

{ (pp(w/(2))) + Af(u) =0, —1<z<1,

(3:1) u(—1) =u(1) =0,

where A > 0 is a bifurcation parameter. Assume that f € C?(0,00)
satisfies f(u) > 0 for u > 0 and lim,_q+ u® f(u) = 0 for some constant
0 < B <1. Let F(u):= [ f(t)dt. Then F(0) :=lim,_ o+ F(u) = 0.

The time-map formula for (3.1) takes the form as follows:

(3.2)

_1 1/10 @
AP — (p_> / [F(a)— F(u)]"YPdu := T(a) for 0 < o < o0;
p 0

see [2, equation (2.4)]. Positive solutions u of (3.1) correspond to
|ulloe = o and T(a) = A/P. Thus, to study the number of positive
solutions of (3.1) is equivalent to study the shape of the time map T'(«)
on (0, c0).

The following lemma is a generalization of [9, Lemma 4.1]; we omit
the proof.

Lemma 3.1. Suppose that f € C(0,00) satisfies f(u) >0 for u >0
and lim,,_o+ u? f(u) = 0 for some constant 0 < 3 < 1.
(i) If lim, o+ f(u)/uP™" :=mg € (0,00] and lim, o0 f(u)/uP™! =
Moo € (0,00], then

1/p
-1
lim T(a) = (p ) T oese = >0,
a—0t mo p p
—1 1/p
lim T(a) = <p_> T oese = >0
Qa—00 Moo p p
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(i) If f(u) ~ mou®* as u — 0 and f(u) ~ Meu’* as u — oo for
some constants 1 —p < 81, 85 < 00, 0 < My, Moo < 00, then

—1\'” -

(3.3) pmo
B( ! R 1)a(p_1_81)/p as @ — 07
si+1° p
and
—1 1/p
T(a) ~ <p~_> (82 + 1)(1*13)/;0
(3.4) Priteo

« B< 1 ’p;l)a(plsgvp as 0 — o0,
s2+1° p

The following key lemma is a generalization of [9, Theorem 1.1]; we
omit the proof. Let 0¢(u) := pF(u) — uf(u).

Lemma 3.2. Suppose that f € C?(0,00) satisfies

(H1) f(u) > 0 for u > 0 and lim,_+ u® f(u) = 0 for some constant
0<pB<1,

(H2) lim, o+ f(u)/uP™t = mg € (0,00] and lim,_ oo f(u)/uP™t =
mOO E (0’ OO],

(H3) there exist positive numbers A < B such that

0% (u) = (p— 1) f(u) —uf'(u) >0 on (0, A),
(3-5) { 07(A) = (p—1)f(A) - Af'(4) = 0,
0% (u) = (p— 1) f(u) —uf'(u) <0 on (4, 0),

and

0f(u) =pF(u) —uf(u) >0 on (0, B),
(3.6) { 04(B) = pF(B) — Bf(B) = 0,

Of(u)

(H4) uf'(u)/f(u) > =1/(p+1) on (0, A) and uf'(u)/f(u) is increas-
ing on (A, B).

pF(u) —uf(u) <0 on (B, 00),
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Then
1/p
—1
lim T(a) = (p ) Tese I >0,
a—0t mo p p
—1 1/p
lim T(a) = <p_> T oese = >0,
Qa—00 Moo p p

and T(a) has exactly one critical point, a mazimum, on (0,00). Let
o be the critical point for T(a). Then A < a* < B.

Lemma 3.3. Consider (3.1) where f € C(0,00) satisfies f(u) >0
for u > 0 and lim,_o+ v’ f(u) = 0 for some constant 0 < 3 < 1.
Suppose that, for two fixed positive numbers A\ < A2, ux,(x), is a
positive solution of (3.1) for A\ = A1, ux,(x) is a positive solution of
(3.1) for A= Aa. Then

(1) If lux, oo < |urslloos then uy, (x) < ux,(z) for =1 <z < 1.

(i) If [lurlloo > lunslloos then ux, (x) > (A1/A2)YPuy,(x) for
—l<x<l1.

The proof of Lemma 3.3 is exactly the same as that of [9, Theorem
1.2]. We omit it.

Consider

(3.7) { (‘Pp_(lulf) ) + flu(@) =0, -1<z<1,

u(=1) = u(1) =0,
where fi(u) = Ag(u) + h(u), g € C(0,00), h € C[0,00) and g, h satisty
0=

g(u),h(u) > 0 for u > 0 and lim, o+ uPg(u) = h(0) for some
constant 0 < 8 < 1. Define

(3.8) Fi(u) = / XL

_ 1/p @
(3.9) Tn(a) = (p_1> /0 [Fx(e)—Fx(u)]"YPdu  for 0 < o < 0.
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The following lemma is a generalization of [11, Lemma 3.2]; we omit
the proof.

Lemma 3.4. Consider (3.7) where fx(u) = Ag(u) + h(u), g €
C(0,00), h € C[0,00) and g,h satisfy g(u), h(u) > 0 for u > 0 and
lim, o+ uPg(u) = O = h(0) for some constant 0 < B < 1. Then,
for each fized o > 0, Th(«) is a continuous function of A > 0 and
hm)\_,oo T)\( ) =0.

Consider (3.7) where fy(u) = Ag(u)+h(u), g € C(0,00), h € C[0, c0)
and g, h satisfy g(u), h(u) > 0 for u > 0 and lim,,_ o+ v’ g(u) = 0 = h(0)
for some constant 0 < 8 < 1. Let A;, A2 be two positive constants.
Suppose that, for A\; < XA < Ag, Th(a) has exactly one critical point, a
maximum at some a3, on (0,00). Then for Ay < A < Ag, let

M) :=Th(a}) = max Th(«a).
a€(0,00)

For u > 0, fa(u) = Ag(u) + h(u) is strictly increasing in A > 0 since
g(u) > 0 for u > 0. This and (3.9) imply that, for any fixed o > 0,
T\ () is strictly decreasing in A > 0. Thus M () is strictly decreasing
in A € [A1, A2]. The following lemma is a generalization of [11, Lemma
3.3]; we omit the proof.

Lemma 3.5. Consider (3.7) where fi(u) = Ag(u) + h(u), g €
C(0,00), h € C[0,0) and g,h satisfy g(u),h(u) > 0 for u > 0 and
lim,_g+ u?g(u) = 0 = h(0) for some constant 0 < 3 < 1. Assume that
there exist two positive numbers Ay < Ay such that

(i) for Ay < X < Ao, Ta (@) has ezactly one critical point, a mazimum
at some o, on (0,00),

(ll) M()\Q) <1l< M()\l),

(iii) 0 < inf{a} | A € [A1, Ag]} <sup{a} | A € [A1, A2]} < o0.

Then there exists a unique number X\* € (A1, A2) such that M(\*)
=1.
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Lemma 3.6. Consider (3.7) where fx(u) = Ag(u) + h(u), g €
C(0,00), h € C[0,00) and g,h satisfy g(u), h(u) > 0 for u > 0 and
lim, o+ u?g(u) = 0 = h(0) for some constant 0 < 3 < 1. Suppose that,
for two fized positive numbers Ay < Az, uy, (z) is a positive solution of
(3.7) for A = A1, ux, () is a positive solution of (3.7) for A = Ay. Then

(1) If lux, oo < |urslloos then uy, (x) < ux,(z) for =1 <z < 1.

(i) If [luxlloo > lunslloos then ux, (x) > (A1/A2)YPux,(x) for
—l<x<l1.

The proof of Lemma 3.6 (ii) is similar to that of [10, Lemma 3.5]. A
similar argument as in the proof of [10, Lemma 3.5] can apply to prove
Lemma 3.6 (i). We omit the proofs.

4. Proofs of Theorems 2.1 and 2.2. To prove Theorem 2.1 we
first prove Theorem 2.2 by mainly applying Lemma 3.2.

Proof of Theorem 2.2. (i) Suppose that
f = fm,n(u) = Zaiuq'i + ijurj, m,n > 1,
i=1 j=1

satisfies (1.6).

It is easy to check that, for m,n > 1, fu. € C?(0,00) satisfies
(H1)—(H3) for some positive numbers A < B and mg = 00 = muo; we
omit the proofs.

For (H4), we compute that

3

1 . 1
uff, o)+ —— fn(w) =Y ail ¢ + —— Ju®
Frnl) + g Fnn() = Y s+

i=1
n

1
bilri+——)u™ >0 0,
+ lj(r]+p+1)u on (0, 00)

j=

by (1.6). So, to complete the proof of (H4), it suffices to prove that
wfy n(W)/ fmn(u) is increasing on (A, B). Actually, we prove that
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wfy (U
(4.1) mn (W) is increasing on (0, 00)

fmon(u)
by the principle of double induction on positive integers m, n as follows.

Note that, since f € C?(0,00), it is easy to see that uf’(u)/f(u) is
increasing on (0,00) if and only if (uf’(u)) f(u) — u(f'(u))*> > 0 on
(0,00).

First we prove (4.1) for f = fi,(u) = aqu® + 327 bjuP’ by
induction on n. For n = 1, f = fii(u) = au? + buP' with
0< ¢ <1< p;anday,b; >0, we compute that

(wfi (@) fra(w) —u(fi 1 (w)? = (arqiu®™ " +bipfu™ ) (aru +byuf)
—u(arqu 4 bypruPTh)?
= a1by(pr—q)*uP T >0 on (0, 00).
Thus (4.1) holds. Secondly, assume that, for n =s > 1, f = f1 s(u) =
aru® + 375, bjuPi satisfies (4.1). Hence,

(4.2) (ufi s (W) fr,s(w) = u(fi s(u))> >0 on (0,00).
Then for n = s+ 1, f = f1,s41(v) = f1,5(w) + bspruP=+1, by (4.2) and
(1.6), we compute that
(wfT o1 (W) 1 (w) = u(f] o1 (w))?
= [quS(U) + bs+1ps+lups+ly[f1,s(u) + bS_H’LLpS'H
- u[f{,s(u) + bs+1ps+1ups+1_l]2

= [(wfi o(w) frs(w) = ul(fi o()?]

S
+ by pquPer ! [al(ps+1 — @)%+ bi(pet1 — pj)QUpj]
j=1

S
> bgyquPrt [@1(Ps+1 —q1)*u® + Z bj(pss1 —Pj)Qupj] >0
j=1

on (0,00). Thus (4.1) holds for f = fi,(u), n = s+ 1. So by
mathematical induction, for any positive integer n, (4.1) holds for

f= fl,n(u)'
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We next prove (4.1) for f = fn(u) == Y00 agu® + 3770, bjubs
for any fixed n > 1 by induction on m. First, by the above, for
m =1, f = fia(u) = aqu® + 377_ bjuPi satisfies (4.1) for any
fixed n > 1. Secondly, assume that, for m=t>1 f= fin(u) =
ZZ L aud + Z bjuPi satisfies (4.1) for any fixed n > 1. Hence,

(4.3) (wff (W) fen(w) = u(fi n(u))* 20 on (0,00).

Then, for m =t +1, f = fiy1n(w) = fin(u) + arp1u®, by (4.3) and
(1.6), we compute that

(ufisr,n (W) fryin(u) — U(ft/+1,n(u))2
= [uf{ ,(w) + arp1qe1u? ] [frn(uw) + appru]
ulf] , (u) + a1 qrpru® 12

= [(Wff (W) fen(w) = ulf;  (u))?]

t
+a it {Z ai(gr1 — ¢i)*u® + Zb (qt+1 — pj )2upj}
i=1 j=1
t
> appudth ! |:Zaz Grr1 — i) u® + Zb Gt+1 — Dy )QUPJ] >0
i=1

Jj=1

n (0,00). Thus, (4.1) holds for f = f,n(u) for any fixed n > 1,
m =t+1. So, by mathematical induction, for any fixed n > 1 and any
positive integer m, (4.1) holds for f = f,, . (u). Hence, f, , satisfies
(H4) for any positive integers m, n.

So, by (1.6) and Lemma 3.2,

(4.4) lim T(a) =0= lim T(«)

a—0t a—o00

and T'(«) has exactly one critical point, a maximum, on (0, 00). Thus,
there exists \* := (T'(a*))? = (maxXqae(,00) T'(@))? > 0 for some

€ (A, B) such that (1.5) has exactly two positive solutions uy, vy
with uy < vy for 0 < A < A* (the ordering of uy,v) can be proved
easily), exactly one positive solution wuy- for A = A*, and no positive
solution for A > A*. Moreover, if 0 < Ay < Ay < A\*, then
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(@) flux, lloo < [lux, lloo and [loa, lloo > [lvr,lloo,
(b) ux, () < up, () for =1 < 2 < 1 by Lemma 3.3 (i),
(c) v, (x) > (A1 /A2)/Puy, (z) for —1 < z < 1 by Lemma 3.3 (ii).

(i) It is easy to see that [[ux[co < [|tr|lco < [[Ualloo for 0 < XA < A*,
limy o+ |urlloc = 0 and limy o+ ||vallcc = 00. Equations (2.2) and
(2.3) follow immediately by (3.3) and (3.4).

The proof of Theorem 2.2 is complete. |

Proof of Theorem 2.1. For fixed A > 0, suppose that uy(x) is a
positive solution of (1.1) with ||ux||cc = a. We write

Ialu) = )‘iai“qi T i bju' = [iaiu‘“ + % i bju”} .
i=1 j=1 i—1 e

Then, by (3.2) and (3.8), it is easy to see that

1/p « a m n —1/p
D)L e 3 e
—_— a;s? + — bis" ds du
p> 0 [ /\jzlj

p—1 1/p @ a m n -1/p
= <T> ,\1/1’/ {/ /\Zaisqi + ijs” ds] du
o LJu = =1

1’;1>1/p N /Oa {Fk(a) - F)\(u)] o

This and (3.9) imply that the positive solution wuy(x) of (1.1) corre-
sponds to ||ux]leo = @ and

p—1 1/p  pa -1/p

(4.5) (o) = (T) / [FA(a) - F)\(u):| du = 1.
0

It is easy to check that (4.5) holds for any A > 0.

Suppose that fx(u) = A 3" a;u® 4377 bju's satisfies (1.2). First,
for A =0, fo(u) = >27_) bju’s and Fo(u) = 377, bj/(rj+1)u™ 1. We
first show some properties of Tp(«) and T («). We have

(1)

{hmaﬂm To(a) = ((p = 1)/b0)"/P(x/p) csc (w/p) > 1 if r1=p—1,
lim,_, o+ To(a) = 00 ifry >p—1,
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by (1.2) and Lemma 3.1(i).
(2) limg—00 To(e) = 0 by (1.2) and Lemma 3.1 (i).

(3) To(w) is a strictly decreasing function of o > 0 as it is easy to see
that

~1\"P1 > 9 —0
To(a) = P —/ o) = b0 (w) du <0 for «a>0,
pp+1 aJo [Fyla) - Fo(u)}(p—’_l)/p

since

bi(p—1-—
I1ote) = Orolu :Z s i1 7“])( mth it <0
J

for O0<u<a.

By the above, there exists a unique positive number B* satisfying
(4.6) Ty(B*) = 1.

(4) For each fixed o > 0, Ty(«) is a continuous function of A > 0,
limy_ g+ Th(a) = To(a) and limy_, Th(a) = 0 by Lemma 3.4.

(5) For 0 < A\ < Ag,

fa,(w) =X\ Z a;udt + z": bju < Ay i a;u? + z”: bju"
j=1 i=1 j=1

= f>\2 (u)v u > 0.
So we obtain T}, (o) > T, () for o > 0 by (3.8) and (3.9).
(6) For each fixed A > 0, by (4.4), lim, .o+ Th () = 0 = limgy—0o Th ().

In addition, T)(«) has exactly one critical point, a maximum at some
o, on (0,00).

By the above, there exist two positive numbers A; < A2 such that
M(X2) <1 < M(M1). In the proof of Theorem 2.2, we know that,
for fixed A > 0, the nonlinearity fy = A3, aju® + 377 bju"i
satisfies (H1)—(H4); then Ay < a} < B, where Ay and B) satisfy
0%, (Ax) = 0y, (Bx) = 0. Since the functions

0, (u) = pFx(u) — ufa(u )

“ ai(p—1-— 1 ) ;
=\ wdit ri+1
2 — M Z 7"] T

i=1 =
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a = |ull,

tji ——— - ———

0 l[x oo

FIGURE 3. Graph of T)(«) for different X’s of (1.1).

and

07, (w) = (p— 1) fa(u) — ufi(u)

m n

= )\Zai(p —1—g)u® + ij(p —1—rj)u’
i=1 j=1

are both strictly increasing in A > 0. Thus, positive numbers A, and
B, are both strictly increasing in A > 0 by (3.5) and (3.6). Hence

0< A,\1 = 1nf{A)\|/\ S [)\1,)\2]} < 1nf{a§\|/\ S [)\1,/\2]}
<sup{ai| A € [A1, A2]} <sup{Bi| A € [A1, A2]} = By, < .

By the above and by Lemma 3.5, we obtain
(7) There exists a unique number A* > 0 such that

(4.7 M) = max Th-(a)=1.
a€(0,00)

So by the above, we obtain graphs of T)(«) of (1.1) for different \'s
as in Figure 3. It follows that
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(i) Problem (1.1) has exactly two positive solutions wy, vy with
uy < vy for 0 < A < A\* (the ordering of uy, vy can be proved easily),
exactly one positive solution uy« for A = A*, and no positive solution
for A > A*. Moreover, if 0 < A\; < Ay < A*, then we obtain that

(@) flux, lloo < [lux, lloo and [lor, lloo > [lua,lloo,
(b) ux, () < up, () for —1 <z < 1 by Lemma 3.6 (i),
(c) va, () > (A1 /A2)YPuy, (2) for =1 < 2 < 1 by Lemma 3.6 (ii).

(ii) Let u be a positive solution of (1.1). Then |ju|e < B*. In
addition, if n = 1, by (4.5), we compute that

To(a) = (M)Up /Oa(anﬂ _ ur1+1)—1/p du

pby

1
_ ((p = 1)(r1 + 1)) /pa(p—l—h)/p

by

1
X / (1 —w" ) =1P duw (let u = aw)
0

1/
IO 2k ) I Ry
pby(ry +1)P~1

1
X / V(1 — )/ gt (let t =1 —w™ )
0

1/
— ( (p_]') > pa(plTl)/pB<p_1 1 >.
pbi(r1 +1)P~1 p ‘ri+1

By (4.6), we solve that

() o5
pbl (T’l + 1)p*1 p ’ r1+ 1

(iii) It is easy to see that [|uxleo < ||ualloo < [[valloo for 0 < A < A*.
The proofs of limy_ g+ ||ur]leoc = 0 and limy_ o+ ||vallec = B* are easy
but tedious; we omit them.

p/(r1—p+1)
B* =

(iv) Suppose that r1 = p — 1; then for any fixed A > 0 and
a;, bj, g, rj5, 1 < i < mand 2 < j < n, fi = fay
A a4 byuPTt 4 3T bju”s ds strictly increasing in by €
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(0, (p—1)((w/p) csc (mw/p))P). So Ta(a) = Thp, () is strictly decreasing
in by € (0,(p—1)((7/p) csc (7/p))P) by (4.5)—(4.7), and hence positive
numbers \* = A\*(b;) and B* = B*(b;) are both strictly decreasing
in by € (0,(p — 1)((w/p) csc (m/p))?). The proof of (2.1) is easy but
tedious; we omit it.

The proof of Theorem 2.1 is complete. O

5. An example with some negative coefficient. Actually, to
Theorem 2.1, we give an example to demonstrate that the hypotheses
of positive coefficients a; and b; for fy = AY ;" a;u% + Z?:l bju'i
in (1.2) can be weakened. Our time-map techniques as in the proof
of Theorem 2.1 can be adapted such that the same exact multiplicity
results in Theorem 2.1 hold for some nonlinearities fy = Ay i~ a;u? +
> 5y bju”i satisfying either a; < 0 or b; < 0 for some 1 < i < m,
1<j<n.

An example with some negative coefficient (See Figure 4). For (1.1),
take p =3 and fy(u) = Au='/* + u? — u3 + u*. It can be proved that

Ti(a)

FIGURE 4. Numerical simulations of Ty (a) : fx(u) = Au=4 + 02 —ud +ut,
A=0, 02, 1,3.372, 15, 60 for p = 3. A* ~ 3.372, B* & 2.528, A* ~ 1.82.
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(i) for fixed A with 0 < XA < 5, fi(u) satisfies all hypotheses in
Lemma 3.2 and Ty («) has exactly one critical point, a maximum, on
(0,00). In addition,

lim Ty() 2 7/33/2) ~ 1524 > 1 if A =0,
)\ =
a—0t 0 ¢ 0 S 5’
and
lim Ty(a) =0,
o— 00

(ii) for A > 5, Th(a) < 1 for all & > 0.

Then applying the same arguments as in the proof of Theorem 2.1, we
obtain that there exists A* > 0 such that (1.1) has exactly two positive
solutions uy, vy with uy < wy for 0 < A < \*, exactly one positive
solution uy+ for A = A*, and no positive solution for A > A\*. Actually,
numerical simulations as given in Figure 4 show that A\* ~ 3.372,
B* =~ 2.528 and A* ~ 1.824.
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