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EXACT STRUCTURE OF POSITIVE SOLUTIONS
FOR A P -LAPLACIAN PROBLEM INVOLVING

SINGULAR AND SUPERLINEAR NONLINEARITIES

SHIN-HWA WANG AND TZUNG-SHIN YEH

ABSTRACT. We study the structure of positive solutions
for a p-Laplacian boundary value problem involving singular
and superlinear nonlinearities. We prove that there exists
λ∗ > 0 such that the problem has exactly two positive
solutions for 0 < λ < λ∗, exactly one positive solution for
λ = λ∗, and no positive solution for λ > λ∗. More precisely,
we give a complete description of the structure of the solution
set. Our result partially generalizes some results of Wei [12].

1. Introduction. In this paper we study the structure of positive
solutions u ∈ C1[−1, 1]∩C2(−1, 1) of the nonlinear two point boundary
value problem
(1.1){

(ϕp(u′(x)))′ + λ
∑m

i=1 aiu
qi +

∑n
j=1 bju

rj = 0, −1 < x < 1,

u(−1) = u(1) = 0,

where p > 1, ϕp(y) = |y|p−2y, (ϕp(u′))′ is the one-dimensional p-
Laplacian, λ > 0 is a bifurcation parameter, and fλ = λ

∑m
i=1 aiu

qi +∑n
j=1 bju

rj satisfies

(1.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1/(p + 1) ≤ q1 < q2 < · · · < qm < p − 1
≤ r1 < r2 < · · · < rn, m, n ≥ 1,

q1 < 0, rn > p − 1, ai > 0 for i = 1, 2, . . . , m

and bj > 0 for j = 1, 2, . . . , n,

and (either r1 > p − 1 or b1 < (p − 1)((π/p) csc (π/p))p).

Note that, in (1.2),
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(a) If r1 = p − 1 and b1 ≥ (p − 1)((π/p) csc (π/p))p, then it can
be easily proved that (1.1) has no positive solution for any λ >
0. (Note that (p − 1)((π/p) csc (π/p))p is the first eigenvalue of the
one-dimensional operator −(ϕp(u′))′ on (−1, 1) with zero Dirichlet
boundary conditions.)

(b) Assume that p = 2. If r1 = p − 1 = 1, then nonlinearity
fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj contains a linear term. In addition,

for fixed λ > 0, fλ(u) is either a convex-concave-convex or a convex
function on (0,∞) if 0 < qm < 1. If −1/3 ≤ qm ≤ 0, then fλ(u) is a
convex function on (0,∞).

(c) We allow qm to be positive, zero or negative.

Sun, Wu, and Long [5] studied combined effects of singular and
superlinear nonlinearities in a singular problem

(1.3)
{

Δu + λuq + σur = 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a bounded domain. They [5, Theorem 2]
mainly proved

Theorem 1.1. Let −1 < q < 0, 1 < r < (N + 2)/(N − 2) and
N ≥ 3. Then, for every σ > 0, there exists λ∗ > 0 such that, for all
λ ∈ (0, λ∗], problem (1.3) possesses at least one weak positive solution
u ∈ H1

0 (Ω).

Recently, Wang and Yeh [9, Theorem 2.2] studied the exact structure
of positive solutions of (1.1) by applying modified time-map techniques
for fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj satisfying

(1.4)⎧⎪⎪⎨⎪⎪⎩
0 < q1 < q2 < · · · < qm < p − 1
≤ r1 < r2 < · · · < rn, m, n ≥ 1, rn > p − 1,

ai > 0 for i = 1, 2, . . . , m and bj > 0 for j = 1, 2, . . . , n,
and (either r1 > p − 1 or b1 < (p − 1)((π/p) csc (π/p))p).

To (1.1), we generalize [9, Theorem 2.2] for nonlinearities fλ ∈
C[0,∞) ∩ C2(0,∞) satisfying (1.4) to nonlinearities fλ ∈ C2(0,∞)
satisfying (1.2) as in Theorem 2.1 stated behind. Note that, to study
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(1.1), we first study the structure of positive solutions of

(1.5){
(ϕp(u′(x)))′ + λ

(∑m
i=1 aiu

qi +
∑n

j=1 bju
rj

)
= 0, −1 < x < 1,

u(−1) = u(1) = 0,

where f =
∑m

i=1 aiu
qi +

∑n
j=1 bju

rj satisfies
(1.6)⎧⎨⎩

−1/(p + 1) ≤ q1 < q2 < · · · < qm < p − 1
≤ r1 < r2 < · · · < rn, m, n ≥ 1, rn > p − 1,

ai > 0 for i = 1, 2, . . . , m and bj > 0 for j = 1, 2, . . . , n.

Very recently, motivated by a result of Agarwal and O’Regan [1], Wei
[12] studied the exact multiplicity and properties of positive solutions
of the singular problem

(1.7)
{

u′′(x) + λ(uq + ku + ur) = 0, −1 < x < 1,
u(−1) = u(1) = 0,

where λ > 0 is a bifurcation parameter, k ≥ 0, and q, r satisfy either

(A1) −1/3 ≤ q ≤ 0, 1 < r < ∞, or

(A2) −1 < q < −1/3, and

1 < r < 1 +
[

q − 1
2(1 + 3q)

] [
(3 + 5q) +

√
(3 + 5q)2 − 8(1 + 3q)(1 + q)

]
.

Wei [12, Theorem 1] mainly proved

Theorem 1.2. Consider (1.7) and assume that (A1) and (A2)
are satisfied. Then there exists λ∗ > 0 such that (1.7) has exactly
two positive solutions uλ, vλ with uλ < vλ for 0 < λ < λ∗, exactly
one positive solution uλ∗ for λ = λ∗ and no positive solution for
λ > λ∗. Moreover, if we denote uλ∗ = vλ∗ when λ = λ∗, then for
0 < λ1 < λ2 ≤ λ∗, the positive solutions of (1.7) satisfy

(a) ‖vλ1‖∞ > ‖vλ2‖∞,

(b) uλ1 (x) < uλ2(x) for −1 < x < 1,
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(c) vλ1(x) > (λ1/λ2)1/2 vλ2 (x) for −1 < x < 1,

(d) limλ→0+ uλ (x) = 0 and limλ→0+ vλ (x) = ∞ for −1 < x < 1.

Remark 1. Consider (1.7). If −1 < q < 0, then (classical) positive
solutions u ∈ C1[−1, 1]. However, if q ≤ −1, then positive solutions
u /∈ C1[−1, 1]. See [3, 6, 7].

The paper is organized as follows. Section 2 contains the statement
of Theorems 2.1 and 2.2 which are the main results in this paper.
Section 3 contains the lemmas needed to prove Theorems 2.1 and 2.2.
Section 4 contains the proofs of Theorems 2.1 and 2.2. Finally, in
Section 5, to Theorem 2.1 and (1.2), we give an example to demonstrate
that the hypotheses of positive coefficients ai and bj in nonlinearities
fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj can be weakened.

2. Main results. The main results in this paper are following
Theorems 2.1 and 2.2. In Theorem 2.2, we first study the exact
structure of positive solutions of (1.5) for f =

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj

satisfying (1.6). It extends Wang and Yeh [9, Theorem 2.1] for p-
Laplacian problem (1.5) from q1 > 0 to q1 ≥ −1/(p+1), and it partially
generalizes some results of Theorem 1.2 for Laplacian problem (1.7) to
p-Laplacian problem (1.5). Then in Theorem 2.1, we apply Theorem 2.2
to study the exact multiplicity and structure of positive solutions of
(1.1) for fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj satisfying (1.2). It partially

generalizes some results of Theorem 1.1 in the one-dimensional case,
and it extends Wang and Yeh [9, Theorem 2.2] for the p-Laplacian
problem (1.1).

Recall the Beta function as follows, see e.g., [4, p. 18]:

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt, x, y > 0.

Theorem 2.1. (See Figure 1). Consider (1.1) where fλ =
λ
∑m

i=1 aiu
qi +

∑n
j=1 bju

rj satisfies (1.2). Then

(i) There exists λ∗ > 0 such that (1.1) has exactly two positive
solutions uλ, vλ, with uλ < vλ for 0 < λ < λ∗, exactly one positive
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FIGURE 1. Bifurcation diagram of (1.1).

solution uλ∗ for λ = λ∗, and no positive solution for λ > λ∗. Moreover,
if we denote uλ∗ = vλ∗ when λ = λ∗, then for 0 < λ1 < λ2 ≤ λ∗, the
positive solutions of (1.1) satisfy

(a) ‖uλ1‖∞ < ‖uλ2‖∞ and ‖vλ1‖∞ > ‖vλ2‖∞,

(b) uλ1(x) < uλ2(x) for −1 < x < 1,

(c) vλ1(x) > (λ1/λ2)1/p vλ2 (x) for −1 < x < 1.

(ii) Let u be a positive solution of (1.1). Then there exists a unique
positive number B∗ defined by (4.6) below such that ‖u‖∞ < B∗. In
addition, if n = 1,

B∗ =

⎡⎣( p − 1
pb1 (r1 + 1)p−1

)1/p

B

(
p − 1

p
,

1
r1 + 1

)⎤⎦p/(r1−p+1)

.

(iii) For 0 < λ < λ∗, let uλ, vλ be the two positive solutions of (1.1)
with uλ < vλ. Then ‖uλ‖∞ < ‖uλ∗‖∞ < ‖vλ‖∞, limλ→0+ ‖uλ‖∞ = 0,
and limλ→0+ ‖vλ‖∞ = B∗.

(iv) If r1 = p − 1, then for fixed ai, bj, qi, rj, 1 ≤ i ≤ m and
2 ≤ j ≤ n, positive numbers λ∗ = λ∗(b1) and B∗ = B∗(b1) are both
strictly decreasing in b1 ∈ (0, (p − 1)((π/p) csc (π/p))p). In addition,

(2.1)

λ∗(b1) −→ 0 and B∗(b1) −→ 0 as b1 −→
((

p−1
)(

π

p
csc

π

p

)p)−
.
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FIGURE 2. Bifurcation diagram of (1.5).

Theorem 2.2. (See Figure 2.) Consider (1.5) where f =∑m
i=1 aiu

qi +
∑n

j=1 bju
rj satisfies (1.6). Then

(i) There exists λ∗ > 0 such that (1.5) has exactly two positive
solutions uλ, vλ with uλ < vλ for 0 < λ < λ∗, exactly one positive
solution uλ∗ for λ = λ∗, and no positive solution for λ > λ∗. Moreover,
if we denote uλ∗ = vλ∗ when λ = λ∗, then for 0 < λ1 < λ2 ≤ λ∗, the
positive solutions of (1.5) satisfy

(a) ‖uλ1‖∞ < ‖uλ2‖∞ and ‖vλ1‖∞ > ‖vλ2‖∞,

(b) uλ1(x) < uλ2(x) for −1 < x < 1,

(c) vλ1(x) > (λ1/λ2)1/pvλ2(x) for −1 < x < 1.

(ii) For 0 < λ < λ∗, let uλ and vλ be the two positive solu-
tions of (1.5) with uλ < vλ. Then ‖uλ‖∞ < ‖uλ∗‖∞ < ‖vλ‖∞,
limλ→0+ ‖uλ‖∞ = 0, and limλ→0+ ‖vλ‖∞ = ∞. More precisely,

(2.2)

‖uλ‖∞ ∼

[
pa1(q1 + 1)p−1

(p − 1) (B (1/(q1 + 1), (p − 1)/p))p

]1/(p−1−q1)

λ1/(p−1−q1)

as λ → 0+,
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(2.3)

‖vλ‖∞ ∼

[
pbn(rn + 1)p−1

(p − 1) (B (1/(rn + 1), (p − 1)/p))p

]1/(p−1−rn)

λ1/(p−1−rn)

as λ → 0+.

3. Lemmas. To prove Theorem 2.1, we modify the time-map
techniques applied to prove [10, Theorems 2.1 and 2.2]. We need the
following six lemmas. Consider

(3.1)
{

(ϕp(u′(x)))′ + λf(u) = 0, −1 < x < 1,
u(−1) = u(1) = 0,

where λ > 0 is a bifurcation parameter. Assume that f ∈ C2(0,∞)
satisfies f(u) > 0 for u > 0 and limu→0+ uβf(u) = 0 for some constant
0 < β < 1. Let F (u) :=

∫ u

0
f(t) dt. Then F (0) := limu→0+ F (u) = 0.

The time-map formula for (3.1) takes the form as follows:

(3.2)

λ1/p =
(

p−1
p

)1/p ∫ α

0

[F (α)− F (u)]−1/p du := T (α) for 0 < α < ∞;

see [2, equation (2.4)]. Positive solutions u of (3.1) correspond to
‖u‖∞ = α and T (α) = λ1/p. Thus, to study the number of positive
solutions of (3.1) is equivalent to study the shape of the time map T (α)
on (0,∞).

The following lemma is a generalization of [9, Lemma 4.1]; we omit
the proof.

Lemma 3.1. Suppose that f ∈ C(0,∞) satisfies f(u) > 0 for u > 0
and limu→0+ uβf(u) = 0 for some constant 0 < β < 1.

(i) If limu→0+ f(u)/up−1 := m0 ∈ (0,∞] and limu→∞ f(u)/up−1 :=
m∞ ∈ (0,∞], then

lim
α→0+

T (α) =
(

p − 1
m0

)1/p
π

p
csc

π

p
≥ 0,

lim
α→∞T (α) =

(
p − 1
m∞

)1/p
π

p
csc

π

p
≥ 0.
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(ii) If f(u) ∼ m̃0u
s1 as u → 0+ and f(u) ∼ m̃∞us2 as u → ∞ for

some constants 1 − p < s1, s2 < ∞, 0 < m̃0, m̃∞ < ∞, then

(3.3)
T (α) ∼

(
p − 1
pm̃0

)1/p

(s1 + 1)(1−p)/p

× B

(
1

s1 + 1
,
p − 1

p

)
α(p−1−s1)/p as α −→ 0+

and

(3.4)
T (α) ∼

(
p − 1
pm̃∞

)1/p

(s2 + 1)(1−p)/p

× B

(
1

s2 + 1
,
p − 1

p

)
α(p−1−s2)/p as α −→ ∞.

The following key lemma is a generalization of [9, Theorem 1.1]; we
omit the proof. Let θf (u) := pF (u) − uf(u).

Lemma 3.2. Suppose that f ∈ C2(0,∞) satisfies

(H1) f(u) > 0 for u > 0 and limu→0+ uβf(u) = 0 for some constant
0 < β < 1,

(H2) limu→0+ f(u)/up−1 = m0 ∈ (0,∞] and limu→∞ f(u)/up−1 =
m∞ ∈ (0,∞],

(H3) there exist positive numbers A < B such that

(3.5)

⎧⎨⎩
θ′f (u) = (p − 1)f(u) − uf ′(u) > 0 on (0, A),
θ′f (A) = (p − 1)f(A) − Af ′(A) = 0,

θ′f (u) = (p − 1)f(u) − uf ′(u) < 0 on (A,∞),

and

(3.6)

⎧⎨⎩
θf (u) = pF (u) − uf(u) > 0 on (0, B),
θf (B) = pF (B) − Bf(B) = 0,

θf (u) = pF (u) − uf(u) < 0 on (B,∞),

(H4) uf ′(u)/f(u) ≥ −1/(p+1) on (0, A) and uf ′(u)/f(u) is increas-
ing on (A, B).
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Then

lim
α→0+

T (α) =
(

p − 1
m0

)1/p
π

p
csc

π

p
≥ 0,

lim
α→∞T (α) =

(
p − 1
m∞

)1/p
π

p
csc

π

p
≥ 0,

and T (α) has exactly one critical point, a maximum, on (0,∞). Let
α∗ be the critical point for T (α). Then A < α∗ < B.

Lemma 3.3. Consider (3.1) where f ∈ C(0,∞) satisfies f(u) > 0
for u > 0 and limu→0+ uβf(u) = 0 for some constant 0 < β < 1.
Suppose that, for two fixed positive numbers λ1 < λ2, uλ1(x), is a
positive solution of (3.1) for λ = λ1, uλ2(x) is a positive solution of
(3.1) for λ = λ2. Then

(i) If ‖uλ1‖∞ < ‖uλ2‖∞, then uλ1(x) < uλ2(x) for −1 < x < 1.

(ii) If ‖uλ1‖∞ > ‖uλ2‖∞, then uλ1(x) > (λ1/λ2)1/puλ2(x) for
−1 < x < 1.

The proof of Lemma 3.3 is exactly the same as that of [9, Theorem
1.2]. We omit it.

Consider

(3.7)
{

(ϕp (u′(x)))′ + fλ(u(x)) = 0, −1 < x < 1,
u(−1) = u(1) = 0,

where fλ(u) = λg(u) + h(u), g ∈ C(0,∞), h ∈ C[0,∞) and g, h satisfy
g(u), h(u) > 0 for u > 0 and limu→0+ uβg(u) = 0 = h(0) for some
constant 0 < β < 1. Define

(3.8) Fλ(u) =
∫ u

0

fλ(t) dt,

(3.9) Tλ(α) =
(

p−1
p

)1/p ∫ α

0

[Fλ(α)−Fλ(u)]−1/p du for 0 < α < ∞.
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The following lemma is a generalization of [11, Lemma 3.2]; we omit
the proof.

Lemma 3.4. Consider (3.7) where fλ(u) = λg(u) + h(u), g ∈
C(0,∞), h ∈ C[0,∞) and g, h satisfy g(u), h(u) > 0 for u > 0 and
limu→0+ uβg(u) = 0 = h(0) for some constant 0 < β < 1. Then,
for each fixed α > 0, Tλ(α) is a continuous function of λ ≥ 0 and
limλ→∞ Tλ(α) = 0.

Consider (3.7) where fλ(u) = λg(u)+h(u), g ∈ C(0,∞), h ∈ C[0,∞)
and g, h satisfy g(u), h(u) > 0 for u > 0 and limu→0+ uβg(u) = 0 = h(0)
for some constant 0 < β < 1. Let λ1, λ2 be two positive constants.
Suppose that, for λ1 ≤ λ ≤ λ2, Tλ(α) has exactly one critical point, a
maximum at some α∗

λ, on (0,∞). Then for λ1 ≤ λ ≤ λ2, let

M(λ) := Tλ(α∗
λ) = max

α∈(0,∞)
Tλ(α).

For u > 0, fλ(u) = λg(u) + h(u) is strictly increasing in λ > 0 since
g(u) > 0 for u > 0. This and (3.9) imply that, for any fixed α > 0,
Tλ(α) is strictly decreasing in λ > 0. Thus M(λ) is strictly decreasing
in λ ∈ [λ1, λ2]. The following lemma is a generalization of [11, Lemma
3.3]; we omit the proof.

Lemma 3.5. Consider (3.7) where fλ(u) = λg(u) + h(u), g ∈
C(0,∞), h ∈ C[0,∞) and g, h satisfy g(u), h(u) > 0 for u > 0 and
limu→0+ uβg(u) = 0 = h(0) for some constant 0 < β < 1. Assume that
there exist two positive numbers λ1 < λ2 such that

(i) for λ1 ≤ λ ≤ λ2, Tλ(α) has exactly one critical point, a maximum
at some α∗

λ, on (0,∞),

(ii) M(λ2) < 1 < M(λ1),

(iii) 0 < inf{α∗
λ | λ ∈ [λ1, λ2]} ≤ sup{α∗

λ | λ ∈ [λ1, λ2]} < ∞.

Then there exists a unique number λ∗ ∈ (λ1, λ2) such that M(λ∗)
= 1.
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Lemma 3.6. Consider (3.7) where fλ(u) = λg(u) + h(u), g ∈
C(0,∞), h ∈ C[0,∞) and g, h satisfy g(u), h(u) > 0 for u > 0 and
limu→0+ uβg(u) = 0 = h(0) for some constant 0 < β < 1. Suppose that,
for two fixed positive numbers λ1 < λ2, uλ1(x) is a positive solution of
(3.7) for λ = λ1, uλ2(x) is a positive solution of (3.7) for λ = λ2. Then

(i) If ‖uλ1‖∞ < ‖uλ2‖∞, then uλ1(x) < uλ2(x) for −1 < x < 1.

(ii) If ‖uλ1‖∞ > ‖uλ2‖∞, then uλ1(x) > (λ1/λ2)1/puλ2(x) for
−1 < x < 1.

The proof of Lemma 3.6 (ii) is similar to that of [10, Lemma 3.5]. A
similar argument as in the proof of [10, Lemma 3.5] can apply to prove
Lemma 3.6 (i). We omit the proofs.

4. Proofs of Theorems 2.1 and 2.2. To prove Theorem 2.1 we
first prove Theorem 2.2 by mainly applying Lemma 3.2.

Proof of Theorem 2.2. (i) Suppose that

f = fm,n(u) :=
m∑

i=1

aiu
qi +

n∑
j=1

bju
rj , m, n ≥ 1,

satisfies (1.6).

It is easy to check that, for m, n ≥ 1, fm,n ∈ C2(0,∞) satisfies
(H1) (H3) for some positive numbers A < B and m0 = ∞ = m∞; we
omit the proofs.

For (H4), we compute that

uf ′
m,n(u) +

1
p + 1

fm,n(u) =
m∑

i=1

ai

(
qi +

1
p + 1

)
uqi

+
n∑

j=1

bj

(
rj +

1
p + 1

)
urj > 0 on (0,∞)

by (1.6). So, to complete the proof of (H4), it suffices to prove that
uf ′

m,n(u)/fm,n(u) is increasing on (A, B). Actually, we prove that
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(4.1)
uf ′

m,n(u)
fm,n(u)

is increasing on (0,∞)

by the principle of double induction on positive integers m, n as follows.

Note that, since f ∈ C2(0,∞), it is easy to see that uf ′(u)/f(u) is
increasing on (0,∞) if and only if (uf ′(u))′f(u) − u(f ′(u))2 ≥ 0 on
(0,∞).

First we prove (4.1) for f = f1,n(u) := a1u
q1 +

∑n
j=1 bju

pj by
induction on n. For n = 1, f = f1,1(u) = a1u

q1 + b1u
p1 with

0 < q1 < 1 < p1 and a1, b1 > 0, we compute that

(uf ′
1,1(u))′f1,1(u)−u(f ′

1,1(u))2 = (a1q
2
1uq1−1+b1p

2
1u

p1−1)(a1u
q1 +b1u

p1)

− u(a1q1u
q1−1 + b1p1u

p1−1)2

= a1b1(p1−q1)2up1+q1−1 > 0 on (0,∞).

Thus (4.1) holds. Secondly, assume that, for n = s ≥ 1, f = f1,s(u) =
a1u

q1 +
∑s

j=1 bju
pj satisfies (4.1). Hence,

(4.2) (uf ′
1,s(u))′f1,s(u) − u(f ′

1,s(u))2 ≥ 0 on (0,∞).

Then for n = s + 1, f = f1,s+1(u) = f1,s(u) + bs+1u
ps+1 , by (4.2) and

(1.6), we compute that

(uf ′
1,s+1(u))′f1,s+1(u) − u(f ′

1,s+1(u))2

= [uf ′
1,s(u) + bs+1ps+1u

ps+1 ]′[f1,s(u) + bs+1u
ps+1 ]

− u[f ′
1,s(u) + bs+1ps+1u

ps+1−1]2

= [(uf ′
1,s(u))′f1,s(u) − u(f ′

1,s(u))2]

+ bs+1u
ps+1−1

[
a1(ps+1 − q1)2uq1 +

s∑
j=1

bj(ps+1 − pj)2upj

]

≥ bs+1u
ps+1−1

[
a1(ps+1 − q1)2uq1 +

s∑
j=1

bj(ps+1 − pj)2upj

]
> 0

on (0,∞). Thus (4.1) holds for f = f1,n(u), n = s + 1. So by
mathematical induction, for any positive integer n, (4.1) holds for
f = f1,n(u).
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We next prove (4.1) for f = fm,n(u) :=
∑m

i=1 aiu
qi +

∑n
j=1 bju

pj

for any fixed n ≥ 1 by induction on m. First, by the above, for
m = 1, f = f1,n(u) = a1u

q1 +
∑n

j=1 bju
pj satisfies (4.1) for any

fixed n ≥ 1. Secondly, assume that, for m = t ≥ 1, f = ft,n(u) =∑t
i=1 aiu

qi +
∑n

j=1 bju
pj satisfies (4.1) for any fixed n ≥ 1. Hence,

(4.3) (uf ′
t,n(u))′ft,n(u) − u(f ′

t,n(u))2 ≥ 0 on (0,∞).

Then, for m = t + 1, f = ft+1,n(u) = ft,n(u) + at+1u
qt+1 , by (4.3) and

(1.6), we compute that

(uf ′
t+1,n(u))′ft+1,n(u) − u(f ′

t+1,n(u))2

= [uf ′
t,n(u) + at+1qt+1u

qt+1 ]′[ft,n(u) + at+1u
qt+1 ]

− u[f ′
t,n(u) + at+1qt+1u

qt+1−1]2

= [(uf ′
t,n(u))′ft,n(u) − u(f ′

t,n(u))2]

+ at+1u
qt+1−1

[ t∑
i=1

ai(qt+1 − qi)2uqi +
n∑

j=1

bj(qt+1 − pj)2upj

]

≥ at+1u
qt+1−1

[ t∑
i=1

ai(qt+1 − qi)2uqi +
n∑

j=1

bj(qt+1 − pj)2upj

]
> 0

on (0,∞). Thus, (4.1) holds for f = fm,n(u) for any fixed n ≥ 1,
m = t+1. So, by mathematical induction, for any fixed n ≥ 1 and any
positive integer m, (4.1) holds for f = fm,n(u). Hence, fm,n satisfies
(H4) for any positive integers m, n.

So, by (1.6) and Lemma 3.2,

(4.4) lim
α→0+

T (α) = 0 = lim
α→∞T (α)

and T (α) has exactly one critical point, a maximum, on (0,∞). Thus,
there exists λ∗ := (T (α∗))p = (maxα∈(0,∞) T (α))p > 0 for some
α∗ ∈ (A, B) such that (1.5) has exactly two positive solutions uλ, vλ

with uλ < vλ for 0 < λ < λ∗ (the ordering of uλ, vλ can be proved
easily), exactly one positive solution uλ∗ for λ = λ∗, and no positive
solution for λ > λ∗. Moreover, if 0 < λ1 < λ2 ≤ λ∗, then
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(a) ‖uλ1‖∞ < ‖uλ2‖∞ and ‖vλ1‖∞ > ‖vλ2‖∞,

(b) uλ1(x) < uλ2(x) for −1 < x < 1 by Lemma 3.3 (i),

(c) vλ1(x) > (λ1/λ2)1/pvλ2(x) for −1 < x < 1 by Lemma 3.3 (ii).

(ii) It is easy to see that ‖uλ‖∞ < ‖uλ∗‖∞ < ‖vλ‖∞ for 0 < λ < λ∗,
limλ→0+ ‖uλ‖∞ = 0 and limλ→0+ ‖vλ‖∞ = ∞. Equations (2.2) and
(2.3) follow immediately by (3.3) and (3.4).

The proof of Theorem 2.2 is complete.

Proof of Theorem 2.1. For fixed λ > 0, suppose that uλ(x) is a
positive solution of (1.1) with ||uλ||∞ = α. We write

fλ(u) = λ

m∑
i=1

aiu
qi +

n∑
j=1

bju
rj = λ

[ m∑
i=1

aiu
qi +

1
λ

n∑
j=1

bju
rj

]
.

Then, by (3.2) and (3.8), it is easy to see that

λ1/p =
(

p − 1
p

)1/p ∫ α

0

[ ∫ α

u

m∑
i=1

ais
qi +

1
λ

n∑
j=1

bjs
rj ds

]−1/p

du

=
(

p − 1
p

)1/p

λ1/p

∫ α

0

[ ∫ α

u

λ

m∑
i=1

ais
qi +

n∑
j=1

bjs
rj ds

]−1/p

du

=
(

p − 1
p

)1/p

λ1/p

∫ α

0

[
Fλ(α) − Fλ(u)

]−1/p

du.

This and (3.9) imply that the positive solution uλ(x) of (1.1) corre-
sponds to ||uλ||∞ = α and

(4.5) Tλ(α) =
(

p − 1
p

)1/p ∫ α

0

[
Fλ(α) − Fλ(u)

]−1/p

du = 1.

It is easy to check that (4.5) holds for any λ ≥ 0.

Suppose that fλ(u) = λ
∑m

i=1 aiu
qi +

∑n
j=1 bju

rj satisfies (1.2). First,
for λ = 0, f0(u) =

∑n
j=1 bju

rj and F0(u) =
∑n

j=1 bj/(rj +1)urj+1. We
first show some properties of T0(α) and Tλ(α). We have

(1){
limα→0+ T0(α) = ((p − 1)/b1)1/p(π/p) csc (π/p) > 1 if r1 = p − 1,
limα→0+ T0(α) = ∞ if r1 > p − 1,
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by (1.2) and Lemma 3.1(i).

(2) limα→∞ T0(α) = 0 by (1.2) and Lemma 3.1 (i).

(3) T0(α) is a strictly decreasing function of α > 0 as it is easy to see
that

T ′
0(α) =

(
p − 1
pp+1

)1/p 1
α

∫ α

0

θf0(α) − θf0(u)

[F0(α) − F0(u)](p+1)/p
du < 0 for α > 0,

since

θf0(α) − θf0(u) =
n∑

j=1

bj(p − 1 − rj)
rj + 1

(
αrj+1 − urj+1

)
< 0

for 0 < u < α.

By the above, there exists a unique positive number B∗ satisfying

(4.6) T0(B∗) = 1.

(4) For each fixed α > 0, Tλ(α) is a continuous function of λ ≥ 0,
limλ→0+ Tλ(α) = T0(α) and limλ→∞ Tλ(α) = 0 by Lemma 3.4.

(5) For 0 ≤ λ1 < λ2,

fλ1(u) = λ1

m∑
i=1

aiu
qi +

n∑
j=1

bju
rj < λ2

m∑
i=1

aiu
qi +

n∑
j=1

bju
rj

= fλ2(u), u > 0.

So we obtain Tλ1(α) > Tλ2(α) for α > 0 by (3.8) and (3.9).

(6) For each fixed λ > 0, by (4.4), limα→0+ Tλ(α) = 0 = limα→∞ Tλ(α).
In addition, Tλ(α) has exactly one critical point, a maximum at some
α∗

λ, on (0,∞).

By the above, there exist two positive numbers λ1 < λ2 such that
M(λ2) < 1 < M(λ1). In the proof of Theorem 2.2, we know that,
for fixed λ > 0, the nonlinearity fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj

satisfies (H1) (H4); then Aλ < α∗
λ < Bλ, where Aλ and Bλ satisfy

θ′fλ
(Aλ) = θfλ

(Bλ) = 0. Since the functions

θfλ
(u) = pFλ(u) − ufλ(u)

= λ
m∑

i=1

ai(p − 1 − qi)
qi + 1

uqi+1 +
n∑

j=1

bj(p − 1 − rj)
rj + 1

urj+1
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FIGURE 3. Graph of Tλ(α) for different λ’s of (1.1).

and

θ′fλ
(u) = (p − 1)fλ(u) − uf ′

λ(u)

= λ
m∑

i=1

ai(p − 1 − qi)uqi +
n∑

j=1

bj(p − 1 − rj)urj

are both strictly increasing in λ > 0. Thus, positive numbers Aλ and
Bλ are both strictly increasing in λ > 0 by (3.5) and (3.6). Hence

0 < Aλ1 = inf {Aλ|λ ∈ [λ1, λ2]} ≤ inf {α∗
λ|λ ∈ [λ1, λ2]}

≤ sup {α∗
λ|λ ∈ [λ1, λ2]} ≤ sup {Bλ|λ ∈ [λ1, λ2]} = Bλ2 < ∞.

By the above and by Lemma 3.5, we obtain

(7) There exists a unique number λ∗ > 0 such that

(4.7) M(λ∗) = max
α∈(0,∞)

Tλ∗(α) = 1.

So by the above, we obtain graphs of Tλ(α) of (1.1) for different λ′s
as in Figure 3. It follows that
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(i) Problem (1.1) has exactly two positive solutions uλ, vλ with
uλ < vλ for 0 < λ < λ∗ (the ordering of uλ, vλ can be proved easily),
exactly one positive solution uλ∗ for λ = λ∗, and no positive solution
for λ > λ∗. Moreover, if 0 < λ1 < λ2 ≤ λ∗, then we obtain that

(a) ‖uλ1‖∞ < ‖uλ2‖∞ and ‖vλ1‖∞ > ‖vλ2‖∞,

(b) uλ1(x) < uλ2(x) for −1 < x < 1 by Lemma 3.6 (i),

(c) vλ1(x) > (λ1/λ2)1/pvλ2(x) for −1 < x < 1 by Lemma 3.6 (ii).

(ii) Let u be a positive solution of (1.1). Then ‖u‖∞ < B∗. In
addition, if n = 1, by (4.5), we compute that

T0(α) =
(

(p − 1)(r1 + 1)
pb1

)1/p ∫ α

0

(αr1+1 − ur1+1)−1/p du

=
(

(p − 1)(r1 + 1)
pb1

)1/p

α(p−1−r1)/p

×
∫ 1

0

(1 − wr1+1)−1/p dw (let u = αw)

=
(

(p − 1)
pb1(r1 + 1)p−1

)1/p

α(p−1−r1)/p

×
∫ 1

0

t−1/p(1 − t)−r1/(r1+1) dt (let t = 1 − wr1+1)

=
(

(p − 1)
pb1(r1 + 1)p−1

)1/p

α(p−1−r1)/pB

(
p − 1

p
,

1
r1 + 1

)
.

By (4.6), we solve that

B∗ =

[(
p − 1

pb1 (r1 + 1)p−1

)1/p

B

(
p − 1

p
,

1
r1 + 1

)]p/(r1−p+1)

.

(iii) It is easy to see that ‖uλ‖∞ < ‖uλ∗‖∞ < ‖vλ‖∞ for 0 < λ < λ∗.
The proofs of limλ→0+ ‖uλ‖∞ = 0 and limλ→0+ ‖vλ‖∞ = B∗ are easy
but tedious; we omit them.

(iv) Suppose that r1 = p − 1; then for any fixed λ ≥ 0 and
ai, bj , qi, rj , 1 ≤ i ≤ m and 2 ≤ j ≤ n, fλ = fλ,b1 =
λ
∑m

i=1 aiu
qi + b1u

p−1 +
∑n

j=2 bju
rj is strictly increasing in b1 ∈
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(0, (p−1)((π/p) csc (π/p))p). So Tλ(α) = Tλ,b1(α) is strictly decreasing
in b1 ∈ (0, (p − 1)((π/p) csc (π/p))p) by (4.5) (4.7), and hence positive
numbers λ∗ = λ∗(b1) and B∗ = B∗(b1) are both strictly decreasing
in b1 ∈ (0, (p − 1)((π/p) csc (π/p))p). The proof of (2.1) is easy but
tedious; we omit it.

The proof of Theorem 2.1 is complete.

5. An example with some negative coefficient. Actually, to
Theorem 2.1, we give an example to demonstrate that the hypotheses
of positive coefficients ai and bj for fλ = λ

∑m
i=1 aiu

qi +
∑n

j=1 bju
rj

in (1.2) can be weakened. Our time-map techniques as in the proof
of Theorem 2.1 can be adapted such that the same exact multiplicity
results in Theorem 2.1 hold for some nonlinearities fλ = λ

∑m
i=1 aiu

qi +∑n
j=1 bju

rj satisfying either ai < 0 or bj < 0 for some 1 < i < m,
1 < j < n.

An example with some negative coefficient (See Figure 4). For (1.1),
take p = 3 and fλ(u) = λu−1/4 + u2 − u3 + u4. It can be proved that

FIGURE 4. Numerical simulations of Tλ(α) : fλ(u) = λu−1/4 + u2 −u3 + u4,
λ = 0, 0.2, 1, 3.372, 15, 60 for p = 3. λ∗ ≈ 3.372, B∗

≈ 2.528, A∗ ≈ 1.82.
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(i) for fixed λ with 0 ≤ λ ≤ 5, fλ(u) satisfies all hypotheses in
Lemma 3.2 and Tλ(α) has exactly one critical point, a maximum, on
(0,∞). In addition,

lim
α→0+

Tλ(α) =

{
(2

4/3
π/33/2) ≈ 1.524 > 1 if λ = 0,

0 if 0 < λ ≤ 5,

and

lim
α→∞ Tλ(α) = 0,

(ii) for λ > 5, Tλ(α) < 1 for all α > 0.

Then applying the same arguments as in the proof of Theorem 2.1, we
obtain that there exists λ∗ > 0 such that (1.1) has exactly two positive
solutions uλ, vλ with uλ < vλ for 0 < λ < λ∗, exactly one positive
solution uλ∗ for λ = λ∗, and no positive solution for λ > λ∗. Actually,
numerical simulations as given in Figure 4 show that λ∗ ≈ 3.372,
B∗ ≈ 2.528 and A∗ ≈ 1.824.

REFERENCES

1. R.P. Agarwal and D. O’Regan, Singular boundary value problems for superlin-
ear second order ordinary and delay differential equations, J. Differential Equations
130 (1996), 333 355.

2. T. Laetsch, The number of solutions of a nonlinear two point boundary value
problem, Indiana Univ. Math. J. 20 (1970), 1 13.

3. A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundary value
problem, Proc. Amer. Math. Soc. 111 (1991), 721 730.

4. E.D. Rainville, Special functions, Macmillan, New York, 1960.

5. Y. Sun, S. Wu and Y. Long, Combined effects of singular and superlinear
nonlinearities in some singular boundary value problems, J. Differential Equations
176 (2001), 511 531.

6. S.D. Taliaferro, On the positive solutions of y′′+φ(t)y−λ = 0, Nonlinear Anal.
2 (1978), 437 446.

7. , A nonlinear singular boundary value problem, Nonlinear Anal. 3
(1979), 897 904.

8. S.-H. Wang and D.-M. Long, An exact multiplicity theorem involving concave-
convex nonlinearities and its application to stationary solutions of a singular
diffusion problem, Nonlinear Anal. 44 (2001), 469 486.



708 S.-H. WANG AND T.-S. YEH

9. S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of
positive solutions of a p-Laplacian Dirichlet problem and their applications, J.
Math. Anal. Appl. 287 (2003), 380 398.

10. , On the exact structure of positive solutions of an Ambrosetti-Brezis-
Cerami problem and its generalization in one space variable, Differential Integral
Equations 17 (2004), 17 44.

11. , A complete classification of bifurcation diagrams of a Dirichlet
problem with concave-convex nonlinearities, J. Math. Anal. Appl. 291 (2004),
128 153.

12. Z. Wei, Exact number of solutions for singular Dirichlet boundary value
problems, Rocky Mountain J. Math. 35 (2005), 2113 2128.

Department of Mathematics, National Tsing Hua University, Hsinchu,

Taiwan 300, Republic of China

E-mail address: shwang@math.nthu.edu.tw

Department of Applied Mathematics, Hsuan Chuang University, Hsinchu,

Taiwan 300, Republic of China


