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EQUAL SUMS OF SIXTH POWERS
AND QUADRATIC LINE COMPLEXES

MASATO KUWATA

1. Introduction. This paper is concerned with the Diophantine
equation:

(1.1) x6 + y6 + z6 = u6 + v6 + w6.

We present a relation between this equation and Kummer’s quartic
surfaces through the theory of quadratic line complexes.

To this date there have been many numerical solutions to (1.1)
discovered by various computer searches. (See Section 7 for more
historical details.) A large part of them also satisfy the quadratic
equation

(1.2) x2 + y2 + z2 = u2 + v2 + w2.

Furthermore, Bremner [1] shows that among those simultaneous solu-
tions, most also satisfy the system of equations:

(1.3)

⎧⎨
⎩

x2 + xu − u2 = w2 + wz − z2,

y2 + yv − v2 = u2 + ux − x2,

z2 + zw − w2 = v2 + vy − y2.

Note that we recover (1.1) by cubing each equation in (1.3) and adding
them.

Geometrically, this can be seen as follows. Let V4 be the fourfold
defined by (1.1). Many of the rational points of V4 are contained
in the subthreefold V3 cut out by the quadric (1.2). The system of
equations (1.3) determines a K3 surface KB contained in V3, and most
of the known rational points of V3 are contained in KB. Bremner [1]
investigated this K3 surface geometrically in depth. Among others,
he gave a theoretical method to find all smooth parametric solutions.
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498 M. KUWATA

In this paper we push his investigation one step further in order to
understand the geometry of the surface KB even more. Our results are
summarized as follows.

Theorem 1.1. Bremner’s K3 surface KB is the minimal desingu-
larization of Kummer’s quartic surface S with 16 double points given
by the equation

(1.4) S : a4
0 + a4

1 + a4
2 + a4

3 + 3 (a2
0a

2
1 + a2

1a
2
2 + a2

2a
2
0)

− 3 (a2
0 + a2

1 + a2
2) a2

3 + 4a0a1a2a3 = 0.

The surface S is obtained from the quadratic line complex X defined
by the quadric

F : x2
0 +

1
2

x2
1 − x2

2 + x2
3 −

1
2

x2
4 − x2

5 − 2x0x5 + x1x4 = 0,

together with the Plücker relation G : x0x5 − x1x4 + x2x3 = 0. KB is
the Kummer surface, in the modern sense, of the Jacobian J(C) of the
curve C of genus 2 given by

C : y2 = (x2 + 1)(x2 + 2x + 5)(x2 − 2x + 5).

The reduced automorphism group RA(C), defined to be Aut (C)/〈ι〉,
where ι is the hyperelliptic involution, is isomorphic to the symmetric
group S3. J(C) is isogenous to the product of two copies of the elliptic
curve of conductor 320 = 26 · 5 given by

E : y2 = x(x2 + 4x + 20).

In Section 4 we will give explicit formulas for the maps between KB

and S, together with the maps between KB and the dual Kummer
surface S∗. For example, we see that Subba-Rao’s first solution to
(1.1) (and (1.3)) (x : y : z : u : v : w) = (3 : 19 : 22 : −23 : 10 : −15)
corresponds to the solution (a0 : a1 : a2 : a3) = (5 : 3 : 4 : 7) to S.
Also, we study how the lines contained in KB map to the double points
of S and S∗.

In Section 5 we study the curve C of genus 2 in more detail. From
the fact that J(C) is isogenous to E × E, and that E does not have
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complex multiplication, we conclude that the rank of the Néron-Severi
group NS(KB,C) is 19. Bremner [1] showed that the rank of the
Néron-Severi group NS(KB,Q(i)) is 19, using a descent argument to
the pencil of elliptic curves discovered by Brudno and Kaplansky [2].
Bremner left the determination of NS(KB,C) as a problem, and this
provided a first motivation for us to study the surface KB in more
detail.

Also from the fact that J(C) is isogenous to E×E over Q, we obtain
a rational point on KB from two rational points in the Mordell-Weil
group of a quadratic twist Ed. This is because the E × E/{±1} is
isomorphic over Q to Ed × Ed/{±1}. (See Remark 5.4.)

In Section 6 we study the symmetries, i.e., the automorphisms in-
duced by a linear map of the ambient space, of KB , S and S∗. It turns
out that KB has a bigger symmetry than S and S∗ do, the difference
being accounted for by the isomorphism between S and S∗.

2. Quadratic line complexes. In this section we summarize
the results we need concerning quadratic line complexes. We refer to
Griffiths-Harris [5, Chapter 6] for detail.

Let G be the Grassmannian of all lines in P3. G may be identified
with the Grassmannian G(2, 4) of 2-planes in a vector space V of
dimension 4. The Plücker embedding

G(2, 4) → P(
∧2

V )

is given by sending the 2-plane spanned by v1, v2 ∈ V to the wedge
product v1 ∧ v2 ∈ ∧2V .

Now we choose a basis (e0, e1, e2, e3) of V . Then

(e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3)

is a basis of
∧2V . We use this basis to identify P(

∧2V ) with P5. With
this identification the line in P3 passing through (a0 : a1 : a2 : a3) and
(b0 : b1 : b2 : b3) is given by

(a0b1 − a1b0 : a0b2 − a2b0 : a0b3 − a3b0 : a1b2 − a2b1 : a1b3

− a3b1 : a2b3 − a3b2).
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It is known that an equivalence class of multi-vector ω ∈ ∧2V is an
image of the Plücker embedding if and only if ω ∧ ω = 0. If we write

ω = x0 e0∧e1 +x1 e0∧e2 +x2 e0∧e3 +x3 e1∧e2 +x4 e1∧e3 +x5 e2∧e3,

then the condition ω ∧ ω = 0 is equivalent to

2(x0x5 − x1x4 + x2x3) = 0.

Thus the image of the Plücker embedding is the quadric hypersurface
given by the above equation. From now on we identify G with this
quadric hypersurface in P5.

For x ∈ G we denote by lx the corresponding line in P3. For a point
p ∈ P3 we define σ(p) to be the set of lines passing through p, and for
a hyperplane h ∈ (P3)∗ we define σ(h) to be the set of lines contained
in the plane h:

σ(p) = {x ∈ G | p ∈ lx}, σ(h) = {x ∈ G | lx ⊂ h}.

These are so-called Schubert cycles. Both σ(p) and σ(h) are 2-planes
contained in the parameter space G ⊂ P5. The intersection σ(p)∩σ(h),
denoted by σ(p, h), is a line in P5, which represents the pencil of lines
in P3 contained in h and passing through the ‘focus’ p. In fact, it is
known that every 2-plane contained in G is either σ(p) for some p or
σ(h) for some h. Also it is known that a line L in G is the intersection
of a unique σ(p) with a unique σ(h):

L = σ(p, h) = {x ∈ G | p ∈ lx ⊂ h}.

We sometimes write h = hL, p = pL and L = Lp,h. Thus a point on
the line L in G corresponds uniquely to a line in the pencil in hL ⊂ P3

with focus pL.

A quadratic line complex X is defined as the intersection of G with
another quadric hypersurface F . We assume X = G∩F to be smooth.

For any point p ∈ P3, the intersection of σ(p) with the quadric F can
be viewed as a conic in the 2-plane σ(p). There are three possibilities:

(1) σ(p) meets F transversely, and thus F ∩ σ(p) is a smooth conic.

(2) σ(p) is tangent to F at a point, and thus F ∩ σ(p) is the union of
two distinct lines.
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(3) σ(p) is tangent to F along a line, and thus F ∩ σ(p) consists of
this line only, which should be viewed as a double line.

If the case (2) occurs and F ∩ σ(p) = L ∪ L′, then each of two lines
L and L′ represents a pencil of lines in G with focus p. These two
pencils are called confocal pencils, meaning having the same focus p.
The intersection L ∩ L′ represents the line l contained in both of the
pencil. The line l is called a singular line of the complex X. If the
case (3) occurs, then all the lines contained in the pencil represented
by F ∩ σ(p) are considered to be singular.

Dually, for every hyperplane h ∈ (P3)∗, the set F ∩ σ(h) can be
regarded as a conic in the 2-plane σ(h). Again, there are three
possibilities:

(1)∗ σ(h) meets F transversely, and thus F ∩σ(h) is a smooth conic.

(2)∗ σ(h) is tangent to F at a point, and thus F ∩ σ(h) is the union
of two distinct lines.

(3)∗ σ(h) is tangent to F along a line, and thus F ∩ σ(h) consists of
this line only, which should be viewed as a double line.

If the case (2)∗ occurs, then F ∩σ(h) = L∪L′ represents two pencils
of lines in h with two distinct focii p1 and p2. The line l = p1p2 turns
out to be a singular line. If the case (3)∗ occurs, then all the lines
contained in the pencil represented by F ∩ σ(h) are singular.

Define three surfaces:

Σ = {x ∈ X | lx is a singular line},
S = {p ∈ P3 | σ(p) ∩ F is singular},

S∗ = {h ∈ (P3)∗ | σ(h) ∩ F is singular}.

If lx is a singular line, then it is contained in a pencil σ(p, h) with
p ∈ lx ⊂ h. It can be shown that such p and h are unique, and thus we
have maps

π : Σ → S; lx 
→ p,

π∗ : Σ → S∗; lx 
→ h.

S is called the associated Kummer surface of the quadratic line com-
plex, and S∗ is called the dual Kummer surface. Let R be the set of



502 M. KUWATA

p where the case (3) occurs, and let R∗ be the set of h where the case
(3)∗ occurs. We list properties of these surfaces.

• Both S and S∗ are quartic surfaces with 16 double points, the
singular locus being R and R∗, respectively.

• Σ is a smooth K3 surface defined by three quadrics, G, F and
another quadric H.

• Σ contains 32 lines, 16 of them are mapped to R by π, and the
other 16 are mapped to R∗ by π∗.

• Σ is the minimal desingularization of both S and S∗.

• S and S∗ are dual to each other. They are isomorphic to each other
over some extension of the base field.

In order to write down equations of Σ, the following characterization
is essential.

Lemma 2.1 [5, p. 767]. A point x ∈ X belongs to Σ if and only if
the tangent plane Tx(F ) to F is also tangent to G at some point x′.

Suppose that G and F are given respectively by

txQGx = 0, and txQF x = 0,

where QG and QF are symmetric matrices. The equations of the
tangent plane to G and F at a point a ∈ X is then given respectively
by

taQGx = 0, and taQF x = 0.

Conversely, a row vector ty viewed as a point in (P3)∗ is a tangent plane
to G if and only if ty is of the form tbQG for some b. Thus, if Tx(F ) is
tangent to G at x′, then we have

txQF = λ tx′QG for some λ ∈ k.

The condition tx′QGx′ = 0 then gives

(2.5) txQF Q−1
G QF x = 0.
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Let H be the quadric defined by (2.5). Then we have

Σ = G ∩ F ∩ H.

It is known that the intersection is everywhere transverse, and thus Σ
is a nonsingular K3 surface [5, p. 767].

3. Another basis of Bremner’s net of quadrics. Let KB be
Bremner’s K3 surface defined by (1.3). As Bremner shows, KB contains
32 lines, which gives us a reason to suspect that KB is isomorphic to
the surface Σ for some quadratic line complex. In order to verify this is
actually the case, consider the net (= two-dimensional linear system)
of quadrics spanned by the three quadrics (1.3), and find a basis of the
form (G, F, H) as described in the previous section. To do so, we write
the equations of KB in terms of matrices. Let Q1, Q2 and Q3 be three
symmetric matrices such that the equations (1.3) are written as

(3.6) tξQ1ξ = 0, tξQ2ξ = 0, tξQ3ξ = 0,

where tξ = (x, y, z, u, v, w). We would like to find (r1, r2, r3), (s1, s2, s3)
and (t1, t2, t3) such that

Q′
1 = r1Q1 + r2Q2 + r3Q3,

Q′
2 = s1Q1 + s2Q2 + s3Q3,

Q′
2Q

′
1
−1Q′

2 = t1Q1 + t2Q2 + t3Q3.

Straightforward calculations show that every triple (r1, r2, r3) �= (0, 0, 0)
satisfying

r2
1 + r2

2 + r2
3 + 3r1r2 + 3r2r3 + 3r3r1 = 0

yields solutions (s1, s2, s3) and (t1, t2, t3). Since we only need one
solution, we choose ri’s so that the Qi’s are as simple as possi-
ble. We set (r1, r2, r3) = (1/2,−1/2,−1/2), and obtain (s1, s2, s3) =
(−1/2, 3/2,−1/2) and (t1, t2, t3) = (−2,−2, 2). Then, the quadratic
forms corresponding to the Q′

i’s are

q′1(ξ) = − y2 + v2 + xu − zw,

q′2(ξ) = x2 + y2 − z2 − u2 − v2 + w2 − 2xu + 2yv,

q′3(ξ) = − 4x2 + 4u2 − 4yv + 4zw.
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By the change of variables
(3.7)

x0 = x, x1 = y + v, x2 = z, x3 = −w, x4 = y − v, x5 = u,

these forms are transformed to

q′′1 (x) = x0x5 − x1x4 + x2x3,

q′′2 (x) = x2
0 +

1
2

x2
1 − x2

2 + x2
3 −

1
2

x2
4 − x2

5 − 2x0x5 + x1x4,

q′′3 (x) = − 4x2
0 − x2

1 + x2
4 + 4x2

5 − 4x2x3,

where x = t(x0, x1, x2, x3, x4, x5). This shows that the surface KB is
the smooth Kummer surface Σ associated to the quadratic line complex
defined by F : q′′2 (x) = 0.

4. The quartic Kummer surface. Now that we showed that KB

is obtained from the quadratic line complex X = G∩ F , we would like
to describe the quartic Kummer surface S and its dual S∗.

Proposition 4.1. The Kummer surface S associated to the quadratic
line complex F : q′′2 (x) = 0 is given by the equation

(4.8) S : a4
0 + a4

1 + a4
2 + a4

3 + 3 (a2
0a

2
1 + a2

1a
2
2 + a2

2a
2
0)

− 3 (a2
0 + a2

1 + a2
2) a2

3 + 4a0a1a2a3 = 0.

The morphism π : Σ → S is given by

(4.9) π : (x0 : x1 : x2 : x3 : x4 : x5) 
−→
(x0x1 + x0x4 + 2 x1x5 : −2 x0x2 + 2 x0x3 + 2 x3x5 :

− 2 x1x2 + x1x3 − x3x4 : −2 x2
2 − x2

4 − 2 x5
2 − x0x5 + x2x3),

and the rational map π−1 : S → Σ is given by

π−1 : (a0 : a1 : a2 : a3) 
−→ (x0 : x1 : x2 : x3 : x4 : x5),

where

x0 = − a4
0 − a4

1 − 3 a2
0a

2
1 − a2

0a
2
2 + 2 a2

0a
2
3 − 2 a2

1a
2
2 + a2

1a
2
3 − 2 a0a1a2a3,

x1 = a3
0a3 − a3

1a2 − 2 a3
2a1 − 3 a2

0a1a2 + a2
1a0a3 − a2

2a0a3 + a2
3a1a2,

x2 = a3
0a2 − a3

1a3 + a3
3a1 + a2

1a0a2 − 2 a2
2a1a3 − a2

3a0a2,

x3 = a3
0a2 + a3

1a3 + a3
2a0 + a2

0a1a3 + a2
2a1a3 − 2 a2

3a0a2,

x4 = a3
0a3 + a3

1a2 − 2 a3
3a0 + a2

0a1a2 + 3 a2
1a0a3 + a2

2a0a3 + a2
3a1a2,

x5 = a2
0a

2
2 − a2

0a
2
3 + a2

1a
2
2 − a2

1a
2
3 + 3 a0a1a2a3.
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Proof. Let p = (a0 : a1 : a2 : a3) be a point in P3. If a0 �= 0, the
Schubert cell σ(p) is given by

(4.10) (x0 : x1 : x2 : x3 : x4 : x5)
= (a0s0 : a0s1 : a0s2 : −a2s0 + a1s1 : −a3s0 + a1s2 : −a3s1 + a2s2),

with (s0 : s1 : s2) ∈ P2. The conic X ∩ σ(p) is

−(2a2
0 +2a2

2 − a2
3) s2

0 − (a2
0 + 2a2

1 − 2a2
3) s2

1 + (2a2
0 + a2

1 + 2a2
2) s2

2

− 2(a0a3 − 2a1a2) s0s1 − 2(a0a1 + 2a2a3) s1s2s

− 2(a1a3 − 2a0a2) s0s2 = 0.

The symmetric matrix corresponding to this quadratic form in (s0, s1,
s2) is given by

Qp =

⎛
⎝

a2
3 − 2 a2

2 − 2 a2
0 2 a2a1 − a0a3 2 a2a0 − a1a3

2 a2a1 − a0a3 −a2
0 − 2 a2

1 + 2 a2
3 −2 a2a3 − a1a0

2 a2a0 − a1a3 −2 a2a3 − a1a0 2 a2
2 + 2 a2

0 + a2
1

⎞
⎠ .

The determinant of Qp is 4a2
0 times the left-hand side of (1.4). Since

we know that S is an irreducible hypersurface in P3, we conclude that
the equation of S is given by (1.4).

Assuming p ∈ Σ, the rank of the matrix Qp is less than or equal to 2.
In case rank Qp = 2, the intersection point of the two lines that form
the degenerated conic can be obtained by solving the first two equation
of Qp

t(s0, s1, s2) = 0:

{
(a2

3 − 2 a2
2 − 2 a2

0) s0 + (2 a2a1 − a0a3) s1 + (2 a2a0 − a1a3) s2 = 0,

(2 a2a1− a0a3) s0 + (−a2
0 − 2 a2

1 + 2 a2
3) s1+ (−2 a2a3− a1a0) s2 = 0.

Plugging the solution (s0, s1, s2) into the formula (4.10), we obtain the
formula for the map π−1.

Let x = (x0 : x1 : x2 : x3 : x4 : x5) be a point in KB = Σ. If x0 �= 0,
then a point p on the line lx representing x is expressed by the formula

(4.11)
p = (a0 : a1 : a2 : a3)

= (x0t0 : x0t1 : −x3t0 + x1t1 : −x4t0 + x2t1),



506 M. KUWATA

where (t0 : t1) ∈ P1. Plugging this into the formula (4.10), we can
parametrize G ∩ Tx(G) = ∪p∈lxσ(p) in terms of x:

(x0t0s0 : x0t0s1 : x0t0s2 : (x3t0 − x1t1) s0 + x0t1s1 :
(x4t0 − x2t1) s0 + x0t1s2 : (x4t0 − x2t1) s1 − (x3t0 − x1t1) s2).

The condition x ∈ Σ is equivalent to the condition that σ(p) is tangent
to F at x, for some point p ∈ lx. In terms of the matrix QF , this
condition is expressed by

(x0, x1, x2, x3, x4, x5)QF

⎛
⎜⎜⎜⎜⎜⎝

x0t0s0

x0t0s1

x0t0s2

(x3t0 − x1t1) s0 + x0t1s1

(x4t0 − x2t1) s0 + x0t1s2

(x4t0 − x2t1) s1 − (x3t0 − x1t1) s2

⎞
⎟⎟⎟⎟⎟⎠

= 0.

This equation is linear with respect to (s0, s1, s2). Under the condition
x ∈ Σ, the above equation holds for any (s0, s1, s2). Thus, we obtain
the condition for (t0, t1) by equating the coefficients of si to 0. Plugging
the solution for (t0, t1) into (4.11), we obtain the formula for the
map π.

Proposition 4.2. The dual Kummer surface S∗ associated to the
quadratic line complex F is given by the equation

(4.12) S∗ : α4
0 + α4

1 + α4
2 + α4

3 + 3 (α2
0α

2
1 + α2

1α
2
2 + α2

2α
2
0)

− 3 (α2
0 + α2

1 + α2
2) α2

3 − 4α0α1α2α3 = 0.

The morphism π∗ : Σ → S∗ is given by

π∗ : (x0 : x1 : x2 : x3 : x4 : x5) 
−→
(−x3x4 − x3x1 + 2 x4x2, x1

2 − x0x5 − 2 x2
2 + x2x3 − 2 x2

5,

x4x0 − x1x0 + 2 x5x4,−2 x5x3 + 2 x2x0 − 2 x0x3),

and the rational map (π∗)−1 : S∗ → Σ is given by

(π∗)−1 : (α0 : α1 : α2 : α3) 
−→ (x0 : x1 : x2 : x3 : x4 : x5),
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where

x0 = α2
0α

2
2 − α2

0α
2
3 + α2

1α
2
2 − α2

1α
2
3 − 3 α0α1α2α3,

x1 = α3
0α3 − 2 α0α

3
3− α3

1α2− α2
0α1α2 + 3 α2

1α0α3 + α2
2α0α3− α2

3α1α2,

x2 = −α3
0α2 + α3

1α3 − α3
2α0 + α2

0α1α3 + α2
2α1α3 + 2 α2

3α0α2,

x3 = α3
0α2 + α3

1α3 − α3
3α1 + α2

1α0α2 + 2 α2
2α1α3 − α2

3α0α2,

x4 = −α3
0α3− α3

1α2 − 2 α3
2α1− 3 α2

0α1α2− α2
1α0α3+ α2

2α0α3+ α2
3α1α2,

x5 = α4
0 + α4

1 + 3 α2
0α

2
1 + α2

0α
2
2− 2 α2

0α
2
3 + 2 α2

1α
2
2− α2

1α
2
3− 2 α0α1α2α3.

Proof. Let h = (α0 : α1 : α2 : α3) be a point in (P3)∗. If α0 �= 0, the
Schubert cell σ(h) is given by

(4.13) (x0 : x1 : x2 : x3 : x4 : x5)
= (α2s0 + α3s1 : α3s2 − α1s0 : −α1s1 − α2s2 : α0s0 : α0s1 : α0s2),

Let x = (x0 : x1 : x2 : x3 : x4 : x5) be a point in KB = Σ. If x0 �= 0,
then a hyperplane h containing the line lx representing x is expressed
by the formula
(4.14)

h = (α0 : α1 : α2 : α3) = (x3t0 + x4t1 : −x1t0 − x2t1 : x0t0 : x0t1),

where (t0 : t1) ∈ P1. Using these formulas, we obtain the equation of
S∗ and the maps between Σ and S∗ in a similar manner as in the proof
of Proposition 4.1.

Remark 4.3. Abstractly, S and S∗ are isomorphic. For example, the
map

(4.15) (a0 : a1 : a2 : a3) 
−→ (α0 : α1 : α2 : −α3)

gives an isomorphism from S to S∗. However, the map π∗ ◦ π−1 does
not coincide with this map. In fact, π∗ ◦ π−1 is not a map induced by
a linear isomorphism from P3 to (P3)∗. See Remark 6.3.

Bremner showed that KB = Σ contains 32 lines. From the theory of
quadratic line complexes [5, p. 776] it is known that these lines form
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two families of 16 disjoint lines. The lines in one family are sent to
the 16 double points of S, and the others are mapped to the 16 double
points of S∗.

The 16 lines in Table 1, expressed using Bremner’s notation, are
mapped to the double points of S by π after the change of vari-
ables (3.7).

The 16 lines in Table 2 are mapped to the double points of S∗ by π∗

after the change of variables (3.7).

5. The Abelian variety associated to the quadric line com-
plex. As is well known, the Kummer surface S is the quotient of the
Jacobian of a curve of genus 2. We now identify this curve of genus 2
and describe its Jacobian.

The Jacobian, or a torsor of it to be precise, is realized as the variety of
lines lying on the three-dimensional quadratic line complex X = G∩F
[5, p. 778]:

J = {L | L is a line contained in X} ⊂ G(2, 6).

A line contained in G is nothing but a pencil of lines σ(p, h). Thus, we
have

J = {σ(p, h) | p ∈ S, h ∈ S∗}.
We thus have two maps

j : J → S ; L = σ(p, h) 
−→ p,

j∗ : J → S∗; L = σ(p, h) 
−→ h.

These are generically two-to-one maps.

Let L = σ(p, h) be a point in J . Define CL to be the hyperplane
section h ∩ S. Suppose that L is not mapped to a singular point by
neither j nor j∗. Then the curve CL is a curve of genus 2, and J is (a
torsor of) the Jacobian of CL [5, p. 782].

To write down an equation of CL, we begin with the point p = (3 :
4 : 5 : 7) ∈ S. This point corresponds to Subba-Rao’s first solution
to (1.1). In general, even if p is defined over the base field k, the two
σ(p, h)’s contained in X may not be defined over k. In this particular
case, however, the σ(p, h)’s are defined over Q.
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Parametrizing σ(p) as in (4.10), we see that the conic X ∩σ(p) splits
into two factors over Q:

(s1 − 3s2 + 2s3)(19s1 + 19s2 − 42s3) = 0.

We choose as L the line defined by the equation s1 − 3s2 +2s3 = 0 and
see that the plane h in P3 corresponding to L in X is given by

a0 − a1 + 3a2 − 2a3 = 0.

The intersection of this plane and the surface S (projected down to P2

defined by a3 = 0) is given by

(5.16)
5a4

0 + 5a4
1 − 11a4

2 + 20a3
0a1 − 60a3

0a2 + 20a0a
3
1 + 60a3

1a2

+ 36a0a
3
2 − 36a1a

3
2 + 30a2

0a
2
1 − 18a2

0a
2
2 − 18a2

1a
2
2

+ 68a2
0a2a1 − 68a0a

2
1a2 + 12a0a1a

2
2 = 0.

This curve in P2 has an ordinary double point at (a0 : a1 : a2) = (−1 :
4 : 1). Blowing up at this point, we obtain a smooth curve C of genus 2.
In fact, by using the change of coordinates

a1 =
(x − 1)y + 2x4 − 4x3 − 3x2 − 34x − 5

4x(x3 + 2x2 + 6x + 2)
a0,

a2 = − (3x + 1)y + 2x4 + 4x3 + 7x2 + 14x + 5
4x(x3 + 2x2 + 6x + 2)

a0,

the equation (5.16) is transformed to

y2 = (x2 + 1)(x2 + 2x + 5)(x2 − 2x + 5).

Let C be the curve defined by the above equation. The hyperelliptic
involution ι : (x, y) 
→ (x,−y) is in the center of the automorphism
group Aut (C). Define the reduced automorphism group RA (C) to be
the quotient group Aut (C)/〈ι〉.

Theorem 5.1. The quartic surface S is the Kummer surface (in
the modern sense) obtained from the Jacobian J(C) of the curve C of
genus 2 given by

C : y2 = (x2 + 1)(x2 + 2x + 5)(x2 − 2x + 5).
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The reduced automorphism group RA (C) is isomorphic to the symmet-
ric group S3 generated by

τ : (x, y) 
−→ (−x, y), σ : (x, y) 
−→
(
− x + 3

x − 1
,

8y

(x − 1)3

)
.

In particular, τ , στ and σ2τ are three involutions of C. The quotients
C/〈τ 〉, C/〈στ 〉, and C/〈σ2τ 〉 are all birationally equivalent to the same
elliptic curve given by

E : y2 = x(x2 + 4x + 20).

The conductor of E is 320 = 26 · 5, and E has no complex multiplica-
tion. The natural maps from C to the quotient E are given by

p1 : C → C/〈τ 〉; (x, y) 
−→ (x2 + 1, y),

p2 : C → C/〈στ 〉; (x, y) 
−→
(

2(x2 + 2x + 5)
(x − 1)2

,
8y

(x − 1)3

)
.

p3 : C → C/〈σ2τ 〉; (x, y) 
−→
(

2(x2 − 2x + 5)
(x + 1)2

,
−8y

(x + 1)3

)
,

J(C) is isogenous to E × E with an isogeny of degree 4.

Proof. We have already shown the equation of C. It is obvious
that C admits the involutions τ , and it is easy to check that σ is an
automorphism of order 3. Furthermore, σ and τ satisfy τ−1στ = σ−1.
This shows that the group 〈σ, τ 〉 is isomorphic to S3. According to the
classification of automorphisms of curves of genus 2 (see Igusa [8] or
Ibukiyama-Katsura-Oort [7]), there are only three isomorphism classes
over Q of curves whose reduced automorphism group is strictly larger
than S3, and our C is not one of them. Thus, we conclude RA(C) 
 S3.

The function field of C/〈τ 〉 is the subfield of the function field
k(C) = k(x, y) generated by x2 and y. If we let X = x2 + 1 and
Y = y, then (X, Y ) satisfies Y 2 = X(X2 + 4X + 20). For the quotient
C/〈στ 〉 we see that p1 ◦ σ is the quotient map. Indeed, if P ∈ C, then
we have

(p1 ◦ σ)(στ (P )) = p1(σ2τ (P )) = p1(τσ(P )) = p1(σ(P )) = (p1 ◦ σ)(P ).
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Similarly, the quotient map p3 equals p1 ◦ σ2.

Calculations using standard formulas show the conductor of E is 320.
This implies that E has semi-stable reduction at p = 5. Since a curve
with complex multiplication cannot have semi-stable reduction, we see
that E has no complex multiplication.

The map p1 × p2 : C → E ×E induces the map (p1 × p2)∗ : E ×E →
J(C), is an isogeny of degree 4.

Corollary 5.2. The Picard number ρ(KB), that is, the rank of the
Néron-Severi group NS(KB,C), equals 19.

Proof. Since J(C) is isogenous to the self-product of an elliptic
curve without complex multiplication, the Picard number of J(C)
is 3. In general, the Picard number of the minimal desingularization
of J(C)/{±1} equals 16 + ρ(J(C)), 16 being accounted for by the
exceptional curves arising from the blow-ups. Thus, we see that ρ(KB)
equals 19.

Remark 5.3. C admits three other involutions: ιτ , ιστ and ισ2τ . The
quotients C/〈ιτ 〉, C/〈ιστ 〉, and C/〈ισ2τ 〉 are all birationally equivalent
to the elliptic curve given by

E′ : y2 = x(x2 − 44x + 500).

There is an isogeny of degree 3 from E to E′ is given by

(x, y) 
−→
(

x(x + 10)2

(x + 2)2
,
y(x + 10)(x2 − 4x + 20)

(x + 2)3

)
.

Remark 5.4. Let p∗i : Pic 0(E) → Pic 0(C) be the map induced from
pi for i = 1, 2. Identifying Pic 0(E) with E, and Pic 0(C) with J(C),
we obtain a map E × E → J(C). Taking quotients, we have

E × E/{±1} −→ J(C)/{±1}.

If P1 and P2 are points in the Mordell-Weil group Ed(Q) of a quadratic
twist of E by some d, then we obtain a rational point of E × E/{±1}.
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Thus, using the above map, we obtain a rational point in Σ. If P1 and
P2 are linearly dependent, then we can show that the point obtained is
on the curve Bremner constructed. Thus, to obtain a rational solution
of (1.1), we look for d’s such that rank Ed(Q) ≥ 2. In order to write
down the formula for the above map, however, we need to compute the
addition map of J(C).

6. Symmetries of Σ and S. Bremner showed that the group of
rational symmetries, i.e., the automorphisms defined over Q induced
by the linear map of the ambient space, of the surface KB is a group
of order 48 generated by

α : (x : y : z : u : v : w) 
−→ (−x : y : z : −u : v : w),
β : (x : y : z : u : v : w) 
−→ (x : −y : z : u : −v : w),
γ : (x : y : z : u : v : w) 
−→ (w : v : u : z : y : x),
δ : (x : y : z : u : v : w) 
−→ (y : z : x : v : w : u),
ε : (x : y : z : u : v : w) 
−→ (−u : −v : −w : x : y : z).

Proposition 6.1. The symmetries α, β, γ and δ induce symmetries
of S given by

ᾱ : (a0 : a1 : a2 : a3) 
−→ (−a0 : −a1 : a2 : a3),
β̄ : (a0 : a1 : a2 : a3) 
−→ (−a0 : a1 : −a2 : a3),
γ̄ : (a0 : a1 : a2 : a3) 
−→ (−a2 : a1 : −a0 : a3),
δ̄ : (a0 : a1 : a2 : a3) 
−→ (−a2 : −a0 : a1 : a3).

The group 〈ᾱ, β̄, γ̄, δ̄〉 is isomorphic to the symmetric group S4, identi-
fied with the permutation group of the set RQ = {(1 : 1 : 1 : 2), (1 : −1 :
−1 : 2), (−1 : 1 : −1 : 2), (−1 : −1 : 1 : 2)} of rational double points
of S.

Proof. Using the formula (4.9) for the map Σ → S, it is easy to verify
that α, β, γ and δ induce ᾱ, β̄, γ̄ and δ̄, respectively. These symmetries
fixes the set RQ. The symmetry ᾱγ̄ acts as the 4-cycle

(1 : 1 : 1 : 2) 
−→ (1 : −1 : −1 : 2) 
−→ (−1 : 1 : −1 : 2)

−→ (−1 : −1 : 1 : 2),
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whereas β̄δ̄γ̄δ̄ acts as the transposition between (1 : 1 : 1 : 2) and
(1 : −1 : −1 : 2). These two generate the full symmetric group acting
on RQ. It is easy to check that the only element of 〈ᾱ, β̄, γ̄, δ̄〉 that
fixes each element of RQ is the identity.

Remark 6.2. Over the field Q(i), S has more symmetries, such as
(a0 : a1 : a2 : a3) = (a1 : a2 : ia3 : −ia0). The order of the group of
symmetries over Q(i) is 96.

Remark 6.3. The symmetry ε does not induce a symmetry on S. As
a matter of fact, the map π∗ ◦ ε ◦ π−1 : S → S∗ coincides with the
map (4.15). As a consequence, from one rational point of KB modulo
symmetry, we obtain a pair of two rational points that do not coincide
by any symmetry. Table 3 is the list of the nine smallest solutions of
(1.3) in terms of the size x6 + y6 + z6, together with their images by π
(first row) and by π ◦ ε (second row). It corresponds to the list of [9]
minus (x : y : z : u : v : w) = (25 : 62 : 138 : 82 : 92 : 135), which does
not satisfy (1.2).

7. Historical remarks. The first solution 36 + 196 + 226 =
106 + 156 + 236 to the equation (1.1) was found by Rao [10] in 1934.
In 1967, Lander, Parkin and Selfridge published a survey [9] of results
concerning equal sums of like Powers obtained by computer searches.
At that time ten solutions to (1.1) were known. The search was
conducted up to x6 + y6 + z6 ≤ 2.5 × 1014. It was noted that all
but one of the ten solutions satisfied (1.2).

Bremner [1], after a suggestion of Swinnerton-Dyer, found that the
nine simultaneous solutions to (1.1) and (1.2) satisfy the equations (1.3)
after suitable relabeling and change of sign. In the second edition of
his book [6] published in 1994, Guy remarks that Peter Montgomery
found 18 solutions to (1.1) that do not satisfy (1.2). In 1998 Ekl
published a first systematic survey [4] on equal sums of like powers
since [9]. Ekl extended the search of Lander, Parkin and Selfridge [9]
up to x6 +y6 +z6 ≤ 1.3×1019, and found 87 solutions to (1.1), though
he did not present the list of solutions in [4]. In his master’s thesis [11],
Womack found 207 solutions to (1.1) up to x6+y6+z6 ≤ 3.4×1022. He
used elaborated searching techniques and distributed computations.
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TABLE 3. Rational points of KB and S.

x y z u v w a0 a1 a2 a3

3 19 22 −23 10 −15 5 3 4 7

29 131 79 122

36 37 67 −65 −15 −52 1 40 23 73

39 −139 −71 −98

33 47 74 −73 54 23 71 41 76 −107

39 89 31 82

32 43 81 −3 80 55 19 −79 −271 −178

8 15 31 53

37 50 81 −78 −11 −65 4 19 13 35

89 −411 −229 −298

51 113 136 −125 −40 −129 41 201 184 413

31 −97 −85 −82

71 92 147 −132 133 −1 64 29 91 97

211 309 139 362

111 121 230 26 225 169 41 −89 −215 −146

39 164 311 547

75 142 245 14 243 163 20 −41 −167 −107

39 161 479 802

He also noted that only 22 out of the 207 solutions he found do not
satisfy (1.2). Since he did not publish the list of solutions, we do not
know how many of 185 simultaneous solutions to (1.1) and (1.2) satisfy
Bremner’s equations (1.3).

In 2000 Choudhry [3] found infinitely many solutions to (1.1) and
(1.2) that do not satisfy Bremner’s equations (1.3). He studied the
simultaneous equations (1.1) and (1.2) together with x + y + z =
u + v + w. Geometrically, these three equations determine another
K3 surface. Choudhry found an elliptic pencil on this K3 surface and
found some fibers with positive Mordell-Weil rank. Of the 26 solutions
he listed, 20 fall in the range of Womack’s search. In other words at
least 20 out of 185 simultaneous solutions to (1.1) and (1.2) do not
satisfy Bremner’s equations (1.3).
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