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INVERSIVE DIFFERENCE MODULES AND
SOLVABILITY OF SYSTEMS OF

LINEAR DIFFERENCE EQUATIONS

ALEXANDER B. LEVIN

ABSTRACT. In this paper we consider homological prop-
erties of inversive difference modules and apply them to the
problem of solvability of a system of linear difference equations
over a difference field. In particular, we prove the existence
of Grothendieck’s spectral sequence for the functor Ext in the
category of inversive difference modules.

1. Introduction. Throughout the paper N, Q, and R denote the
sets of all nonnegative integers, rational numbers and real numbers,
respectively. By a ring we always mean an associative ring with a
unity. Every ring homomorphism is unitary (maps unity onto unity),
every subring of a ring contains the unity of the ring, and every module
is unitary.

A difference ring is a commutative ring R together with a finite set
σ = {α1, . . . , αn} of mutually commuting injective endomorphisms
of R into itself. The set σ is called the basic set of the difference
ring R, and the endomorphisms α1, . . . , αn are called translations. In
other words, a difference ring R with a basic set σ = {α1, . . . , αn},
also called a σ-ring, is a commutative ring possessing n additional
unitary operations αi : a �→ αi(a) such that αi(a) = 0 if and only
if a = 0, αi(a+ b) = αi(a) + αi(b), αi(ab) = αi(a)αi(b), αi(1) = 1 and
αi(αj(a)) = αj(αi(a)) for any a ∈ R, 1 ≤ i, j ≤ n. In what follows, a
difference ring R with a basic set σ = {α1, . . . , αn} will also be called
a σ-ring.

If α1, . . . , αn are automorphisms of R, we say that R is an in-
versive difference ring with the basic set σ. In this case the set
{α1, . . . , αn, α

−1
1 , . . . , α−1

n } is denoted by σ∗ and R is also called a
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σ∗-ring. If a difference ring with a basic set σ is a field, it is called a
difference, or σ-field. An inversive difference field with a basic set σ is
also called a σ∗-field.

Example 1.1. Let A be a ring of functions of n real variables
defined on Rn. (In particular, A could be one of the rings Cp(Rn),
p = 0, 1, . . . , where Cp(Rn) denotes the ring of all functions of n
real variables that are continuous on Rn together with all their partial
derivatives up to the order p.) Let us fix some real numbers h1, . . . , hn

and consider mutually commuting automorphisms α1, . . . , αn of A
such that (αif)(x1, . . . , xn) = f(x1, . . . , xi−1, xi + hi, xi+1, . . . , xn),
i = 1, . . . , n. Then A can be treated as an inversive difference ring with
the basic set σ = {α1, . . . , αn}. Difference rings of this type arise in
the theory of equations in finite differences, since the ith partial finite
difference Δif(x1, . . . , xn) = f(x1, . . . , xi−1, xi + hi, xi+1, . . . , xn) −
f(x1, . . . , xn) of a function f(x1, . . . , xn) ∈ A can be written as
(αi − 1)f .

Let R be an inversive difference ring with a basic set σ, and let Γ
denote the free commutative group generated by σ. An expression of
the form

∑
γ∈Γ aγγ with aγ ∈ R, such that all but a finite number of

aγ are equal to 0, is called an inversive difference, or σ∗-operator over
R. Two σ∗-operators

∑
γ∈Γ aγγ and

∑
γ∈Γ bγγ are considered to be

equal if and only if aγ = bγ for all γ ∈ Γ.

The set of all σ∗-operators over R can be naturally equipped with
a ring structure if one sets

∑
γ∈Γ aγγ +

∑
γ∈Γ bγγ =

∑
γ∈Γ(aγ + bγ)γ,

a
∑

γ∈Γ aγγ =
∑

γ∈Γ(aaγ)γ, (
∑

γ∈Γ aγγ)γ1 =
∑

γ∈Γ aγ(γγ1), γ1a =
γ1(a)γ1 for any σ∗-operators

∑
γ∈Γ aγγ,

∑
γ∈Γ bγγ and for any a ∈ R,

γ1 ∈ Γ, and extends the multiplication by distributivity. The ring
obtained in this way is called the ring of inversive difference, or σ∗-
operators over R; it is denoted by E .

Definition 1.2. Let R be an inversive difference ring with a basic
set σ and E the ring of inversive difference operators over R. Then a
left E-module is said to be an inversive difference R-module or a σ∗-
R-module. In other words, an R-module M is called a σ∗-R-module if
elements of the set σ∗ act on M in such a way that α(x+y) = αx+αy,
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α(βx) = β(αx), α(ax) = α(a)α(x) and α(α−1x) = x for any α, β ∈ σ∗;
x, y ∈M ; a ∈ R.

If R is a σ∗-field, a σ∗-R-module M is said to be a vector σ∗-R-space
(or an inversive difference vector space over R).

Let M and N be two σ∗-R-modules over an inversive difference (σ-)
ring R. A homomorphism of R-modules f : M → N is said to be a
difference (or σ-) homomorphism if f(αx) = αf(x) for any x ∈ M ,
α ∈ σ. A surjective, respectively, injective or bijective, difference
homomorphism is called a difference (or σ-) epimorphism, respectively,
a difference monomorphism or a difference isomorphism.

The theory of inversive difference modules introduced in [3] appeared
to be very helpful in the study of difference field extensions, algebraic
difference equations, and Krull dimension of difference rings, see, for
example, [2, Chapters 6, 7]. Its generalizations and applications to
systems of algebraic difference-differential equations are considered in
[4 6]. In what follows we concentrate on homological properties of
inversive difference modules and their applications.

2. On the functor Ext of inversive difference modules. Let
R be an inversive difference ring with a basic set σ, and let M and
N be σ∗-R-modules. Then each of the R-modules HomR(M,N) and
M ⊗R N can be equipped with a structure of a σ∗-R-module if for
any f ∈ HomR(M,N),

∑k
i=1 xi ⊗ yi ∈ M ⊗R N , x1, . . . , xk ∈ M ;

y1, . . . , yk ∈ N , and α ∈ σ∗, one sets α(f) = α◦f◦α−1 and α(
∑k

i=1 xi⊗
yi) =

∑k
i=1 αxi⊗αyi. It is easy to check that α(f) ∈ HomR(M,N) and

the action of elements of σ∗ on HomR(M,N) satisfies the conditions of
Definition 1.2. Let us show that the action of σ∗ on M ⊗R N satisfies
these conditions as well. Indeed, if u =

∑k
i=1 xi ⊗ yi ∈ M ⊗R N ,

then α(au) = α(
∑k

i=1 axi ⊗ yi) =
∑k

i=1 α(a)αxi ⊗ yi = α(a)α(u) for
any a ∈ R, α ∈ σ∗, and also α(α−1z) = z, α(z1 + z2) = αz1 + αz2,
α(βz) = β(αz) for any α, β ∈ σ∗ and z, z1, z2 ∈M ⊗R N .

In what follows, while considering the modules HomR(M,N) and
M⊗RN as σ∗-R-modules (M and N are some σ∗-R-modules) we mean
the foregoing inversive difference structures of these modules.
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Lemma 2.1. Let R be an inversive difference (σ∗-) ring, and let M ,
N , and P be three σ∗-R-modules. Then the canonical mapping

η : HomR

(
P

⊗
R

M,N
)
−→ HomR(P,HomR(M,N)),

defined by [(η(f))x](y) = f(x ⊗ y) for any f ∈ HomR(P ⊗R M,N),
x ∈ P , y ∈M , is a σ-isomorphism of σ∗-R-modules.

Proof. The fact that η is an isomorphism of R-modules is well
known (see, for example [7, Theorem 2.4]). If f ∈ HomR(P ⊗R M,N),
x ∈ P , y ∈ M , and α ∈ σ, then (η(α(f))(x))(y) = (α(f))(x ⊗ y) =
α(f(α−1(x ⊗ y))) = α(f(α−1x ⊗ α−1y)) = α(η(f)(α−1x))(α−1y) =
(α(η(f)(α−1x)))(y)=((αη)(f))(x))(y). Thus, η is a σ-isomorphism.

Let R be an inversive difference (σ∗-)ring and M a σ∗-R-module.
Then the set C(M) = {x ∈ M | α(x) = x for all α ∈ σ} is called
the set of constants of the module M ; elements of this set are called
constants. It is easy to see that C(M) is a subgroup of the additive
group of M and the mapping C : M �→ C(M) is a functor from the
category of σ∗-R-modules, i.e., the category of all left modules over the
ring of σ∗-operators E , to the category of Abelian groups.

Lemma 2.2. Let R be an inversive difference (σ∗-) ring and E the
ring of σ∗-operators over R. Then

(i) C(HomR(M,N)) = HomE(M,N) for any two σ∗-R-modules M
and N .

(ii) The functors C and HomE(R, ·) are naturally isomorphic. (In
this case we write C � HomE(R, ·).)

(iii) The functor C is left exact and, for any positive integer p, its pth
right derived functor is naturally isomorphic to the functor Extp

E(R, ·).
(iv) If M and N are two σ∗-R-modules, then HomE(· ⊗R M,N) �

HomE(·,HomR(M,N)) and HomE(M⊗R·, N) � HomE(M,HomR(·, N)).

Proof. The first statement follows from the definition of the action
of elements of σ on HomR(M,N). Indeed, φ ∈ C(HomR(M,N)) if and
only if α(φ(α−1(x)) = φ(x) for every α ∈ σ, x ∈M , that is equivalent to
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the inclusion φ ∈ HomE(M,N). Statement (ii) is a direct consequence
of (i) and the obvious fact that the functors C(·) and C(HomR(R, ·))
are naturally isomorphic.

Since the functor HomE(R, ·) is left exact, statement (ii) implies that
C(·) is left exact as well. Now, the natural isomorphism of the functors
C(·) and HomE(R, ·) implies the natural isomorphism of their pth right
derived functors RpC and RpHomE(R, ·) = Extp

E(R, ·) for any p > 0.

By Lemma 2.1, HomR(·⊗RM,N) � HomR(·,HomR(M,N)), whence
C(HomR(· ⊗R M,N)) � C(HomR(·,HomR(M,N))). Applying (i)
we obtain that HomE(· ⊗R M,N) � HomE(·,HomR(M,N)). The
statement about the other pair of functors in (iv) can be proved in
the same way.

The following result is due to Grothendieck [1].

Lemma 2.3. Let A,B and C be rings, and let kA, kB and kC be
the categories of left modules over the rings A, B and C, respectively.
Furthermore, suppose that F : kA → kB and G : kB → kC are covariant
functors satisfying the following conditions.

(i) The functor G is left exact.

(ii) If M is an injective left A-module, then the B-module F (M) is
annihilated by any right derived functor RqG, q > 0.

Then, for any left A-module N , there exists a spectral sequence in
the category kC that converges to Rp+q(GF )(N), p, q ∈ N, and has the
second term Ep.q

2 (N) = RpG(RqF (N)).

Theorem 2.4. Let R be an inversive difference ring with a basic
set σ, E the ring of σ∗-operators over R, and M , N two σ∗-R-
modules. Then, for any positive integers p and q, there exists a spectral
sequence converging to Extp+q

E (M,N) whose second term is equal to
Ep,q

2 = (RpC)(Extq
R(M,N)).

Proof. Because of the statement of Lemma 2.3, it is sufficient to prove
the following fact:

Let N be an injective E-module and p a positive integer. Then

(RpC)(HomR(M,N)) = 0 for any E-module M.
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First, let us prove the last equality for an E-module M which is flat
as an R-module. In this case the functor HomE(· ⊗R M,N) is exact,
hence the functor HomE(·,HomR(M,N)) is also exact (by Lemma
2.2 (iv) these two functors are naturally isomorphic). It follows that
HomR(M,N) is an injective E-module, hence Extp

E(R,HomR(M,N)) =
0 for all p > 0. Applying Lemma 2.2 (iii) we obtain that

(RpC)(HomR(M,N)) = 0 for all p > 0.

Now, let M be an arbitrary E-module, and let F : · · · → F1 → F0 →
M → 0 be a flat, e.g., free, resolution of M as an R-module. (Each Fi is
a flat R-module and the mappings are homomorphisms of R-modules.)
By Lemma 2.2 (iv), HomE(E ⊗R ·, N) � HomE(E ,HomR(·, N)), there-
fore HomE(E ⊗R ·, N) � HomR(·, N). Since the E-module N is in-
jective, the functor HomE(E ⊗ ·, N) is exact, hence HomR(·, N) is
also exact. Applying functor C to the injective resolution 0 →
HomR(M,N) → HomR(F,N) of the E-module HomR(M,N) we ob-
tain that (RpC)(HomR(M,N)) = Hp(C(HomR(F,N))) is isomorphic
to Hp(HomE(F,N)) for every p > 0. By the first part of the proof,
Hp(HomE(F,N)) = 0, hence (RpC)(HomR(M,N)) = 0 for any E-
module M and for any p > 0. This completes the proof.

The last theorem finds its applications in the analysis of systems of
linear difference equations considered in the rest of this paper.

3. Inversive difference modules and systems of linear differ-
ence equations. Let R be an inversive difference ring with a basis set
σ = {α1, . . . , αn}, σ∗ = {α1, . . . , αn, α

−1
1 , . . . , α−1

n }, Γ the free com-
mutative group generated by σ, and E the ring of σ∗-operators over R.
For any two σ∗-R-modules M and N , let B(M,N) denote the set of all
additive mappings from M to N with the following property. For every
β ∈ B(M,N), there exists γβ ∈ Γ such that β(ax) = γβ(a)β(x) for any
a ∈ R, x ∈ M . (The mapping β �→ γβ is not supposed to be injective
or surjective.) Furthermore, let P(M,N) denote the set of all formal
sums

∑
β∈B(M,N) aββ, where aβ ∈ R for any element β ∈ B(M,N)

and only finitely many coefficients aβ are different from 0.

It is easy to see that P(M,N) becomes a σ∗-R-module if one de-
fines α(

∑
β∈B(M,N) aββ) =

∑
β∈B(M,N) α(aβ)(αβ) for every α ∈ σ∗.
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(Clearly, αβ ∈ B(M,N) if β ∈ B(M,N); in this case γαβ = αγβ.) In
what follows, we also treat HomR(M,N) and E⊗RM as left E-modules,
that is, σ∗-R-modules. (The corresponding structure of the first mod-
ule is defined as in Section 2, and the E-module structure on the second
one is natural: ω(ω1 ⊗ x) = (ωω1) ⊗ x for every ω, ω1 ∈ E , x ∈M .)

Lemma 3.1. Let M be a σ∗-R-module and M∗ = HomR(M,R).
Then the E-modules P(M,R) and E ⊗R M∗ are isomorphic.

Proof. Consider the mapping φ : E ⊗R M∗ → P(M,R) such that

(
φ
( k∑

i=1

ai(ωi

⊗
e∗i )

))
(e) =

k∑
i=1

aiωi(e∗i (e)),

ai ∈ R, ωi ∈ E , e∗i ∈M∗

for i = 1, . . . , k and e ∈ M . It is easy to see that φ is a σ-
homomorphism. To show that φ is bijective, one just needs to verify
that the mapping ψ : P(M,R) → E ⊗R M∗ defined by

ψ

( s∑
i=1

aiβi

)
=

s∑
i=1

ai(γβi

⊗
γ−1

βi
βi),

ai ∈ R, βi ∈ B(M,R)

for i = 1, . . . , s is inverse of φ.

Let P = (ωij)1≤i≤s,1≤j≤m be an s × m-matrix over E , and let
f1, . . . , fs be elements of the σ∗-ring R. We are going to consider
the problem of solvability of a system of linear equations

(3.1) Pu = f

with respect to unknown elements u1, . . . , um of the ring R (u and
f denote the column of the unknowns (u1, . . . , um)T and the column
(f1, . . . , fs)T , respectively). In what follows we treat the R-modules
E = Rm and F = Rs as σ∗-R-modules such that α((a1, . . . , ak)T ) =
(α(a1), . . . , α(ak))T for any α ∈ σ∗, k = m or k = s, a1, . . . , ak ∈ R.
The ring of s×m-matrices Es×m (with entries in E) will be also treated
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as a σ∗-R-module where α(ωij)1≤i≤s,1≤j≤m = (α(ωij))1≤i≤s,1≤j≤m,
α ∈ σ∗, (ωij)1≤i≤s,1≤j≤m ∈ Es×m.

Lemma 3.2. With the above notation, the E-modules P(E,F ) and
Es×m are isomorphic.

Proof. Let Pij denote the matrix in Es×m whose only nonzero entry
is 1 at the intersection of the ith row and jth column. Since matrices
Pij , 1 ≤ i ≤ s, 1 ≤ j ≤ m, generate the E-module Es×m, it is
sufficient to define an isomorphism φ : Es×m → P(E,F ) on these
matrices. We define φ(Pij) by its action on elements of E as follows.
If e = (c1, . . . , cm)T ∈ E, then (φ(Pij))(e) = (0, . . . , cj , . . . , 0)T (the
ith coordinate is cj , and all other coordinates are zeros). The inverse
mapping ψ : P(E,F ) → Es×m acts on generators β ∈ B(E,F ) of
the E-module P(E,F ) as follows: ψ(β) = (γβ(aij)γβ)1≤i≤s,1≤j≤m

where elements aij ∈ R are defined by the relationships γ−1
β β(ek) =∑s

j=1 ajkfj for the R-homomorphism γ−1
β β. (e1, . . . , em and f1, . . . , fs

are standard bases of E = Rm and F = Rs, respectively.) It is easy
to check that φψ and ψφ are identical mappings of Es×m and P(E,F ),
respectively.

In the rest of this section we use the notation introduced before
Lemma 3.2. Furthermore, we consider P(E,F ), E∗ = HomR(E,R),
F ⊗R P(E,R), and F ⊗R (E ⊗R E

∗) as σ∗-R-modules where the action
of σ∗ is defined as in Section 2 and in the beginning of this section.
(E ⊗ E∗ is treated as a left E-module with the natural structure
ω′(ω ⊗ e∗) = ω′ω ⊗ e∗). In particular, if f ⊗ (ω ⊗ e∗) is a generator of
F ⊗R (E ⊗R E

∗) and α ∈ σ∗, then α(f ⊗ (ω⊗ e∗)) = α(f)⊗ (αω⊗ e∗).

Let us consider the diagram

(3.2)

P(E,F ) �

η

�
ξ

�
�
�
��

λ

��
�
�
�

ν

F
⊗
R

P(E,R))
��

�
�
�

μ

�
�

�
��

δ

F
⊗
R

(E
⊗
R

E∗)
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where all six mappings are difference homomorphisms defined at the
generators as follows. δ(f⊗(ω⊗e∗)) = f⊗ω(e∗(·)); μ(f⊗β) = f⊗(γβ⊗
γ−1

β β); ν(f ⊗ (ω ⊗ e∗)) = ω(e∗(·))f ; λ(β̄) =
∑m

i=1 β̄(ei) ⊗ (γβ̄ ⊗ e∗i );
η(β̄) =

∑m
i=1 β̄(ei) ⊗ γβ̄e

∗
i ; ξ(f ⊗ β) = β(·)f for any f ∈ F , ω ∈ E ,

e∗ ∈ E∗, β ∈ B(E,R), β̄ ∈ B(E,F ) ((ei)1≤i≤m denotes the standard
basis of E over R, and (e∗i )1≤i≤m denotes the dual basis of E∗).

Lemma 3.3. All mappings in diagram (3.2) are difference isomor-
phisms, η = ξ−1, μ = δ−1, λ = ν−1, and the diagram is commutative.

Proof. We shall prove that μ = δ−1 and νμ = ξ. (The other required
relationships can be proved in a similar way.) Let f ∈ F , e∗ ∈ E∗,∑

γ∈Γ aγγ ∈ E , and β ∈ B(E,R). Then (μδ)(f ⊗ (
∑

γ∈Γ aγγ ⊗ e∗)) =
μ(f⊗∑

γ∈Γ aγγ(e∗(·))) =
∑

γ∈Γ aγ(f⊗(γ⊗γ−1γe∗)) = f⊗∑
γ∈Γ aγγ⊗

e∗) and (δμ)(f ⊗ β) = δ(f ⊗ (γβ ⊗ γ−1
β β)) = f ⊗ γβγ

−1
β β = f ⊗ β,

so μ = δ−1. Furthermore, for any generator f ⊗ β of the E-module
F ⊗R P(E,R) (f ∈ F, β ∈ B(E,R)), we have (νμ)(f ⊗ β) = ν(f ⊗
(γβ ⊗ γ−1

β β)) = γβ(γ−1
β β(·))f = β(·)f = ξ(f ⊗ β) that proves the

equality νμ = ξ.

Let P ∈ P(E,F ), and let P : P(F,R) → P(E,R) be the homo-
morphism of E-modules such that P (β) = βP for any β ∈ B(E,R).
Let φF : E ⊗R F ∗ → P(F,R) and ψE : P(E,R) → E ⊗R E∗

be difference isomorphisms defined in the proof of Lemma 3.1. Let
P ∗ = ψEPφF : E ⊗R F ∗ → E ⊗R E∗, N = KerP ∗ and M = CokerP ∗.
Applying HomE(·, R) to the exact sequence of left E-modules

(3.3) 0 −→ N
i−→ E

⊗
R

F ∗ P ∗−→ E
⊗
R

E∗ j−→M −→ 0

(i and j are the natural injection and projection, respectively), we
obtain the exact sequence of σ∗-R-modules

(3.4)

0 −→ HomE(M,R) j∗
−→ HomE

(
E

⊗
R

E∗, R
)

P ∗∗−→ HomE
(
E

⊗
R

F ∗, R
)

i∗−→ HomE(N,R)
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Now let us consider the σ-homomorphism θ : P(E,F ) → HomE(P(F,R),
P(E,R)) such that (θ(P ))(P1) = P1P for every P ∈ P(E,F ), P1 ∈
P(F,R) and the exact sequence of σ∗-R-modules

P(E,F ) λ−→ F
⊗
R

(
E

⊗
R

E∗
)

ε−→ HomR

(
F ∗, E

⊗
R

E∗
)

ρ−→ HomE
(
E

⊗
R

F ∗, E
⊗
R

E∗
)

π−→ HomE(P(F,R),P(E,R))

where λ is the same as in diagram (3.2) and the other σ-homomorphisms
are defined as follows: (ε(f⊗(ω⊗e∗))(f∗) = f∗(f)⊗e∗, (ρ(h))(ω⊗f∗) =
ωh(f∗) and π(χ) = φEχψF for any f ∈ F , ω ∈ E , e∗ ∈ E∗,
h ∈ HomR(F ∗, E⊗RE

∗) and χ ∈ HomE(E⊗RF
∗, E⊗RE

∗). (φE and ψF

denote the σ-homomorphisms defined in the proof of Lemma 3.1.) It
is easy to check that λ, ε, ρ and π are isomorphisms of σ∗-R-modules.
For example, ε−1 is defined by ε−1(ζ) =

∑s
i=1 fi ⊗ ζ(f∗i ) for every

ζ ∈ HomR(F ∗, E ⊗R E∗) ((fi)1≤i≤s is the standard basis of F and
(f∗i )1≤i≤s is the dual basis of the σ∗-R-module F ∗).

Lemma 3.4. With the above notation, θ = πρελ.

Proof. Clearly, it is sufficient to verify the equality at an element
β̄ ∈ B(E,F ). If ω ∈ E and f∗ ∈ F ∗, then (ρελ(β̄))(ω ⊗ f∗) =
ρε(

∑m
i=1 β̄(ei ⊗ (γβ̄ ⊗ e∗i ))(ω ⊗ f∗) =

∑m
i=1 ωf

∗(β̄(ei))γβ̄ ⊗ e∗i .

Now, for any β ∈ B(F,R), we have (πρελ(β̄))(β) = φE(ρελ(β̄))ψF (β)
= φE(ρελ(β̄))(γβ ⊗γ−1

β β) = φE

∑m
i=1 β(β̄(ei))γβ̄ ⊗e∗i . To complete the

proof one should note that for every e =
∑m

k=1 ckek ∈ E (e1, . . . , em

is the standard basis of E and c1, . . . , cm ∈ R), φE(
∑m

i=1 β(β̄(ei))γβ̄ ⊗
e∗i )(e) =

∑m
i=1 ββ̄(ciei) = ββ̄(

∑m
i=1 ciei) = ββ̄(e) = ((θ(β̄)))(β)(e)

whence θ = πρελ.

Let us associate with every mapping P ∈ P(E,F ) a set ComP
consisting of all f ∈ F such that for every pair (G = Rt, P1 ∈ P(F,G))
with the condition P1P = 0, one has P1f = 0. Clearly, the image ImP
of the mapping P is a subset of ComP . The following example shows
that the inclusion can be proper.
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Example 3.5. Let R = Q(x) be the field of rational fractions
over Q treated as an inversive difference field with one translation
α such that (αf)(x) = f(2x) for every f(x) ∈ R. Let E denote
the ring of inversive difference operators over R, E = R2, F = R2,
and P the element of P(E,F ) defined by the matrix

(
α−1 0

0 1

)
. (By

Lemma 3.2, every element of P(E,F ) can be defined by a 2 × 2-
matrix over E .) Note that ImP =

{(
α−1 0

0 1

) ( u1

u2

) | u1, u2 ∈ R
}

={(
(α−1)u1

u2

)
| u1, u2 ∈ R

}
is a proper E-submodule of F . Indeed, it fol-

lows from the definition of α that 1 cannot be written as (α−1)u1 with
u1 ∈ R: if u1 = Δ(anx

n + · · · + a1x+ a0)/(bmxm + · · · + b1x+ b0) (all
coefficients ai, bj belong to R, an 	= 0, and bm 	= 0), then (α − 1)u1 =
h1(x)/h2(x) where h1(x) = (2n−2m)anbmx

m+n + · · ·+2(a1b0−a0b1)x
and h2(x) = 2mb2mx

2m + · · · + 3b1b0x + b20. It is easy to see that
h1(x) 	= h2(x) (if n ≤ m, then degh1(x) < degh2(x); if m < n, then
degh2(x) < degh1(x)).

On the other hand, ComP = F . Indeed, v =
( v1

v2

) ∈ ComP
if and only if for every s = 1, 2, . . . and for every matrix W =
(ωij)1≤i≤s,1≤j≤2, the equality W

(
α−1 0

0 1

)
= 0 implies Wv = 0. (In

the last two equalities 0 in the right-hand sides denote the zero s× 2-
and s × 1-matrices, respectively.) Since the ring E does not have zero
divisors, the equality W

(
α−1 0

0 1

)
= 0 implies that W is a zero matrix,

so Wv = 0 for all v ∈ F whence ComP = F .

The following theorem gives a connection between ImP and ComP
under the above conventions. The theorem allows one to reduce the
description of the image of the operator P to the description of ComP
using the spectral sequence from Theorem 2.4.

Theorem 3.6. With the notation introduced before Lemma 3.3,
for every P ∈ P(E,F ), there exist isomorphisms of σ∗-R-modules
ϑE : E → HomE(E ⊗R E∗, R) and ϑF : F → HomE(E ⊗R F ∗, R)
such that the following diagram is commutative.
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(3.5)

HomE
(
E

⊗
R

E∗, R
)

�
P ∗∗

HomE
(
E

⊗
R

F ∗, R
)

E

�

ϑE

�
P F

�

ϑF

Furthermore, we have the following properties of the exact sequence
(3.4).

(i) Im j∗ ∼= KerP ;

(ii) Ker i∗ ∼= ComP ;

(iii) ComP/ImP ∼= Ext1E(M,R).

Proof. The difference homomorphisms φE : E ⊗R E∗ → P(E,R) and
φF : E ⊗RF

∗ → P(F,R) defined in Lemma 3.1 induce homomorphisms
of E-modules φ̄E : HomE(E ⊗R E∗, R) → HomE(P(E,R) and φ̄F :
HomE(E⊗RF

∗, R) → HomE(P(F,R) where (φ̄E(g))(β) = g(γβ⊗γ−1
β β)

for every g ∈ HomE(E ⊗RE
∗, R), β ∈ B(E,R) and φ̄F acts in a similar

way. Now one can define the mappings χE : E → HomE(P(E,R), R)
and χF : F → HomE(P(F,R), R) by setting (χE(e))(β) = β(e) and
(χF (f))(β1) = β1(f) for any e ∈ E, f ∈ F , β ∈ P(E,R), and
β1 ∈ P(F,R). It is easy to check that χE and χF are difference
isomorphisms and the diagram

(3.6)

HomE(P(E,R), R) �
P

∗
HomE(P(F,R), R)

E

�

χE

�
P F

�

χF

is commutative (the mapping P
∗

is obtained by applying the functor
HomE(·, R) to the mapping P : P(F,R) → P(E,R) considered above).
The inverse difference isomorphism of χE is the mapping λE = χ−1

E :
HomE(P(E,R), R) → E such that λE(g) =

∑m
i=1 g(e

∗
i )ei for any

g ∈ HomE(P(E,R), R), and the inverse mapping of χF is defined
similarly. (As before, (ei)1≤i≤m is the standard basis of the R-module
E and (e∗i )1≤i≤m ⊆ HomR(E,R) ⊆ P(E,R) is the corresponding dual
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basis.) Indeed, for any e ∈ E, (λEχE)(e) =
∑m

i=1(χ̄E(e))(e∗i )ei =∑m
i=1 e

∗
i (e)ei = e, hence λEχE is the identity automorphism of E. Also,

a routine computation shows that the mapping χEλE leaves fixed every
element of HomE(P(E,R), R) (thus, λE = χ−1

E ) and P̄ ∗χE = χFP .

The commutativity of diagram (3.6) and Lemma 3.1 imply the com-
mutativity of diagram (3.5) with ϑE = HomE(φE , R)χE and ϑF =
HomE(φF , R)χF (φE : E ⊗R E∗ → P(E,R) and φF : E ⊗R F ∗ →
P(F,R) are difference isomorphisms defined in the proof of Lemma 3.1).
Therefore, KerP ∼= KerP ∗∗ = Im j∗ = HomE(M,R) (see the exact se-
quence (3.3) where M = CokerP ∗). This proves statement (i).

To prove (ii) assume first that ζ ∈ Ker i∗ and PP ′ = 0 for every
P ′ ∈ P(F,G) (G = Rt for some positive integer t). Then P ∗P ′∗ =
(P ′P )∗ = 0 hence ImP ′∗ ⊆ KerP ∗ = Im i, and one can consider the
well-defined mapping � = i−1P ′∗ : E ⊗R G∗ → N (as in sequence
(3.3), N = Ker i). Now, if ζ = ϑF (z) ∈ Ker i∗ (z ∈ F ), then
P ′∗∗(ζ) = (i�)∗(ζ) = �∗i∗(ζ) = 0 hence (ϑGP

′)(ζ) = 0. It follows
that P ′(z) = 0, so that z ∈ ComP . Thus, Ker i∗ ⊆ ϑF (ComP ).

Conversely, let z ∈ ComP and ζ = ϑF (z). Let us fix some
x ∈ N and consider the homomorphism of E-modules δ : E → N
such that δ(1) = x. The composition of the σ∗-R-isomorphisms

HomE(E , E ⊗R F ∗) → E ⊗R F ∗ φF→ P(F,R), where the first mapping
is the natural isomorphism, sends the element iδ ∈ HomE(E , E ⊗R F ∗)
to some element P ′ ∈ P(F,R). Denoting the natural isomorphism
of E-modules E → E ⊗R R∗ by τ , we obtain iδ = P ′∗τ . Indeed, let
x = iδ(1) =

∑d
k=1 ai(ωk ⊗ f∗k ) where ak ∈ R, ωk =

∑dk

l=1 bklγkl ∈ E
(γkl ∈ Γ), and f∗k ∈ F ∗ (1 ≤ k ≤ d). Then (P ′∗τ )(1) = P ′∗(1 ⊗
1∗) = ψFP

′
φR(1 ⊗ 1∗) = ψFP

′
(1∗(·)) = ψF

∑d
k=1 akωk(f∗k (·)) =

ψF

∑d
k=1 ak

∑dk

l=1 bklγkl(f∗l (·)) =
∑d

k=1 ak

∑dk

l=1 bkl(γkl ⊗ γ−1
kl γklf

∗
l =∑d

k=1 ak(ωk ⊗ f∗k ) = x = iδ(1) whence iδ = P ′∗τ .

Since Im i = KerP ∗, P ∗P ′∗τ = P ∗iδ = 0 whence P ∗P ′∗ = 0.
Applying ∗ we obtain that P ′P = 0. Furthermore, since z ∈ ComP ,
we have P ′(z) = 0 and P ′∗∗(ζ) = ζP ′∗ = 0. Therefore, ζ(i(x)) =
ζ(iδ(1)) = ζ(P ′∗τ (1)) = 0, that is, (i∗(ζ))(x) = 0. Since x is
an arbitrary element of N , i∗(ζ)) = 0, that is, ζ ∈ Ker i∗. Thus,
ϑF (ComP ) is contained in Ker i∗ whence ϑF (ComP ) = Ker i∗.
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In order to prove the last statement of the theorem, let us break
the exact sequence (3.3) into two short exact sequences of E-modules,

0 → N
i→ E ⊗R F ∗ q→ L → 0 and 0 → L

ε→ E ⊗R E∗ j→ M → 0 where
L = ImP ∗, q is a projection, and ε is the embedding. Applying functor
HomE(·, R) to these two sequences we obtain the exact sequences

0 −→ HomE(L,R)
q∗
−→ HomE

(
E

⊗
R

F ∗, R
)

i∗−→ HomE(N,R)

and

0 −→ HomE(M,R)
j∗
−→ HomE

(
E

⊗
R

E∗, R
)

ε∗−→ HomE(L,R)

0 −→ Ext1E(M,R) −→ Ext1E
(
E

⊗
R

E∗, R
)

= 0.

where the mapping q∗ identifies HomE(L,R) with Ker i∗ = ϑF (ComP )
and ϑ−1

F q∗ε∗ϑE = P . Thus, Ext1E(M,R)∼=HomE(L,R)/ε∗(HomE(E ⊗R

E∗, R)) = HomE(L,R) / q∗ϑE(E)(q∗)−1ϑF (ComP ) / (q∗)−1ϑFP (E) ∼=
ComP / ImP .
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