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DIVISION PROBLEM OF MOMENT FUNCTIONALS

J.H. LEE AND K.H. KWON

ABSTRACT. For a quasi-definite moment functional σ and
nonzero polynomials A(x) and D(x), we define another mo-
ment functional τ by the relation

D(x)τ = A(x)σ.

In other words, τ is obtained from σ by a linear spectral
transform. We find necessary and sufficient conditions for τ
to be quasi-definite when D(x) and A(x) have no nontrivial
common factor. When τ is also quasi-definite, we also find a
simple representation of orthogonal polynomials relative to τ
in terms of orthogonal polynomials relative to σ. We also give
two illustrative examples when σ is the Laguerre or Jacobi
moment functional.

1. Introduction. Let σ be a quasi-definite moment functional,
i.e., a linear function on P, the space of polynomials in one variable,
satisfying the Hamburger condition: ∆n := |[σi+j ]ni,j=0| �= 0, n ≥ 0,
where σn := 〈σ, xn〉, n ≥ 0, are the moments of σ. Then the monic
orthogonal polynomial system (MOPS) {Pn(x)}∞n=0, relative to σ, is
given by
(1.1)

P0(x) = 1 and Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣

σ0 σ1 · · · σn

σ1 σ2 · · · σn+1

...
...

...
σn−1 σn · · · σ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
, n ≥ 1.

However, in the computational viewpoint, the formula (1.1) is of
little practical value for large n. Instead we might use the three-term
recurrence relation satisfied by any MOPS

Pn+1(x) = (x−bn)Pn(x)−cnPn−1(x), n ≥ 0, (P−1(x) = 0, P0(x) = 1)
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if the coefficients bn and cn are easily computable.

On the other hand, if τ is another quasi-definite moment functional
which is obtained from σ by a simple modification, then it is natural
and useful to represent the MOPS {Qn(x)}∞n=0 relative to τ in terms of
{Pn(x)}∞n=0. For example, when σ and τ are given by positive weights
as

〈σ, π(x)〉 :=
∫ b

a

π(x)w(x) dx

〈τ, π(x)〉 :=
∫ b

a

π(x)w̃(x) dx

and w̃(x) = R(x)w(x) where R(x) = (A(x)/D(x)) is a suitable rational
function, representation of {Qn(x)}∞n=0 in terms of {Pn(x)}∞n=0 was
already considered by Uvarov [16], (see also [12]).

We now consider a more general situation for any two generic moment
functionals σ and τ satisfying

(1.2) D(x)τ = A(x)σ,

where A(x) and D(x) are nonzero polynomials. In terms of Stieltjes
functions of moment functionals, τ is obtained from σ by a linear
spectral transform, (see [16]). Assuming that σ is quasi-definite, we
may ask: When is the other moment functional τ also quasi-definite?
If so, what is the relation between their corresponding orthogonal
polynomials {Pn(x)}∞n=0 relative to σ and {Qn(x)}∞n=0 relative to τ?

When D(x) = 1, σ is the Legendre moment functional defined by

〈σ, π(x)〉 :=
∫ 1

−1

π(x) dx, π ∈ P,

and A(x) is nonnegative on [−1, 1] so that τ = A(x)σ is also positive-
definite, Christoffel [6] found representation of {Qn(x)}∞n=0 in terms of
the Legendre polynomials {Pn(x)}∞n=0. More generally, when D(x) = 1
and A(x) is any nonzero polynomial, Belmehdi [2] found necessary and
sufficient conditions for τ to be quasi-definite and a representation of
{Qn(x)}∞n=0 in terms of {Pn(x)}∞n=0,(for some special cases see also
Ronveaux [14] and Szegö [15].

When D(x) is of degree ≥ 1, the equation (1.2) gives rise to a division
problem of moment functions, in which we are interested. When
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A(x) = 1 and D(x) is of degree 1 and 2, respectively, Maroni [10]
and Branquinho and Marcellán [3], respectively, found necessary and
sufficient conditions for τ to be quasi-definite. When A(x) = D(x), τ
is obtained from σ by a generalized Uvarov transform, i.e., by adding
finitely many mass points and their derivatives. In this case, the quasi-
definiteness of τ was handled in [7] and [8].

In this work we consider the case when A(x) and D(x) have no non-
trivial common factor. In this case, we find necessary and sufficient con-
ditions for τ to be quasi-definite and give representations of {Qn(x)}∞n=0

in terms of {Pn(x)}∞n=0.

2. Preliminaries. For a polynomial π(x) we let ∂(π) be the degree
of π(x) with the convention ∂(0) = −1. For a moment functional σ
and a polynomial φ(x) =

∑n
k=0 akx

k, define [11]

〈φσ, π〉 := 〈σ, φπ〉; 〈σ′, φ〉 = −〈σ, φ′〉;
〈(x− c)−1σ, φ〉 := 〈σ, θcφ〉, π ∈ P,

where θcπ = (π(x) − π(x))/(x− c), c ∈ C,

(σφ)(x) :=
n∑

k=0

( n∑
j=k

ajσj−k

)
xk;

F (σ)(x) :=
∞∑

n=0

σn

xn+1
.

We call the formal series F (σ)(x) the Stieltjes function of σ. When σ
is quasi-definite, we let {Pn(x)}∞n=0 be the MOPS relative to σ and

(2.1) Pn+1(x) = (x− bn)Pn(x) − cnPn−1(x), n ≥ 0, (P−1(x) = 0)

the three-term recurrence relation of {Pn(x)}∞n=0. In this case, we also
let {P (1)

n (x)}∞n=0 be the numerator MOPS for {Pn(x)}∞n=0 satisfying
the three-term recurrence relation

P
(1)
n+1(x) = (x− bn+1)P (1)

n (x) − cn+1P
(1)
n−1(x), n ≥ 0, (P (1)

−1 (x) = 0)

and {Pn(x; c)}∞n=0 the co-recursive MOPS, [5], for {Pn(x)}∞n=0 satisfy-
ing

Pn(x; c) = Pn(x) − cP
(1)
n−1(x), n ≥ 0, c ∈ C.
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Let

Kn(x, y) =
n∑

k=0

Pk(x)Pk(y)
〈σ, P 2

k 〉
be the nth kernel polynomial of {Pn(x)}∞n=0.

3. Division problem. From now on let σ be a quasi-definite mo-
ment functional and {Pn(x)}∞n=0 the MOPS relative to σ satisfying the
three-term recurrence relation (2.1). Define another moment functional
τ by the relation

(3.1) D(x)τ = A(x)σ,

where A(x) and D(x) are nonzero polynomials of degree s and t,
respectively. When τ is also quasi-definite, we denote the MOPS
relative to τ by {Qn(x)}∞n=0. We may and shall assume that A(x)
and D(x) are monic. In terms of the corresponding Stieltjes functions,
the relation (3.1) can be written as

F (τ )(x) =
A(x)F (σ)(x) + B(x)

D(x)
,

where B(x) = (τθ0D)(x) − (σθ0A)(x). In other words, (see [17]),
F (τ )(x) is a linear spectral transform of F (σ)(x).

For any complex numbers λ and β, let

C(λ)F (σ) := (x− λ)F (σ) − σ0

and
G(λ;β)F (σ)(x) :=

β + F (σ)
x− λ

be the Christoffel transform and the Geronimus transform, [17], of
F (σ), respectively. In terms of moment functionals, we have

(i) C(λ)F (σ) = F (τ ) if and only if τ := C(λ)σ = (x− λ)σ;

(ii) G(λ;β)F (σ) = F (τ ) if and only if τ := G(λ;β)σ = (x−λ)−1σ +
βδ(x− λ)(β = τ0).

Proposition 3.1. For any complex numbers λ and β,
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(i) τ = C(λ)σ is quasi-definite if and only if Pn(λ) �= 0, n ≥ 0.
When τ is also quasi-definite,

Qn(x) = P ∗
n(λ;x) =

〈σ, P 2
n〉

Pn(λ)
Kn(x, λ), n ≥ 0

is the monic kernel polynomials for {Pn(x)}∞n=0 with K-parameter λ.

(ii) τ = G(λ, β)σ is quasi-definite if and only if

(3.2) βPn(λ) + σ0P
(1)
n−1(λ) = βPn

(
λ;

−σ0

β

)
�= 0, n ≥ 0.

When τ is also quasi-definite,

Q0(x) = 1 and Qn(x) = Pn(x) − Pn(λ;−(σ0/β))
Pn−1(λ; (−σ0/β))

Pn−1(x), n ≥ 1.

Proof. For (i), (see Theorem 7.1 in [4, Chapter 1]) and for (ii), (see
Theorem 4.2 in [9]) and Theorem 1.1 in [10].

Note that we may rewrite the condition (3.2) as

〈τ, Pn〉 �= 0, n ≥ 0.

The division problem (3.1) can be solved for τ as

(3.3) τ = D(x)−1A(x)σ +
k∑

i=1

mi−1∑
j=0

ci,jδ
(j)(x− νi)

where D(x) = (x − ν1)m1 · · · (x− νk)mk , νi �= νj for i �= j and ci,j are
constants which depend on the first t moments {τi}t−1

i=0 of τ .

Lemma 3.2. For any two MOPS’s {Pn(x)}∞n=0 and {Qn(x)}∞n=0

relative to σ and τ , respectively, the following are equivalent:

(i) σ and τ satisfy the relation (3.1) for some nonzero monic poly-
nomials A(x) and D(x);
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(ii) there are nonnegative integers s and t such that

(3.4) A(x)Qn(x) = Pn+s(x) +
n+s−1∑
k=n−t

an,kPk(x), n ≥ t,

where an,k are constants with an,n−t �= 0.

Proof. Assume that (3.1) holds. Expand A(x)Qn(x) as

A(x)Qn(x) =
n+s∑
k=0

an,kPk(x).

Then

an,k〈σ, P 2
k 〉 = 〈σ,AQnPk〉 = 〈τ,QnDPk〉 =

{
0 if k + t < n,
nonzero if k + t = n

so that an,n−t �= 0 and an,k = 0 for 0 ≤ k < n− t. Hence (3.4) holds.

Conversely, assume that (3.4) holds. Then

〈Aσ,Qn〉 = 〈σ,AQn〉 = 〈σ, Pn〉 +
n+s−1∑
k=n−t

an,k〈σ, Pk〉

=
{

0 if n ≥ t + 1

nonzero if n = t.

Hence, Aσ = Dτ for some polynomial D(x) of degree t.

Lemma 3.3. Let A(x) = (x − a1) · · · (x − as) and D(x) = (x −
d1) · · · (x− dt) be monic polynomials of degree s and t, respectively. If
ai �= dj for 1 ≤ i ≤ s and 1 ≤ j ≤ t, then {xiA(x), xjD(x) | 0 ≤ i ≤
t− 1, 0 ≤ j ≤ s− 1} are linearly independent.

Proof. Let

Aj(x) =
{ 1 j = 0

(x− a1) · · · (x− aj) 1 ≤ j ≤ s,
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and

Di(x) =
{ 1 i = 0

(x− d1) · · · (x− di) 1 ≤ i ≤ t.

Assume that

(3.5)
t−1∑
i=0

αiDi(x)A(x) +
s−1∑
j=1

βjAjD(x) ≡ 0,

where αi and βj are constants. Set x = d1. Then α0A(d1) = 0 so that
α0 = 0. Then

t−1∑
i=1

αi
Di(x)
x− d1

A(x) +
s−1∑
j=0

βjAj(x)
D(x)
x− d1

≡ 0

in which, if we set x = d2, then α1A(d2) = 0 so that α1 = 0. Continuing
the same process, we obtain α0 = α1 = · · · = αt−1 = 0, and so
β0 = β1 = · · · = βs−1 = 0 from (3.5). Hence {Di(x)A(x), Aj(x)D(x) |
0 ≤ i ≤ t − 1, 0 ≤ j ≤ s − 1} are linearly independent, and so they
span Ps+t−1, the space of polynomials of degree ≤ s + t − 1. Let H
be the span of {xiA(x), xjD(x) | 0 ≤ i ≤ t − 1, 0 ≤ j ≤ s − 1}. Then
{Di(x)A(x), Aj(x)D(x) | 0 ≤ i ≤ t−1, 0 ≤ j ≤ s−1} ⊆ H ⊆ Ps+t−1 so
that H = Ps+t−1, that is, {xiA(x), xjD(x) | 0 ≤ i ≤ t−1, 0 ≤ j ≤ s−1}
are linearly independent.

Now we are ready to state and prove our main result.

Theorem 3.4. Assume that A(x) and D(x) are nonzero monic
polynomials of degree s and t, respectively, with s + t ≥ 1. Let

A(x) = (x− α1)s1 · · · (x− αm)sm

where αi �= αj for i �= j if s := s1 + · · · + sm ≥ 1 and

D(x) = (x− d1)(x− d2) · · · (x− dt) if t ≥ 1.

We also assume that αi �= dj for 1 ≤ i ≤ m and 1 ≤ j ≤ t. Then
the moment functional τ defined by the relation (3.1) is quasi-definite
if and only if

(3.6) |Mk| �= 0 for 1 ≤ k ≤ s + t and |Nn| �= 0 for n ≥ s + t,
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where

Mk :=




〈µ0, P0〉 〈µ0, P1〉 · · · 〈µ0, Pk−1〉
...

...
...

〈µk−1, P0〉 〈µk−1, P1〉 · · · 〈µk−1, Pk−1〉


 ,

1 ≤ k ≤ s + t

Nn :=




〈µ0, Pn−t〉 〈µ0, Pn−t+1〉 · · · 〈µ0, Pn+s−1〉
...

...
...

〈µt−1, Pn−t〉 〈µt−1, Pn−t+1〉 · · · 〈µt−1, Pn+s−1〉
Pn−t(α1) Pn−t+1(α1) · · · Pn+s−1(α1)

...
...

...
P

(s1−1)
n−t (α1) P

(s1−1)
n−t+1 (α1) · · · P

(s1−1)
n+s−1(α1)

...
...

...
P

(sm−1)
n−t (αm) P

(sm−1)
−t+1 (αm) · · · P

(sm−1)
n+s−1 (αm)




,

n ≥ s + t,

where

µi =
{

Di(x)τ 0 ≤ i ≤ t,
Ai−t(x)D(x)τ t ≤ i ≤ s + t,

D0(x) = 1, Di(x) = (x − d1) · · · (x − di) for 1 ≤ i ≤ t, A0(x) = 1,
Ai(x) = (x − α1)s1 · · · (x − αk−1)sk−1(x − αk)l for 1 ≤ i = s1 + · · · +
sk−1 + l ≤ s. When τ is quasi-definite, Q0(x) = 1,

(3.7)
Qk(x) =

(−1)k

|Mk|

∣∣∣∣∣∣∣∣

P0(x) P1(x) · · · Pk(x)
〈µ0, P0〉 〈µ0, P1〉 · · · 〈µ0, Pk〉

...
...

...
〈µk−1, P0〉 〈µk−1, P1〉 · · · 〈µk−1, Pk〉

∣∣∣∣∣∣∣∣
,

1 ≤ k ≤ s + t− 1,
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(3.8)

A(x)Qn(x) =
(−1)s+t

|Nn|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pn−t(x) Pn−t+1(x) · · · Pn+s(x)

〈µ0, Pn−t〉 〈µ0, Pn−t+1〉 · · · 〈µ0, Pn+s〉
.
..

.

..
.
..

〈µt−1, Pn−t〉 〈µt−1, Pn−t+1〉 · · · 〈µt−1, Pn+s〉
Pn−t(α1) Pn−t+1(α1) · · · Pn+s(α1)

..

.
..
.

..

.

P
(sm−1)
n−t (αm) P

(sm−1)
n−t+1 (αm) · · · P

(sm−1)
n+s (αm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

n ≥ s + t.

Proof. Assume that τ is quasi-definite. Then we have (3.4) so that

n+s−1∑
k=n−t

an,k〈µi, Pk〉 = −〈µi, Pn+s〉, 0 ≤ i ≤ t− 1

n+s−1∑
k=n−t

an,kP
(j)
k (αi) = −P

(j)
n+s(αi),

1 ≤ i ≤ m and 0 ≤ j ≤ si − 1

or equivalently in matrix form

(3.9) Nn[an,k]n+s−1
k=n−t = −[〈µ0, Pn+s〉, . . . , P (sm−1)

n+s (αm)]T

if n ≥ s + t. Assume |Nn| = 0 for some n ≥ s + t. Then the system of
equation (3.9) has another solution [bk]n+s−1

k=n−t �= [an,k]n+s−1
k=n−t. That is,

if we set

Rn+s(x) := Pn+s(x) +
n+s−1∑
k=n−t

bkPk(x),

then

Rn+s(x) = A(x)Sn(x)(∂(Sn) = n) and 〈µi, Rn+s〉 = 0, 0 ≤ i ≤ t−1.

Hence

Rn+s(x) −A(x)Qn(x) =
n+s−1∑
k=n−t

(bk − an,k)Pk(x) = A(x)Tn−1(x)
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where Tn−1(x) = Sn(x) −Qn(x) is of degree ≤ n− 1. Then

(3.10) 〈µi, A(x)Tn−1(x)〉 = 0, 0 ≤ i ≤ t− 1

and

(3.11) 〈xiD(x)τ, Tn−1(x)〉 = 0, 0 ≤ i ≤ s− 1.

Since (3.10) implies 〈τ, xiA(x)Tn−1(x)〉 = 0, 0 ≤ i ≤ t − 1 and
{xiA(x), xjD(x) | 0 ≤ i ≤ t−1, 0 ≤ j ≤ s−1} are linearly independent
by Lemma 3.3, (3.10) and (3.11) imply

(3.12) 〈τ, xiTn−1(x)〉 = 0, 0 ≤ i ≤ s + t− 1.

Set Tn−1(x) =
∑n−1

k=0 ekQk(x). Then

A(x)Tn−1(x) =
n−1∑
k=0

ek

k+s∑
j=k−t

ak,jPj(x)

=
s−1∑
j=0

( j+t∑
k=0

ekak,j

)
Pj(x)

+
n−t−1∑

j=s

( j+t∑
k=j−s

ekak,j

)
Pj(x)

+
n+s−1∑
j=n−t

( n−1∑
k=j−s

ekak,j

)
Pj(x).

(ak,k+s = 1 and Pj(x) = 0 for j < 0)

Since A(x)Tn−1(x) =
∑n+s−1

k=n−t(bk − an,k)Pk(x),

j+t∑
k=0

ekak,j = 0, 0 ≤ j ≤ s− 1(3.13)

j+t∑
k=j−s

ekan,k = 0, s ≤ j ≤ n− t− 1.(3.14)
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By (3.12), e0 = e1 = · · · = es+t−1 = 0 so that (3.13) holds and then by
induction on (3.14) ek = 0 for 0 ≤ k ≤ n− 1. Hence Tn−1(x) = 0 and
so bk = an,k for n− t ≤ k ≤ n + s− 1, which is a contradiction. Hence
|Nn| �= 0, n ≥ s + t.

For 1 ≤ k ≤ s + t, write Qk(x) as

Qk(x) = Pk(x) +
k−1∑
j=0

ak,jPj(x).

Then
k−1∑
j=0

〈µi, Pj〉ak,j = −〈µi, Pk〉, 0 ≤ i ≤ k − 1,

that is,

(3.15) Mk[ak,j ]k−1
j=0 = −[〈µi, Pk〉]k−1

i=0 .

Assume |Mk| = 0 for some k with 1 ≤ k ≤ s + t. Then the system of
equation (3.15) has another solution [bj ]k−1

j=0 �= [ak,j ]k−1
j=0 . That is, if we

set

Sk(x) = Pk(x) +
k−1∑
j=0

bjPj(x),

then 〈µi, Sk〉 = 0, 0 ≤ i ≤ k − 1. Then 〈τ, xiSk〉 = 0, 0 ≤ i ≤ k − 1
so that Sk(x) = Qk(x), which is a contradiction. Hence |Mk| �= 0,
1 ≤ k ≤ s + t.

Conversely, assume that the conditions (3.6) hold. Define polynomi-
als Q0(x) = 1 and Qn(x), n ≥ 1, by (3.7) and (3.8). Then Qn(x) are
monic polynomials of degree n. Now 〈τ,Q0〉 = 〈τ, P0〉 = M1 �= 0. For
1 ≤ k ≤ s + t− 1,

〈µi, Qk〉 =
{

0 if 0 ≤ i ≤ k − 1
|Mk+1|/|Mk| if i = k

so that

〈τ, xiQk〉 =
{

0 if 0 ≤ i ≤ k − 1
nonzero if i = k.
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For n ≥ s + t, 〈µi, AQn(x)〉 = 0, 0 ≤ i ≤ t− 1, so that

(3.16)
{ 〈τ, xiAQn〉 = 0 0 ≤ i ≤ t− 1
〈τ, xjDQn〉 = 0 0 ≤ j ≤ n = t = 1.

Since {xiA(x), xjD(x) | 0 ≤ i ≤ t − 1, 0 ≤ j ≤ n − t − 1} are linearly
independent for n ≥ s+ t, (3.16) implies 〈τ, xmQn〉 = 0, 0 ≤ m ≤ n−1
for n ≥ s + t. Finally,

〈τ, xnQn(x)〉 = 〈σ, xn−tA(x)Qn(x)〉 = (−1)s+t〈σ, P 2
n−t〉

|Nn+1|
|Nn| �= 0,

n ≥ s + t.

Hence, {Qn(x)}∞n=0 is the MOPS relative to τ .

We now consider two special cases.

Corollary 3.5. Assume that D(x) = 1 so that τ = A(x)σ. Then
τ is quasi-definite if and only if |Mk| �= 0, 1 ≤ k ≤ s and |Nn| �= 0,
n ≥ s, where

Nn =




Pn(α1) Pn+1(α1) · · · Pn+s−1(α1)
...

...
...

P
(s1−1)
n (α1) P

(s1−1)
n+1 (α1) · · · P

(s1−1)
n+s−1(α1)

...
...

...
P

(sm−1)
n (αm) P

(sm−1)
n+1 (αm) · · · P

(sm−1)
n+s−1 (αm)



, n ≥ s.

Corollary 3.5 was first proved by Belmehdi [2] as: τ = A(x)σ is
quasi-definite if and only |Nn| �= 0, n ≥ 0, which are equivalent to the
conditions in Corollary 3.5.

Corollary 3.6. Assume that A(x) = 1 so that D(x)τ = σ. Then τ
is quasi-definite if and only if |Mk| �= 0, 1 ≤ k ≤ t − 1 and |Nn| �= 0,
n ≥ t, where
(3.17)

Nn =




〈µ0, Pn−t〉 〈µ0, Pn−t+1〉 · · · 〈µ0, Pn−1〉
...

...
...

〈µt−1, Pn−t〉 〈µt−1, Pn−t+1〉 · · · 〈µt−1, Pn−1〉


 , n ≥ t.
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Corollary 3.6 for t = 2 was proved by Branquinho and Marcellán [3],
(see also [1]), by a different method in which they must handle the two
cases separately when roots of D(x) are simple or not. When D(x)
has simple roots, the condition found in [3] is different from ours. To
see the connection between them, let’s reformulate the condition (3.17)
when D(x) has only simple roots, i.e., di �= dj for i �= j. In this case
the polynomials

∏k
i=1
i �=j

(x − di), 1 ≤ j ≤ t, are linearly independent so

that they can span all polynomials of degree ≤ t − 1. Then we may
replace the matrix Nn in (3.17) by

Ñn := |〈µ̃i, Pn−t+j−1〉]ti,j=1,

where µ̃j :=
∏k

i=1
i �=j

(x− di)τ , 1 ≤ j ≤ t.

For example, if t = 2, then

〈µ̃1, Pn〉 = 〈(x− d2)τ, Pn〉 = σ0P
(1)
n−1(d1) + (τ1 − d2τ0)Pn(d1)

since (x − d2)τ = (x − d1)−1σ + (τ1 − d2τ0)δ(x − d1) and 〈(x −
d1)−1σ, Pn〉 = σ0P

(1)
n−1(d1). Now the conditions |Ñn| �= 0, n ≥ 2, and

|M1| �= 0 coincide with the one in [3, Theorem 6].

Finally, we give two examples illustrating Theorem 3.4.

Example 3.1. Let x3τ = σ, where σ is the Laguerre moment
functional:

〈σ, π(x)〉 =
∫ ∞

0

π(x)x3e−x dx, π(x) ∈ P.

Then

〈τ, π(x)〉 =
∫ ∞

0

π(x)e−x dx + a〈δ(x), π〉
+ b〈δ′(x), π〉 + c〈δ′′(x), π〉, π(x) ∈ P,

where a, b, c are constants. In fact we have a = τ0 − 1, b = 1 − τ1,
c = (1/2)τ2 − 1. Let {Pn(x)}∞n=0 be the MOPS relative to σ.



752 J.H. LEE AND K.H. KWON

In order to compute 〈xkτ, Pn〉 for k = 0, 1, 2, we need the following
for the Laguerre polynomials {L(α)

n (x)}∞n=0, α > −1, [4, 13],

L(α)
n (x) =

n∑
k=0

(
n + α
n− k

)
(−x)k

k!
, n ≥ 0,

d

dx
L(α)

n (x) = −L
(α+1)
n−1 (x), n ≥ 0,(3.18)

L(α+1)
n (x) =

n∑
k=0

L
(α)
k (x), n ≥ 0.(3.19)

Then Pn(x) = (−1)nn!L(3)
n (x), n ≥ 0, so that by (3.18)

Pn(0) = (−1)n (n + 3)!
6

, n ≥ 0,

P ′
n(0) = (−1)n+1n(n + 3)!

24
, n ≥ 0,

P ′′
n (0) = (−1)nn(n− 1)(n + 3)!

120
, n ≥ 0.

Using (3.19) repeatedly, we obtain

L(3)
n (x) =

n∑
k=0

L
(2)
k (x) =

n∑
k=0

(n− k + 1)L(1)
k (x)

=
n∑

k=0

1
2

(n− k + 1)(n− k + 2)L(0)
k (x), n ≥ 0,

so that∫ ∞

0

x2e−xPn(x) dx = (−1)nn!
∫ ∞

0

x2e−xL
(2)
0 (x) dx

= 2(−1)nn!, n ≥ 0,∫ ∞

0

xe−xPn(x) dx = (−1)nn!(n + 1)
∫ ∞

0

xe−xL
(1)
0 (x) dx

= (−1)n(n + 1)!, n ≥ 0,∫ ∞

0

e−xPn(x) dx = (−1)nn!
(n + 1)(n + 2)

2

∫ ∞

0

e−xL
(0)
0 (x) dx

= (−1)n (n + 2)!
2

, n ≥ 0.



DIVISION PROBLEM OF MOMENT FUNCTIONALS 753

Hence

〈τ, Pn〉 =
∫ ∞

0

e−xPn(x) dx + aPn(0) − bP ′
n(0) + cP ′′

n (0)

= (−1)n(n + 2)!
[

1
2

+
a

6
(n + 3) +

b

24
n(n + 3)

+
c

120
(n− 1)n(n + 3)

]
, n ≥ 0,

〈xτ, Pn〉 =
∫ ∞

0

xe−xPn(x)(x) dx− bPn(0) + 2cP ′
n(0)

= (−1)n(n + 1)!
[
1 − b

6
(n + 2)(n + 3)

− c

12
n(n + 2)(n + 3)

]
, n ≥ 0,

〈x2τ, Pn〉 =
∫ ∞

0

x2e−xPn(x) dx + 2cPn(0)

= (−1)nn!
[
2 +

c

3
(n + 1)(n + 2)(n + 3)

]
, n ≥ 0.

Therefore,

|M1| = 〈τ, P0〉 = 1 + a,

|M2| =
∣∣∣∣ 〈τ, P0〉 〈τ, P1〉
〈xτ, P0〉, 〈xτ, P1〉

∣∣∣∣
= 1 + 2a + 2b + 2c + 2ac− b2,

|Nn| =

∣∣∣∣∣∣
〈τ, Pn−3〉 〈τ, Pn−2〉 〈τ, Pn−1〉
〈xτ, Pn−3〉 〈xτ, Pn−2〉 〈xτ, Pn−1〉
〈x2τ, Pn−3〉 〈x2τ, Pn−2〉 〈x2τ, Pn−1〉

∣∣∣∣∣∣
= (−1)n(n− 3)!(n− 2)!(n− 1)!Dn, n ≥ 3,

where

Dn =
1

2160
[c3n9 − 6c3n7 + 216c2n6 + (9c3 − 720c2 + 360bc)n5

+ 360(b2 + c2 − 2ac− 2bc)n4 − (4c3 − 720c2 + 4320c + 360bc)n3

− (360b2 + 4320b− 8640c− 720ac− 720bc + 576c2)n2

− 4320(a− b + c)n− 4320].
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Note that D1 = −2|M1| and D2 = −2|M2|.
Hence, by Corollary 3.6, τ is quasi-definite if and only if Dn �= 0,

n ≥ 1.

In particular, when c = 0, i.e., τ2 = 2, we have

|M1| = 1 + a,

|M2| = 1 + 2a + 2b− b2,

|Nn| = (−1)n(n− 3)!(n− 2)!(n− 1)!Dn, n ≥ 3,

where

Dn =
1
6

[b2n4 − (b2 + 12b)n2 + 12(b− a) − 12].

Hence τ is quasi-definite, if and only if

b2n4 − (b2 + 12b)n2 + 12(b− a) − 12 �= 0, n ≥ 1.

In this case, the MOPS {Qn(x)}∞n=0 relative to τ is

Q1(x) =
−1
|M1|

∣∣∣∣ P0(x) P1(x)
〈τ, P0〉 〈τ, P1〉

∣∣∣∣ = P1(x) +
4a + b + 3

|M1| P0(x),

Q2(x) =
1

|M2|

∣∣∣∣∣∣
P0(x) P1(x) P2(x)
〈τ, P0〉 〈τ, P1〉 〈τ, P2〉
〈xτ, P0〉 〈xτ, P1〉 〈xτ, P2〉

∣∣∣∣∣∣
= P2(x) +

2(3 + 7a + 9b− 5b2)
|M2| P1(x)

+
2(3 + 8a + 13b− 10b2)

|M2| P0(x),
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Qn(x) =
−1
|Nn|

∣∣∣∣∣∣∣

Pn−3(x) Pn−2(x) Pn−1(x) Pn(x)
〈τ, Pn−3〉 〈τ, Pn−2〉 〈τ, Pn−1〉 〈τ, Pn〉
〈xτ, Pn−3〉 〈xτ, Pn−2〉 〈xτ, Pn−1〉 〈xτ, Pn〉
〈x2τ, Pn−3〉 〈x2τ, Pn−2〉 〈x2τ, Pn−1〉 〈x2τ, Pn〉

∣∣∣∣∣∣∣
= Pn(x) +

n

6Dn
[3b2n4 + 4b2n3 − 3b(b + 12)n2

− 4(9a− 3b + b2)n− 12a + 12b− 36]Pn−1(x)

+
n(n− 1)

6Dn
[3b2n4 + 8b2n3 + (3b2 − 36b)n2

− 2(18a + 6b + b2)n− 24a + 12b− 36]Pn−2(x)

+
n(n− 1)(n− 2)

6Dn
[b2n4 + 4b2n3 + b(5b− 12)n2

− (12a + 12b− 2b2)n− 12(a + 1)]Pn−3(x),
n ≥ 3.

Example 3.2. Let (1 +x)τ = (1−x)σ, where σ is the Jacobi moment
functional:

〈σ, π(x)〉 =
∫ 1

−1

π(x)(1 + x) dx, π(x) ∈ P.

Then

〈τ, π(x)〉 =
∫ 1

−1

π(x)(1 − x) dx + a〈δ(1 + x), π〉, π(x) ∈ P,

where a = τ0 − 2 is a constant. Let {Pn(x)}∞n=0 be the MOPS relative
to σ.

In order to compute 〈τ, Pn〉 and 〈(1 +x)τ, Pn〉, we need the following
for the Jacobi polynomials {P (α,β)

n }∞n=0, α, β > −1, [4, 13]:

P (α,β)
n (x) = 2−n

n∑
k=0

(
n + α
n− k

) (
n + β

k

)
(x− 1)k(x + 1)n−k, n ≥ 0,

(3.20)
(1 − x)P (0,1)

n (x) = −A(n)P (0,1)
n+1 (x) + (1 −B(n))P (0,1)

n (x)

− C(n)P (0,1)
n−1 (x), n ≥ 1,
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where

A(n) =
n + 2
2n + 3

, B(n) =
1

(2n + 1)(2n + 3)
, C(n) =

n

2n + 1
,

(3.21) (2n + 1)P (0,0)
n (x) = (n + 1)P (0,1)

n (x) + nP
(0,1)
n−1 (x), n ≥ 1.

Then Pn(x) = (2nn!(n + 1)!/(2n + 1)!)P (0,1)
n (x), n ≥ 0, so that

Pn(1) =
2nn!(n + 1)!

(2n + 1)!
, n ≥ 0,

Pn(−1) =
(−1)n2n((n + 1)!)2

(2n + 1)!
, n ≥ 0.

Using (3.21) inductively, we have

P (0,1)
n (x) =

2n + 1
n + 1

P (0,0)
n (x) − 2n− 1

n + 1
P

(0,0)
n−1 (x)

+
2n− 3
n + 1

P
(0,0)
n−2 (x) + · · · +

(−1)n

n + 1
P

(0,0)
0 (x).

Then by (3.20) the coefficient of P
(0,0)
0 (x) in the expansion of (1 −

x)P (0,1)
n (x) in terms of {P (0,0)

k (x)}n+1
k=0 is

−A(n)
(−1)n+1

n + 2
+ (1 −B(n))

(−1)n

n + 1
− C(n)

(−1)n−1

n
= 2

(−1)n

n + 1
.

Hence

〈τ, Pn〉 =
∫ 1

−1

(1 − x)Pn dx + aPn(−1)

=
(−1)n2n(n!)2

(2n + 1)!
[4 + a(n + 1)2], n ≥ 1,

〈τ, P0〉 =
∫ 1

−1

(1 − x) dx + a = 2 + a.

Using (3.20) we also have

〈(1 + x)τ, P0〉 =
∫ 1

−1

(1 + x)(1 − x) dx =
4
3
,

〈(1 + x)τ, P1〉 =
∫ 1

−1

(1 + x)(1 − x)P1(x) dx = −4
9
.
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Therefore,
|M1| = 〈τ, P0〉 = 2 + a,

|M2| =
∣∣∣∣ 〈τ, P0〉 〈τ, P1〉
〈(1 + x), τ, P0〉 〈(1 + x)τ, P1〉

∣∣∣∣
=

4
9

(2 + 3a),

|Nn| =
∣∣∣∣ 〈τ, Pn−1〉 〈τ, Pn〉

Pn−1 Pn(1)

∣∣∣∣
=

n((n− 1)!)44n

2((2n− 1)!)2
Dn, n ≥ 2,

where
Dn = 4 + n(n + 1)a.

Note that D1 = 2|M1|, D2 = (9/2)|M2|.
Hence, by Theorem 3.4, τ is quasi-definite if and only if Dn �= 0,

n ≥ 1, i.e.,

a �= −4
n(n + 1)

, n ≥ 1.

In this case the MOPS {Qn(x)}∞n=0 relative to τ is

Q1(x) =
−1
|M1|

∣∣∣∣ P0(x) P1(x)
〈τ, P0〉 〈τ, P1〉

∣∣∣∣
= P1(x) +

4(a + 1)
3(a + 2)

P0(x),

(1 − x)Qn(x) =
−1
|Nn|

∣∣∣∣∣∣
Pn−1(x) Pn(x) Pn+1(x)
〈τ, Pn−1 〈τ, Pn〉 〈τ, Pn+1〉
Pn−1(1) Pn(1) Pn+1(1)

∣∣∣∣∣∣
= −Pn+1(x) − n + 1

(2n + 3)(2n + 1)Dn

× (an3 + 5an2 + 4(a + 1)n− 4a− 12)Pn(x)

+
n(n + 1)

(2n + 1)2Dn
(an2 + 3an + 2a + 4)Pn−1(x), n ≥ 2.
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