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To the memory of D.A. Gudkov

ABSTRACT. In this paper we obtain the isotopy classi-
fication of affine quartic curves, which contains 647 classes,
and the topological classification of pairs (R2, quartic curve),
which contains 516 classes (see Theorem 7). We also present
the isotopy classification of real projective quartic curves,
which contains 66 classes.

We prove that each of these classifications is equivalent to
the classification of all real (affine or projective) quartic curves
having only singular points, if any, of types A1, A∗

1, D4 or X9

(see Theorems 5 and 6 and Corollaries 6.1 6.4).

1. Introduction. One of the most important problems in the topol-
ogy of real algebraic curves and surfaces is the problem of their clas-
sification. Any such classification is based on an equivalence relation
for the set of varieties being considered. The quotient set with re-
spect to the equivalence relation is called a classification. There are a
number of different approaches to the subject. One can consider clas-
sification of varieties either of fixed degree or of fixed dimension or of
both. One can also consider only nonsingular varieties, or varieties with
other prescribed algebraic or topological properties. Historically, the
first and most basic approach is to classify real algebraic varieties up to
affine equivalences in Rn, respectively, projective equivalence in RPn.
Two affine (projective) varieties are called affine (projective) equivalent
provided there exists a nondegenerate affine (projective) linear trans-
formation that carries one variety to the other. The affine (projective)
linear transformation does not change the degree of a variety. Thus
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one can consider the problem of classification of varieties of fixed de-
gree. The affine (projective) classification of hyperplanes in Rn (RPn)
is trivial and consists of one class.

The affine classification of hypersurfaces of degree 2 in Rn leads to
the classification of expressions x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q + D

where D is equal to 0 or 1 or xp+q+1, up to the rank p+q and signature
p − q ≥ 0 of the quadratic form, where 1 ≤ p + q ≤ n if D = 0 or 1;
and 1 ≤ p + q ≤ n− 1 if D = xp+q+1. The number of affine classes of
such hypersurfaces is equal to n2 + 3n− 1.

The projective classification of hypersurfaces of degree 2 in RPn leads
to the classification, up to the rank p+q and signature p−q ≥ 0, of the
quadratic form x2

1 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q, where 1 ≤ p+ q ≤ n.

The number of projective classes is equal to (n2 + 4n)/4 if n is even,
and equal to (n2 + 4n− 1)/4 if n is odd.

The situation is changed for degree d ≥ 3 in all dimensions: there is
an infinite number of affine (projective) classes of the varieties. In order
to obtain a finite classification of affine (projective) varieties of a fixed
degree, one should apply a new equivalence relation to the varieties.
One natural approach is isotopy classification. Let X be Rn or RPn.
Recall that two topological subspaces T1 and T2 in X are called isotopy
equivalent if there exists a homeomorphism of X isotopic to the identity
map that carries the pair (X,T1) onto the pair (X,T2) 1.

The isotopy classification approach has been successfully applied to
nonsingular projective curves in RP 2 and nonsingular projective sur-
faces in RP 3. Isotopy classifications of nonsingular curves of degree
d ≤ 7 in RP 2 and of nonsingular surfaces of degree d ≤ 4 in RP 3 have
been obtained. For degree d ≤ 5 the isotopy classification of nonsin-
gular projective curves was known in the 19th century [32]. In 1969
Gudkov [6] (see also [7] and [30]) completed the isotopy classification
for degree 6, and in 1980 Viro [45] (see also [44]) completed the classi-
fication for d = 7. The classification of nonsingular projective surfaces
of degree d = 1 and 2 is trivial, of degree d = 3 was known in the 19th
century [40], [34], and of degree d = 4 was completed by Kharlamov
[33] in 1978. We exhibit Tables 1 and 2, which show the numbers of
isotopy classes in these classifications.



ISOTOPY CLASSIFICATION 257

TABLE 1.

Degree of curves 1 2 3 4 5 6 7
Number of isotopy classes 1 2 2 6 7 56 121

TABLE 2.

Degree of surfaces 1 2 3 4
Number of isotopy classes 1 3 5 112

Starting from this point we will consider only algebraic curves in R2

and in RP 2.

The isotopy classification of algebraic curves in R2 or in RP 2 has a
topological character. This is the reason why the isotopy classification
of algebraic curves reveals only topological properties and does not
reveal the algebraic structure of the curves. This phenomenon is
inherent especially in the case of singular curves. If a curve C1 of
degree d has a real k-fold singular point with r ≥ 1 real branches, then
this curve is isotopic to a curve C2 that has instead of the previous
k-fold singular point just an r-fold ordinary point. Or if a curve C1 of
degree d has a real k-fold singular point without real branches (isolated
point), then this curve is isotopic to a curve C2 that has instead of the
previous k-fold singular point just an ordinary double isolated point,
i.e., a point with two complex conjugate transversal branches. These
examples suggest that we consider real singular points of algebraic
curves more precisely. From a topological point of view a curve with
multiple components looks like a curve that has the same, but 1-fold
components, and therefore represents an isotopy class of curves of lesser
degree. This means that one should study curves with and without
multiple components separately.

Note that an open neighborhood U (in R2 or RP 2) of a point P
of a curve C is called regular [8] if 1) the sets U and C ∩ ClU are 1-
connected, 2) the set C∩FrU consists of a finite number of points (equal
to twice the number of real branches with center at P ), and 3) there are
no singular or inflection points of the curve C in ClU except perhaps
at P . Each point of an algebraic curve without multiple components
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has a regular neighborhood. Let P1 and P2 be points of the curves
C1 and C2, and let U1 and U2 be regular neighborhoods of P1 and P2,
respectively. The points P1 and P2 are called isotopy equivalent if the
pairs (U1, C1 ∩ U1) and (U2, C2 ∩ U2) are topologically equivalent. An
n-fold point is called an ordinary n-fold point if it has n branches, the
tangent lines of which are distinct. A point of an algebraic curve is
called a singular-simple point 1) if it is an n-fold ordinary point with
n ≥ 1 real branches, or 2) if it is an ordinary isolated double point. It
is easy to see that if r ≥ 1, then an n-fold point with r real branches
is isotopy equivalent to an r-fold singular-simple point, and if r = 0,
then an n-fold point (without real branches) is isotopy equivalent to
an ordinary isolated double point. In the latter case, n is even. In
particular, an n-fold point with 1 real branch is isotopy equivalent to
a nonsingular point. Thus, the number of real branches of a point
is an isotopy invariant; in other words, each isotopy class of points
of an algebraic curve contains points with the same number of real
branches and, in particular, contains a singular-simple point with the
same number of branches. We consider nonsingular points of a curve as
ordinary 1-fold points. A nonsingular point can be an inflection point
of a curve.

A projective algebraic curve that has only real singular-simple points
is called a singular-simple curve. In particular, a nonsingular curve is
a singular-simple curve. If each isotopy class of a given set of algebraic
curves contains a singular-simple curve, then to obtain the isotopy
classification of such curves it is sufficient to classify the singular-simple
curves.

By virtue of its topology, the set of complex points of a real algebraic
curve can contain additional information on the arrangement of the
real components. Studying the topology of the complex part has made
it possible to get new regularities and restrictions on the arrangement
of the real components. As this subject would take us too far afield,
we refer the reader to the surveys [8] and [39].

The complex singular points of a real algebraic curve appear as
pairs of complex conjugate points. Every real deformation of one of
them comes together with an analogous deformation of its complex
conjugate. Such a deformation leads to one of two possibilities: either
the deformation changes the isotopy type of the real part of the curve or
it does not. If the deformation does not change the isotopy type of any
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FIGURE 1. Isotopy and singular-isotopy classifications of projective conics
coincide.

curve from a given set of curves, then each isotopy class contains a curve
without complex singular points. Thus, to get the isotopy classification,
one can take into consideration only curves without complex singular
points. We will show that every isotopy class that contains a quartic
curve with a set of complex singular points contains a singular-simple
quartic curve.

Conjecture 1. Each isotopy class of plane projective algebraic
curves of degree d without multiple components contains a singular-
simple curve of degree d.

This conjecture is obvious for isotopy classes of projective curves of
degree 1, 2 and 3. In Figures 1 and 2 (see Remark about pictures
below) one can see the isotopy classification of projective conics and
cubic curves, respectively. We show the isotopy classification of the
conics for completeness. The isotopy classification of cubic curves is
well known and contains eight classes.

Remark about pictures. The model of the affine plane that we use
is an open disk D2 that can be obtained as an image under the
composition R2 → S2

− → D2 of the homeomorphism g : R2 → S2
−,

where S2
− = {(x, y, z) ∈ R3 | x2 + y2 + (z − 1)2 = 1, z < 1} is the open

unit hemisphere and

g(x, y) =
(

x√
x2 + y2 + 1

,
y√

x2 + y2 + 1
, 1 − 1√

x2 + y2 + 1

)

is the central projection from the center (0, 0, 1) of the hemisphere S2
−,

and the homeomorphism h : S2
− → D2, where D2 = {(x, y) ∈ R2 |
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FIGURE 2. Isotopy classification (8 classes) and singular-isotopy classification
(15 classes) of projective cubics.

x2 + y2 < 1} and h(x, y, z) = (x, y, 0) is a projection parallel to the
z-axis. The boundary ∂D2 of the disk D2 represents the line at infinity
L∞. The union D2 ∪ ∂D2 is a model of the projective plane, which
is usually called a projective disk. To visualize the affine plane it is
enough to remove the line at infinity L∞ = ∂D2 from the projective
disk. We have selected this model of the affine plane to exhibit the
behavior of a quartic curve at infinity.
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FIGURE 3 (beginning). Isotopy classification of projective quartic curves.

The isotopy classification of projective quartic curves is shown in
Figure 3. It contains 66 classes and can be easily obtained by applying
the projective version of Theorem 5(a), Shustin’s Theorem 3 and
Corollary 6.1, all from Section 2, to the union of the classification
of irreducible quartic curves due to Gudkov, Utkin and Tai [31] and
the isotopy classification of reducible quartic curves. One property



262 A.B. KORCHAGIN AND D.A. WEINBERG

FIGURE 3 (continued). Isotopy classification of projective quartic curves.

of quartic curves that our enumeration is based on is the kind of
decomposition into irreducible algebraic components. There are 11
kinds of such decompositions of projective quartic curves with respect
to the kinds of its irreducible algebraic components, where for all cases
l, c, cb and q denote a line, irreducible conic, cubic and quartic curve,
respectively:
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FIGURE 3 (conclusion). Isotopy classification of projective quartic curves.

1) four lines l1l2l3l4,

2) two lines and a conic l1l2c,

3) a line and a cubic curve lcb,

4) two conics c1c2,

5) a quartic curve q,

6) a 4-fold line l4,

7) a 1- and 3-fold line l1l32,

8) two 1-fold lines and a 2-fold line l1l2l23
9) two 2-fold lines l21l22,

10) a 2-fold line and a conic l2c, and

11) a 2-fold conic curve c2.

We make use of the topological classification of triples (RP 2, Rf ,
Sing (f)) as a kind of foundation for the isotopy classification of pro-
jective quartic curves. This turns out to be a most convenient book-
keeping device. Here Rf is the set of zeros of a polynomial f in RP 2

and 1) if f has no multiple components, then Sing (f) is the set of real
singular points of a singular-simple representative of the isotopy class
of the curve f and 2) if f has multiple components, then Sing (f) is the
set of real singular points of a polynomial that has the same algebraic
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components as f , but all to the first degree. We take into considera-
tion the topological classification of the triples because the addition of
the third member Sing (f) simplifies the enumeration of isotopy classes.
The set of isotopy classes of curves without multiple components and
with the same kind of irreducible algebraic components and with the
same set of singular-simple points is called a grade of quartic curves.
Each grade of curves without multiple components can be described by
a pair (Rf, Sing (f)). One can see that there are 32 grades of quartic
curves without multiple components (see Section 2 for an explanation
of the notation for singular points):

The 1st grade (R(l1l2l3l4), {X9}).

The 2nd grade (R(l1l2l3l4), {D4, 3A1}).

The 3rd grade (R(l1l2l3l4), {6A1}).

The 4th grade (R(l1l2l3l4), {A1, A
∗
1}).

The 5th grade (R(l1l2l3l4), {2A∗
1}).

The 6th grade (R(l1l2l3l4), {4A∗
1}).

The 7th grade (R(l1l2c), {D4, 2A1}).

The 8th grade (R(l1l2c), {5A1}).

The 9th grade (R(l1l2c), {3A1}).

The 10th grade (R(l1l2c), {A1}).

The 11th grade (R(l1l2c), {A∗
1}).

The 12th grade (R(c1c2), {4A1}).

The 13th grade (R(c1c2), {2A1}).

The 14th grade (R(c1c2),∅).

The 15th grade (R(lcb), {D4, A1}).

The 16th grade (R(lcb), {4A1}).

The 17th grade (R(lcb), {3A1}).

The 18th grade (R(lcb), {2A1}).

The 19th grade (R(lcb), {A1}).

The 20th grade (R(lcb), {3A1, A
∗
1}).

The 21st grade (R(lcb), {A1, A
∗
1}).
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The 22nd grade (Rq, {D4}).

The 23rd grade (Rq, {3A1}).

The 24th grade (Rq, {2A1}).

The 25th grade (Rq, {A1}).

The 26th grade (Rq,∅).

The 27th grade (Rq, {2A1, A
∗
1}).

The 28th grade (Rq, {A1, A
∗
1}).

The 29th grade (Rq, {A∗
1}).

The 30th grade (Rq, {A1, 2A∗
1}).

The 31st grade (Rq, {2A∗
1}).

The 32nd grade (Rq, {3A∗
1}).

For completeness we consider the 12 grades of projective quartic
curves with multiple algebraic components. Each grade of curves with
multiple components can be described by a pair (Rf, Sing (g)), where
g is the product of all the distinct irreducible algebraic components
of f .

The 33rd grade (R(l4), Sing (l) = ∅).

The 34th grade (R(l1l32), Sing (l1l2) = {A1}).

The 35th grade (R(l21l
2
2), Sing (l1l2) = {A1}).

The 36th grade (R(l21l22), Sing (l1l2) = {A∗
1}).

The 37th grade (R(l1l2l23), Sing (l1l2l3) = {D4}).

The 38th grade (R(l1l2l23), Sing (l1l2l3) = {D∗
4}).

The 39th grade (R(l1l2l23), Sing (l1l2l3) = {3A1}).

The 40th grade (R(l1l2l23), Sing (l1l2l3) = {A∗
1}).

The 41st grade (R(l2c), Sing (lc) = {2A1}).

The 42nd grade (R(l2c), Sing (lc) = {A3}).

The 43rd grade (R(l2c), Sing (lc) = {∅}).

The 44th grade (R(c2, Sing (c) = ∅)).

An affine curve is the restriction of a projective curve to R2 =
RP 2 \L∞, where L∞ is the line at infinity. We say that the affine and
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FIGURE 4. Isotopy classification of affine conics: 6 classes.

projective curves correspond to each other. The isotopy classification of
affine algebraic curves in R2 has some distinctive features in comparison
with the isotopy classification of projective curves in RP 2. The
distinctive features are related to the behavior of affine curves at
infinity, namely, with the fact that an affine curve can have singular
points at infinity.2 If a projective curve has a nonsingular point on the
line L∞, which is not an inflection point, then either L∞ is not a tangent
line to the projective curve or it is. In the first case a tangent line to the
projective curve at the point of intersection with L∞ corresponds to an
asymptote of the affine curve. The point of intersection of the curve
and the line L∞ in this case is called a point of simple intersection.
The asymptote is real if the point of simple intersection is real, and is
complex otherwise. In the second case the corresponding affine curve
has two parabolic branches that look asymptotically like two common
branches of a standard parabola. The point of quadratic tangency
of the curve and the line L∞ in this case is called a point of simple
tangency. These branches are real if the point of simple tangency
is real, and are complex otherwise. If a projective curve has points
of simple intersection or points of simple tangency with the line L∞,
then such an intersection of the curve and the line L∞ is called quasi-
simple. If a projective curve is singular-simple and has quasi-simple
intersection with the line L∞, then the corresponding affine curve is
called an (affine) singular-simple curve.

Conjecture 2. Each isotopy class of plane affine algebraic curves of
degree d without multiple components contains a singular-simple curve
of degree d.

This conjecture is obvious for isotopy classes of curves of degrees
1, 2 and 3. In Figures 4 and 5 one can see the isotopy classification
of affine conics and cubics. The isotopy classification of the conics is
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FIGURE 5. Isotopy classification of affine cubic curves.
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trivial and contains 6 isotopy classes. We show it for completeness.
The isotopy classification of affine cubic curves contains 21 classes. It
was described for the first time by Weinberg [47]. He obtained this
isotopy classification by means of simple algebraic manipulations of
the general cubic equation. But it can also be obtained from Newton’s
classification of irreducible cubic curves [38], which contains 78 species,
together with a consideration of reducible cubic curves.

To take into account the algebraic behavior of a curve at singular
points, we formulate the following definition.

Two projective curves C1 and C2 are called singular-isotopy equiv-
alent if 1) they are isotopy equivalent and 2) the isotopy connecting
C1 and C2 preserves their singularlities.3

The singular-isotopy classification of curves of degrees 2 and 3 con-
tains a finite number of classes, because the curves have only zero-modal
singular points. The singular-isotopy classification of curves of degree 4
has an infinite number of classes: there are a finite number of classes
of curves with zero-modal singular points, and there are three families
of curves with unimodal singular points of types X9, X

∗
0 , and X∗∗

9 (see
the notation in Section 2). Applying the previous definition to curves
of degree 4, we make use of the following convention. In this paper we
consider the three families of curves with unimodal singular points of
types X9, X

∗
9 and X∗∗

9 as three distinct “singular-isotopy” classes.

It is clear that isotopy equivalence follows from singular isotopy equiv-
alence, and that isotopy and singular-isotopy classifications of non-
singular curves coincide. In this sense the singular-isotopy classifica-
tion is situated between the affine and isotopy classifications. The
singular-isotopy classification of plane projective curves of degree 3 is
well known, contains 15 classes and probably was described for the first
time in [29].4 In [31] it was mentioned that the singular-isotopy clas-
sification of projective irreducible conics contains 2 classes (real and
imaginary ellipses), and that the singular-isotopy classification of pro-
jective irreducible cubic curves contains 5 classes (Figure 21 in [31]).
This singular-isotopy classification of projective irreducible cubic curves
was described by Newton [38]. The singular-isotopy classification of
irreducible projective quartic curves without complex singular points
contains 99 classes [31], but the isotopy classification of the same curves
contains 42 classes (Figure 3). A more detailed classification of irre-
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ducible projective quartic curves that takes into account complex singu-
lar points, contains 117 classes (the additional 18 classes of irreducible
quartic curves with complex conjugate singular points were studied
in [24], [25]. As is shown in [29], the singular-isotopy classification
of reducible projective quartic curves contains 95 classes.5 Thus, the
singular-isotopy classification of all projective quartic curves consists
of 212 classes.

Gudkov and his students obtained the so-called classification of forms
of irreducible projective quartic curves. Following Gudkov, we call
a nonsingular point of a curve an n-flat point if the intersection
multiplicity of the tangent line and the curve at this point is equal
to n. For n = 2, this is an ordinary point of the curve having quadratic
tangency with the tangent line. For n = 3, this is an ordinary point of
inflection. For n = 4, this is a planar point, etc. Two projective curves
C1 and C2 are said to have the same form if they are 1) singular-isotopy
equivalent and 2) the isotopy connecting C1 and C2 preserves their n-
flat points for all n ≥ 2. (Gudkov [8] gave another definition of the
equivalence of the forms, equivalent to our definition.) It is clear that
singular-isotopy equivalence follows from equivalence of forms, and that
the classification of forms is situated between the affine and singular-
isotopy classifications. The idea and spirit of this research is due to
Gudkov. This research was done in 1981 1990 and naturally falls into
three big parts.

First [16], [17], [18] [24], they regarded the arrangement of the real
inflection points of an irreducible quartic curve when the inflection
points are in general position, i.e., these points do not coincide with
each other (no planar points) and do not coincide with singular points
(no inflection points at a center of a real branch at a singular point
of the curve). Later [10] [14], Gudkov called the forms of such curves
coarse (or rough) forms. They proves that the 117 singular-isotopy
classes of irreducible quartic curves with inflection points in general
position have 384 coarse forms6 (= 349 forms with only real singular
points +35 forms with complex ones [26]). According to Gudkov’s
remark [8], Zeuthen [48] constructed all 42 existing coarse forms of
nonsingular quartic curves but didn’t prove that one of the admissible
curves cannot be realized by a quartic curve. A topological curve T
is called admissible for degree d if for any algebraic curve f of degree
n = 1 or 2 the set Rf ∩ T consists of no more than nd points7 and
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the number of components of the curve T formally satisfies Harnack’s
theorem for degree d. In this sense one says that the topological curve
T satisfies Bezout’s theorem with respect to intersection with a line or a
conic and satisfies Harnack’s theorem. The isotopy class that contains
an admissible curve T for degree d is called an admissible class (for the
degree d). The complete classification of coarse forms of nonsingular
quartic curves was given in [18], [16], [18] [20].

Second, Gudkov [10] [14], [26] completed the classification of the so-
called special forms of irreducible quartic curves. This involves the case
when the inflection points of a quartic curve are not in general position,
i.e., either 1) two inflection points coincide by forming a planar point,
or 2) one real branch of an ordinary double point has an inflection
point at its center, or 3) each of two real branches at an ordinary
double point has an inflection point at its center. This classification
of special forms of irreducible quartic curves contains 653 classes. As
an auxiliary result of his method, Gudkov rederived the classification
of coarse forms. Thus, the total number of all forms of irreducible
projective quartic curves is 1037 forms (= 653 special +349 coarse +35
forms with complex singular points).

To extend the classification of forms to the case of reducible projective
quartic curves, one should adopt the definition (Number 2 in [9]) for
both coarse and special forms of reducible quartic curves. The singular-
isotopy classification of plane reducible projective quartic curves con-
tains 95 classes [29], each of which represents only one coarse form.
Thus, the number of coarse forms of reducible quartic curves is equal
to 95. Notice that reducible quartic curves that consist of either 4 lines,
or 2 lines and a conic, or 2 conics, don’t have inflection points at all
and so can’t represent any special forms. To obtain the missing clas-
sification of special forms of reducible quartic curves, it is sufficient to
consider only the reducible quartic curves that consist of a line and a
cubic curve that has inflection points at points of intersection with the
line. It is not difficult to check that there are 26 such special forms
of reducible quartic curves. Now one can see that the classification of
coarse and special forms of irreducible and reducible projective quartic
curves contains 1158 distinct forms (= 1037 + 95 + 26).

By the same method, Gudkov also obtained the classification of
mutual arrangements of coarse and special forms of quartic curves with
so-called singular lines A real line is called a singular line with respect to
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a quartic curve or simply a singular line if either 1) the line is tangent to
the quartic curve at two distinct real points lying on the same complete
real branch of the quartic curve (double tangent line), or 2) the line
is tangent to the quartic curve at two complex points (double isolated
tangent line), or 3) the line is tangent to the quartic curve at a planar
point, or 4) the line is tangent to a real quadratic branch at a singular
point, or 5) the line is tangent to a real cubic branch at a singular point,
or 6) the line passes through two singular points of the quartic curve, or
7) the line is a double tangent at a singular point of the quartic curve.

The classification of these forms is based on applying the Klein-Viro
formula [45], [36] and Shustin’s inequality [41]. The Klein-Viro formula
together with the famous formulas of Plücker allow one to calculate
the possible numbers of inflection points and double tangent lines of a
quartic curve with a fixed set of singular points. Gudkov realized the
tremendous value of the Klein-Viro formula together with Plücker’s for-
mulas for vastly simplifying the enumeration of the admissible classes8

for these forms of projective quartic curves. The set of admissible
classes consists of isotopy classes that contain projective quartic curves
and classes that do not. Gudkov studied both cases. Shustin’s inequal-
ity describes the condition that allows one to perturb independently the
singular points of an irreducible algebraic curve. Gudkov used Shus-
tin’s inequality for the construction of quartic curves. Without this
inequality, the construction would be much more complicated.

And third, Gudkov and Polotovskĭı [27] [29] proved that the set of
projective quartic curves of the same singular-isotopy class represents
one stratum (connected component) in the space RP 14 of all quartic
curves, both irreducible and reducible. We already calculate that
the number of such strata is 212. They proved the same statements
for conics and cubics [29]. There are 5 and 15 strata of them,
respectively. According to Rokhlin’s remark [39, item 4.1], the fact
that each singular-isotopy class of projective nonsingular quartic curves
represents one stratum was known to Klein [35, p. 112]. Rokhlin
found an example of two projective nonsingular curves of degree 5 that
represent the same isotopy class, but belong to distinct strata in the
space of curves of degree 5, (see [39, item 3]).

The works of Gudkov and his students on real projective quartic
curves represent an important step and significant contribution to the
classical theory of real algebraic curves. Gudkov and his mathemat-
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ical school exerted a powerful influence on research in real algebraic
geometry in general.

The subject of affine quartic curves was considered by many math-
ematicians. Ball [2] indicated that Waring applied the Newtonian
method to classify affine quartic curves, indicated 12 characteristic
forms of quartic equations and showed that the classification of affine
quartic curves, treated in this way, contains no more than 84551 species;
Cramer divided quartic curves into 9 classes but did not continue the
subdivision into genera and species; Euler divided them into 8 classes
and 146 genera; and Salmon gave ten classes.

Bruce and Giblin [5] gave a complete isotopy classification of complex
projective quartic curves.

The main results of our paper are the isotopy classification of affine
quartic curves which contains 647 classes, and the topological classifi-
cation of pairs (R2, quartic curve) which contains 516 classes. There
are at least two ways to obtain these two classifications. The first way
goes as follows: one can

1) take all projective quartic curves that are provided by the Gudkov
classification of coarse forms,

2) consider all unions of these curves with transversal and non-
transversal lines,

3) designate these lines as lines at infinity, obtaining in each case an
affine quartic curve,

4) apply the notion of isotopy equivalence to the resulting set of affine
quartic curves, thus obtaining the required isotopy classification.

Our calculation shows that in this way one must compare about 9000
pictures of affine quartic curves.9 We select the second way: in Section 2
we prove Conjecture 2 for degree 4, which establishes that it is sufficient
to consider only singular-simple affine quartic curves. In Section 3, first
we describe the most efficient way of enumerating the affine admissible
isotopy classes of quartic curves; second, we produce a kind of recursive
method of construction of representatives of the affine isotopy classes;
and third, in Lemma 8 we prove that some of the admissible classes
have no quartic representatives.

Notice that after one proves Conjecture 1 for degree 4, there arises
a third way that is a combination of the two previous ones. Having
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proved Conjecture 1 for degree 4, one can reduce to the consideration
of unions of the line L∞ with projective quartic curves that are provided
by the Gudkov classification of coarse forms, to unions that satisfy the
following two additional properties: 1) the unions have arbitrary types
of points of intersection of the quartic curve with the line L∞, and
2) the unions have singular-simple points in RP 2 \L∞. The third way
is simpler than the first one, but still more complicated than the second
one.

The isotopy classification presented in this paper can be regarded as
a first step toward obtaining the singular-isotopy classification of affine
quartic curves.

2. Singular points of affine quartic curves and of some re-
ducible projective quintic curves. A homogeneous real polynomial
of degree d in three variables considered up to a constant factor is called
a real plane projective algebraic curve of degree d, or simply a curve. If
F (x, y, z) is such a polynomial, then the set RF = {x ∈ RP 2 | F = 0}
is called the set of real points of the projective curve. We follow the
classic tradition and call this set a projective curve when it does not
lead to confusion. If z = 0 is the equation of the line at infinity, then
the polynomial f(x, y) ≡ F (x, y, 1) considered up to a constant fac-
tor is called a real plane affine algebraic curve of degree d − k, where
k is the multiplicity of the factor z in the polynomial F . The set
Rf = {x ∈ R2 | f = 0} is called the set of real points of the affine
curve. We follow the same tradition and call this set an affine curve
when it does not lead to confusion. The curves RF and Rf are said
to correspond to each other.

The main aim of this section is to prove Theorem 6, which coincides
with Conjecture 2 for quartic curves. Our proof of this conjecture is
based on the following theorem of Shustin, which allows us to deform
singular points of a curve independently.

Theorem 3 [42]. Let a (real) curve F have singular points z1, . . . , zs

with Milnor numbers µ(z1), . . . , µ(zs), respectively. If the (real) curve
F satisfies the inequality

µ(z1) + · · · + µ(zs) ≤ 4d− 5,

then there exists a family Ft ∈ CPn in the space CPn, n = d(d+ 3)/2
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of all complex curves of degree d, t ∈ [0, 1], with F0 = F , that provides
a (real) deformation of the singular points z1, . . . , zs that is equivalent
to any possible prescribed (real) deformation of these singular points.

To reach our aim we consider all quintic curves that decompose into
a line and a projective quartic curve. We select this line as the line at
infinity and enumerate all prescribed deformations of singular points of
the quartic component of the quintic curve. After that we enumerate
all sets of singular points of these quintic curves and show that these
sets, with one exception, satisfy inequality (1). The exceptional case is
treated separately.

It is known [31], [16], [17] that irreducible quartic curves can have
only the following singular points:

A1, A
∗
1, A2, A3, A

∗
3, A4, A5, A

∗
5, A6, D4, D

∗
4 , D5, E6, 2Ai

1, 2Ai
2.

It is also known [29] that reducible quartic curves can have only the
following singular points:

A1, A
∗
1, A2, A3, A

∗
3, A5, A

∗
5, A7, A

∗
7,

D4, D
∗
4 , D5, D6, E7, X9, X

∗
9 , X

∗∗
9 , 2Ai

1, 2Ai
3.

The names of these singular points follow Arnold’s notation for
singularities [1] and Gudkov’s special convention [8]: 1) if there is no
asterisk in the notation of a point, then the point is real and all branches
centered in it are real, 2) if there is one asterisk, then the point is real
and two branches centered in this point are complex conjugate, 3) if
there is an upper index i, then the point is complex, 4) an integer
factor before a letter denotes the number of such points, 5) X9, X

∗
9 and

X∗∗
9 are ordinary 4-fold points with four real branches, with two real

and two complex branches, and with two pairs of complex conjugate
branches, respectively.

Affine quartic curves have the same singular points and the same sets
of singular points as projective curves. The difference from projective
quartic curves, as we already mentioned in the Introduction, is in the
fact that affine quartic curves can have singular points at infinity. Our
primary aim now is to prove Conjecture 2 for affine quartic curves.
We prove that for any affine quartic curve Rf , there exists an isotopy
equivalent singular-simple affine quartic curve Rf0. We obtain the
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FIGURE 6.1.

curve Rf0 by deformation of singular points of the curve Rf such
that all singular points of Rf in R2 become singular-simple points of
the curve Rf0 and the intersection of the projective quartic curve RF
with the line at infinity L∞ becomes a quasi-simple intersection of the
projective quartic curve RF0 with L∞.

The prescribed deformations of real singular points in R2 and of
complex singular points in C2 \R2 that we apply are listed in Figures
6.1 6.4. The singular points A2, A4, A6, D

∗
4 and E6 are smoothed to

the singular-simple point A0. The singular points A3, A5, A7, D5, E7

and X∗
9 are deformed to the singular-simple point A1. The singular

point D6 is deformed to D4. The singular points A∗
3, A

∗
5, A

∗
7 and X∗∗

9

are deformed to the singular-simple point A∗
1. The complex singular

points of a real quartic curve appear in C2 \R2 as complex conjugate
pairs 2Ai

1, 2Ai
2 and 2Ai

3 and are smoothed to the nonsingular complex
point Ai

0. We do not deform the singular points A1, D4, X9 and A∗
1

since they are already singular-simple.

The prescribed deformations of singular points at infinity are listed
in Figures 7.1 7.9. We add to Gudkov’s convention a new one: A−1

means that a real point on the line at infinity does not belong to the
quartic curve; A1

0(Ai,1
0 ) means a 1-fold real (complex) point of the curve

FIGURE 6.2.
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FIGURE 6.3.

that has a 1-fold intersection with the line at infinity; A2
0(Ai,2

0 ) means
a 1-fold real (complex) point of the curve that has a 2-fold intersection
with the line at infinity, i.e., of quadratic tangency; A3

0 means a 1-
fold real point of the curve that has a 3-fold intersection with the
line at infinity, i.e., tangency at an inflection point; A4

0 means a 1-
fold real point of the curve that has a 4-fold intersection with the
line at infinity, i.e., tangency at a planar point. In each picture the
horizontal line represents the line at infinity. The double codes under
the pictures mean, first, the type of the singular point of the quartic
curve, and second, in parentheses, the type of the singular point of the
union of the quartic curve and the line at infinity. The arrangement
of a singular point at infinity can vary: the line at infinity can be a
tangent line to some branches of the projective quartic curve at the
(singular) point or not. The arrow in each string indicates the result
of deforming the (singular) points in the string. We don’t indicate
the complex points of simple intersection of the quartic curve and the
line at infinity that can arise under deformation of real points in their
small complex neighborhoods. The sets of complex singular points
{2Ai,2

0 }({2Ai
3}), {2Ai

1}({2Di
4}), {2Ai

2}({2Di
5}) and {2Ai

3}({2Di
6}) are

deformed to {4Ai,1
0 }({4Ai

1}).

FIGURE 6.4. X = A∗
3, A∗

5, A∗
7, X∗∗

9 from (a.16), (a.13), (a.14), (a.15) of

Theorem 5, respectively.
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FIGURE 7.1. X(A) = A∗
1(D

∗
4), A∗

3(D
∗
6), A∗

3(J
∗
10), A∗

5(D
∗
8), A∗

5(J
∗
12), A∗

7(D
∗
10),

A∗
7(J

∗
14), X∗∗

9 (N∗∗
16 ) from (b.1) (b.8) of Theorem 5, respectively.

In some cases of Theorem 5 we apply conditions when a quartic curve
has singular points of the types Aµ, µ = 4, 5, 6. These conditions follow
from our Lemma 4. To prove this lemma we consider some special
summations of monomials in the polynomial that represents a given
curve.

FIGURE 7.2.

FIGURE 7.3.
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FIGURE 7.4.

Let
f(x, y) =

∑
i+j≤n

fijx
iyj

be a polynomial of a given curve. The set supp (f) = {(i, j) ∈ Z2 |
fi,j �= 0} is called a carrier set for the curve f . The natural embedding
Z2 → R2 allows us to consider the carrier set as a subset of R2. The
plane R2 with coordinates (i, j) is called the carrier plane. The convex
hull of supp (f) in R2 is called Newton’s polygon of the curve f and is
denoted N(f). Thus we can write

f(x, y) =
∑

(i,j)∈N(f)

fijx
iyj .

Let Γ ⊂ R2 be a subset. The polynomial

fΓ(x, y) =
∑

(i,j)∈N(f)∩Γ

fijx
iyj

is called the restriction of the polynomial f to Γ. For each fixed
integer r ≥ 1 let Lr = {lpqr}p=0,1,... ;q=0,1,... ,r−1 be a family of parallel
lines in the carrier plane, where lpqr(i, j) = i + rj − rp − q. The
union of all lines of the family Lr = {lpqr} contains the carrier set
of a given curve, and the carrier set of the curve intersects a finite
set of the lines of the family. It is easy to check that if we denote
Γpqr = Rlpqr∩supp (f), then fΓpqr (x, y) = xqUpq(xr, y) where Upq(x, y)
is a homogeneous polynomial of degree p. Thus the polynomial f(x, y)
can be written in the form∑

p

∑
q

xqUpq(xr, y).
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FIGURE 7.5.

This sum runs over the homogeneous polynomials Upq(xr, y), the mono-
mials of which correspond to the points of supp (f) lying on the lines
lpqr, respectively. The sum starts from the line i+rj and runs over the
lines in the direction of their common normal vector (1, r).

Lemma 4. Let a curve be represented by the polynomial f(x, y) =
U2,0(xn, y) + xU2,1(xn, y) + x2U2,2(xn, y) + · · · + xn−1U2,n−1(xn, y) +
U3,0(xn, y) + · · · of degree d ≥ 2n, where n ≥ 1. Then

1) if the polynomial U2,0(x, y) has two distinct roots (i.e., the dis-
criminant ∆ of U2,0(x, y) is not equal to zero), then the curve f has
a singular point of the type A2n−1 at the origin when ∆ > 0, and a
singular point of the type A∗

2n−1 at the origin when ∆ < 0;

FIGURE 7.6.

FIGURE 7.7.
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FIGURE 7.8.

2) if the polynomial U2,0(x, y) has a double root (α : β), U2,0(0, 1) �= 0
and U2,1(α, β) �= 0, then the curve f has a singular point of the type
A2n at the origin;

3) if the polynomial U2,0(x, y) has a double root (α : β), U2,0(0, 1) �= 0,
U2,1(α, β) = 0, and the polynomial f(x, y + βxn/α) = V2,0(xn+1, y) +
xV2,1(xn+1, y)+x2V2,2(xn+1, y)+· · ·+xnV2,n−1(xn+1, y)+U3,0(xn+1, y)+
· · · is such that the homogeneous polynomial V2,0(x, y) has two distinct
roots (i.e., the discriminant ∆ of V2,0(x, y) is not equal to zero), then
the curve f(x, y) has a singular point of the type A2n+1 at the origin
when ∆ > 0, and a singular point of the type A∗

2n+1 at the origin when
∆ < 0.

Proof. 1) The statement of this item is obvious.

2) The condition U2,0(0, 1) �= 0 implies α �= 0. The transforma-
tion (x, y) �→ (x, y − βxn/α) is a diffeomorphism of the real plane and
preserves the Milnor number of any singular point. This diffeomor-
phism transforms the curve f(x, y) to the curve f(x, y + βxn/α) =
U2,0(xn, y+ βxn/α) + xU2,1(xn, y+ βxn/α) + x2U2,2(xn, y+ βxn/α) +
· · · + xn−1U2,n−1(xn, y + βxn/α) + U3,0(xn, y + βxn/α) + · · · , where
U2,0(xn, βxn/α) = x2nU2,0(α, β)/α2 = 0, and if xU2,1(xn, βxn/α) =
x2n+1U2,1(α, β)/α2 �= 0, then the monomial x2n+1U2,1(α, β)/α2 deter-

FIGURE 7.9.
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mines a singular point of type A2n of the curve f(x, y + βxn/α) and
thus of the curve f(x, y) at the origin.

3) If U2,1(α, β) = 0, then f(x, y + βxn/α) = V2,0(xn+1, y) +
xV2,1(xn+1, y)+x2V2,2(xn+1, y)+· · ·+xnV2,n(xn+1, y)+V3,0(xn+1, y)+
· · · , and the statement of this item becomes obvious.

Theorem 5. (a) For any affine quartic curve q = q(x, y) with a
singular point X belonging to the set

{A2, A3, A
∗
3, A4, A5, A

∗
5, A6, A7, A

∗
7,

D∗
4 , D5, D6, E6, E7, X

∗
9 , X

∗∗
9 , 2Ai

1, 2Ai
2, 2Ai

3},

there exists a continuous family qt(x, y), t ∈ (0, τ ], of quartic curves
with q0 = q such that for any t ∈ (0, τ ] the curve qt(x, y) has a singular-
simple point Y isotopic to X and having the same coordinates as X.

(b) For any projective quartic curve Q(x, y, z) with a singular point
X lying on the line at infinity L∞ and belonging to the set

{A1, A
∗
1, A2, A3, A

∗
3, A4, A5, A

∗
5, A6, A7, A

∗
7,

D4, D
∗
4 , D5, D6, E6, E7, X9, X

∗
9 , X

∗∗
9 , 2Ai

1, 2Ai
2, 2Ai

3},

there exists a continuous family Qt(x, y, z), t ∈ (0, τ ], τ > 0, of quartic
curves with Q0 = Q, and there exists a neighborhood U of the singular
point X such that, for any t ∈ (0, τ ], 1) any curve Qt(x, y, z) has,
in U , a quasi-simple intersection with the line L∞, and 2) the curve
RQt ∩ (U \ L∞) is isotopic to RQ0 ∩ (U \ L∞) in U \ L∞.

Proof. (a) Let the affine quartic curve q = q(x, y) have a real
singular point X and let the affine coordinate system be chosen such
that the singular point X is placed at the origin. In each of the
following cases (a.1) (a.16) we exhibit a family qt(x, y), t ∈ (0, τ ]
of quartic curves with q0 = q that realizes the required isotopy of
singular points. Neighborhoods of the real singular points are depicted
in Figures 6.1 6.4.

(a.1) Deformation that carries singular point A2 to A0 (A2 → A0).
The quartic curve can be written as q = y2 − ax3 + r(x, y) where 0 < a
and r(x, y) is the sum of monomials that correspond to the points lying
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above the line 3y+2x−6 = 0 in Newton’s polygon of q. Then, according
to Bertini’s theorem [3] (see also [4]), there exists τ > 0 such that for
any t ∈ (0, τ ], the family qt(x, y) = t(y − x) + q, where q0 = q realizes
the required deformation.

The following cases (a.2) (a.19) are analogous to the case (a.1) and
can be read in the same manner.

(a.2) A4 → A0; q = (y−ax2)2+bxy2+cx3y+dy3+ex2y2+fxy3+gy4,
where 0 < a, ab + c �= 0, see Lemma 4; qt = t(y − x) + q.

(a.3) A6 → A0; q = (y−ax2)2+bxy2+cx3y+dy3+ex2y2+fxy3+gy4,
where 0 < a, ab+c = 0, b2−4(ad+e) = 0, and ab3−2b2(3a2d+e)+a2f �=
0 (see Lemma 4); qt = t(y − x) + q.

(a.4) D∗
4 → A0; q = y(y2 + ax2) + r, where 0 < a, r is the

sum of monomials that correspond to the points lying above the line
y+x−3 = 0 in Newton’s polygon of q, and the greatest common factor
of the polynomials y(y2 + ax2) and r is a constant; qt = t(y + bx) + q,
where b �= 0.

(a.5) E6 → A0; q = y3 − ax4 + r, where a < 0, r is the sum of
monomials that correspond to the points lying above the line 4y+3x−
12 = 0 in Newton’s polygon of q; qt = t(y + bx) + q, and b �= 0.

(a.6) A3 → A1; q = (y− ax2)(y− bx2) + r, where ab �= 0 and r is the
sum of monomials that correspond to the points lying above the line
2y + x− 4 = 0 in Newton’s polygon of q; qt = −tx2 + q.

(a.7) A5 → A1; q = (y−ax2)2+bxy2+cx3y+dy3+ex2y2+fxy3+gy4,
where a < 0, ab + c = 0 and b2 − 4(ad + e) > 0 (see Lemma 4);
qt = −tx2 + q.

(a.8) A7 → A1; q = [y − ax2 + r]2 − dy4, where a < 0, r = bxy + cy2

and 0 < d; qt = −tx2 + q.

(a.9) D5 → A1; q = ay3 − xy2 + bx3 + r, where a < 0, 0 < b, r is the
sum of monomials that correspond to the points lying above the line
4y + 3x− 12 = 0 in Newton’s polygon of q; qt = −t(c2y2 − x2) + q and
a < c.

(a.10) E7 → A1; q = y3 − ax3y + r, where a < 0 and r is the
sum of monomials that correspond to the points lying above the line
3y + 2x− 9 = 0 in Newton’s polygon of q; qt = −txy + q.

(a.11) X∗
9 → A1; q = (y2 − x2)(y2 + axy + bx2), where a2 − 4b < 0;
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qt = t(y2 − 2x2) + q.

(a.12) D6 → D4; q = xy2 − ay4 + bxy3 + cx2y2 − dx3y, where a < 0,
d > 0; qt = tx(y2 − x2) + q.

(a.13) A∗
3 → A∗

1; q = y2 + ax2y + bx4 + r, where a2 − 4b < 0, r is the
sum of monomials that correspond to the points lying above the line
2y + x− 4 = 0 in Newton’s polygon of q; qt = tx2 + q.

(a.14) A∗
5 → A∗

1; q = (y−ax2)2+bxy2+cx3y+dy3+ex2y2+fxy3+gy4,
where a < 0, ab + c = 0 and b2 − 4(ad + e) < 0 (see Lemma 4);
qt = tx2 + q.

(a.15) A∗
7 → A∗

1; q = [y− ax2 + r]2 + dy4, where a < 0, r = bxy+ cy2

and d > 0; qt = tx2 + q.

(a.16) X∗∗
9 → A∗

1; q = (y2 + x2)(y2 + axy + bx2), where a2 − 4b < 0;
qt = t(y2 + cx2) + q where 0 < c.

In the cases (a.17) (a.19), we choose the affine coordinate system
such that complex point pairs {2Ai

1}, {2Ai
2} and {2Ai

3} are placed at
the points (

√−1, 0) and (−√−1, 0). We smooth these pairs and {4Ai
0}

means four points of simple intersection of qt and the axis y = 0.

(a.17) {2Ai
1} → {4Ai

0}; q = (x2 + 1)2 + (x2 + 1)(ax+ b)y + r(x)y2 +
s, where a and b are integers, the greatest common factor of the
polynomials r(x) of degree 2 and x2 + 1 is a constant, and s is the
sum of the monomials that correspond to the points lying above the
line y−2 = 0 in Newton’s polygon of the quartic curve q; qt = −t2 + q.

(a.18) {2Ai
2} → {4Ai

0}; q = (x2 + 1)2 + a(x2 + 1)y2 + r, where a is
an integer and r is the sum of the monomials that correspond to the
points lying in Newton’s polygon of the quartic curve above the line
y − 2 = 0; qt = −t2 + q.

(a.19) {2Ai
3} → {4Ai

0}; q = (x2 + 1)2 + a(x2 + 1)y2 + by4, where a
and b are integers; qt = −t2 + q.

(b) Let the projective quartic curve Q(x, y, z) have a real singular
point X and let the affine coordinate system (x, y) be chosen such
that 1) the line at infinity L∞ is {y = 0}, 2) q = q(x, y) is the affine
curve that corresponds to the projective curve Q(x, y, z), and 3) the
singular point X of the quartic curve is placed at the origin (0, 0). In
each of the following cases (b.1) (b.41) we preserve the line at infinity
as a component of a quintic curve and exhibit deformations of the
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quartic components. We use a double notation for singular points.
For example, the notation A∗

1(D∗
4) means that the quartic curve q

has a singular point A∗
1 and the quintic curve yq has a singular point

D∗
4 , both at the origin. The proofs of the following cases (b.1) (b.42)

are analogous to each other and can be read in the same manner as
item (a.1). In all items we consider families qt of quartic curves with
t ∈ (0, τ ] and q0 = q. The neighborhood U can be chosen as a regular
neighborhood of the singular point X of the curve q. Neighborhoods
of the real singular points are depicted in Figures 7.1 7.9.

(b.1) A∗
1(D∗

4) → A−1(A0); q = y2 + ax2 + r = 0, where a < 0 and r
is the sum of monomials that correspond to the points lying above the
line y + x− 2 = 0 in Newton’s polygon of the quartic curve; qt = t+ q.

(b.2) A∗
3(D∗

6) → A−1(A0); q = y4 +axy2 + bx2 + r, where a2 −4b < 0
and r is the sum of monomials that correspond to the points lying
above the line y+ 2x− 4 = 0 in Newton’s polygon of the quartic curve
q; qt = t+ q.

(b.3) A∗
3(J∗

10) → A−1(A0); q = y2 +ax4 + r, where a < 0 and r is the
sum of monomials that correspond to the points lying above the line
2y + x− 4 = 0 in Newton’s polygon of the quartic curve q; qt = t+ q.

(b.4) A∗
5(D∗

8) → A−1(A0); q = (x − ay2)2 + byx2 + cy3x + dx3 +
ex2y2 + fyx3 + gx4, where a < 0, ab + c = 0 and b2 − 4(ad + e) < 0
(see Lemma 4); qt = t + q.

(b.5) A∗
5(J∗

12) → A−1(A0); q = (y − ax2)2 + bxy2 + cx3y + dy3 +
ex2y2 + fxy3 + gy4, where a < 0, ab + c = 0 and b2 − 4(ad + e) < 0
(see Lemma 4); qt = t + q.

(b.6) A∗
7(D∗

10) → A−1(A0); q = [x − ay2 + r]2 + dx4, where a < 0,
r = bxy + cx2, d > 0; qt = t + q.

(b.7) A∗
7(J∗

14) → A−1(A0); q = [y − ax2 + r]2 + dy4, where a < 0,
r = bxy + cy2, d > 0; qt = t + q.

(b.8) X∗∗
9 (N∗∗

16 ) → A−1(A0); q = (y2 + x2)(y2 + a2x2); qt = t + q.

(b.9) A3
0(A5) → A1

0(A1); q = y + ax3 + r, where r is the sum of
monomials that correspond to the points lying above the line 3y + x−
3 = 0 in Newton’s polygon of the quartic curve q; qt = tx + q.

(b.10) A2(E7) → A1
0(A1); q = y2 − ax3 + r, where a < 0, r is the

sum of monomials that correspond to the points lying above the line
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3y+2x−6 = 0 in Newton’s polygon of the quartic curve q; qt = −tx+q.

(b.11) D∗
4(X∗

9 ) → A1
0(A1); q = x(y2+axy+bx2)+r, where a2−4b < 0,

r is the sum of monomials that correspond to the points lying above
the line 14y + 10x − 35 = 0 in Newton’s polygon of the quartic curve
q; qt = t(x+ ay2) + q.

(b.12) E6(X11) → A1
0(A1); q = y4 − x3 + r, where r is the sum of

monomials that correspond to the points lying above the line 3y+4x−
12 = 0 in Newton’s polygon of the quartic curve q; qt = t(ax+ by) + q
where a �= 0.

(b.13) A4
0(A7) → A2

0(A3); q = y − x4 + r, where r is the sum of
monomials that correspond to the points lying above the line 4y + x−
4 = 0 in Newton’s polygon of the quartic curve q; qt = −tx2 + q.

(b.14) A2(D5) → A2
0(A3); q = y3 − x2 + r, where r is the sum of

monomials that correspond to the points lying above the line 2y+3x−
6 = 0 in Newton’s polygon of the quartic curve q; qt = ty + q.

(b.15) A4(D7) → A2
0(A3); q = (x−ay2)2+byx2+cy3x+dx3+ex2y2+

fyx3 + gx4, where a < 0, ab + c �= 0 (see Lemma 4); qt = −ty + q.

(b.16) A4(J11) → A2
0(A3); q = (y−ax2)2+bxy2+cx3y+dy3+ex2y2+

fxy3 + gy4, where a < 0, ab+ c �= 0 (see Lemma 4); qt = t(y−hx2) + q
where h < a.

(b.17) A6(D9) → A2
0(A3); q = (x − ay2)2 + byx2 + cy3x + dx3 +

ex2y2 + fyx3 + gx4, where a < 0, ab + c = 0, b2 − 4(ad + e) = 0, and
ab3 − 2b2(3a2d + e) + a2f �= 0 (see Lemma 4); qt = −ty + q.

(b.18) A6(J13) → A2
0(A3); q = (y − ax2)2 + bxy2 + cx3y + dy3 +

ex2y2 + fxy3 + gy4, where a < 0, ab + c = 0, b2 − 4(ad + e) = 0, and
ab3−2b2(3a2d+e) +a2f �= 0 (see Lemma 4); qt = t(y−hx2) + q where
h < a.

(b.19) D∗
4(X ′∗

11) → A2
0(A3); q = y(y2 + axy + bx2) + cx4 + r, where

a2 − 4b < 0, bc < 0, r is the sum of monomials that correspond to the
points lying above the line 4y+3x−12 = 0 in Newton’s polygon of the
quartic curve q; qt = t(y − x2) + q.

(b.20) E6(X13) → A2
0(A3); q = y3 − x4 + r, where r is the sum of

monomials that correspond to the points lying above the line 4y+3x−
12 = 0 in Newton’s polygon of the quartic curve q; qt = t(y − x2) + q.

(b.21) A1(D4) → 2A1
0(2A1); q = y2 − x2 + r, where r is the
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sum of monomials that correspond to the points lying above the line
y + x− 2 = 0 in Newton’s polygon of the quartic curve q; qt = t+ q.

(b.22) A1(D8) → 2A1
0(2A1); q = y3 − axy + x4 + r, where a < 0, r

is the sum of monomials that correspond to the points lying above the
two segments that connect the pairs of points (0,3), (1,1) and (1,1),
(4,0) in Newton’s polygon of the quartic curve q; qt = −t + q.

(b.23) A3(D6) → 2A1
0(2A1); q = (x+ay2)(x+by2)+r, where r is the

sum of monomials that correspond to the points lying above the line
y+ 2x− 4 = 0 in Newton’s polygon of the quartic curve q; qt = −t+ q.

(b.24) A3(J10) → 2A1
0(2A1); q = (y+ax2)(y+bx2)+r, where ab < 0,

r is the sum of monomials that correspond to the points lying above
the line 2y + x − 4 = 0 in Newton’s polygon of the quartic curve q;
qt = t + q.

(b.25) A5(D8) → 2A1
0(2A1); q = (x − ay2)2 + byx2 + cy3x + dx3 +

ex2y2 + fyx3 + gx4, where a < 0, ab + c = 0 and b2 − 4(ad + e) > 0
(see Lemma 4); qt = −t + q.

(b.26) A7(D10) → 2A1
0(2A1); q = [x − ay2 + r]2 − dx4, where a < 0,

r = bxy + cy2, 0 < d; qt = −t + q.

(b.27) D5(X12) → 2A1
0(2A1); q = y4 − yx2 + ax4 + r, where a < 0

and r is the sum of monomials that correspond to the points lying
above the two segments that connect the pairs of points (0, 4), (1, 2)
and (1, 2), (4, 0) in Newton’s polygon of the quartic curve q; qt = t+ q.

(b.28) D5(X ′
12) → 2A1

0(2A1); q = ay4 − xy2 + x4 + r, where r is the
sum of monomials that correspond to the points lying above the two
segments that connect the pairs of points (0,4), (2,1) and (2,1), (4,0)
in Newton’s polygon of the quartic curve q; qt = −t + q.

(b.29) X∗
9 (N∗

16) → 2A1
0(2A1); q = (y2 − x2)(y2 + ayx + bx2), where

a2 − 4b < 0; qt = t + q.

(b.30) A1(D6) → {A1
0, A

2
0}({A1, A3}); q = ay3 − xy + ax3 + r,

where 0 < a and r is the sum of monomials that correspond to the
points lying above the two segments that connect the pairs of points
(0,3), (1,1) and (1,1), (3,0) in Newton’s polygon of the quartic curve q;
qt = −t(y − bx2) + q where b > a.

(b.31) D5(X10) → {2A1
0, A

2
0}({A1, A3}); q = y4 − yx2 + ax3 + r,

where a < 0 and r is the sum of monomials that correspond to the
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points lying above the line 3y+4x−12 = 0 in Newton’s polygon of the
quartic curve q; qt = −t2(bty − 2ax2) + ty(y − bx) + q where b > a.

(b.32) E7(X ′
12) → {2A1

0, A
2
0}({A1, A3}); q = x(y3 − x2) + r, where

r is the sum of monomials that correspond to the points lying above
the line 2y + 3x − 9 = 0 in Newton’s polygon of the quartic curve q;
qt = t2y + t(y4 − x2) + q.

(b.33) A3(J10) → 2A2
0(2A3); q = (y− ax2)(y− bx2) + r, where 0 < a,

0 < b, a �= b and r is the sum of monomials that correspond to the
points lying above the line 2y + x − 4 = 0 in Newton’s polygon of the
quartic curve q; qt = t2 − 2t

√
ab x2 + q.

(b.34) A5(J12) → 2A2
0(2A3); q = (y − ax2)2 + bxy2 + cx3y + dy3 +

ex2y2 + fxy3 + gy4, where 0 < a, ab + c = 0 and b2 − 4(ad + e) > 0
(see Lemma 4); qt = t2 − 2atx2 + q.

(b.35) A7(J14) → 2A2
0(2A3); q = [y − ax2 + r]2 − dy4, where 0 < a,

r = bxy + cy2, 0 < d; qt = t2 − 2atx2 + q.

(b.36) D5(X12) → 2A2
0(2A3); q = y4−x2y+ax4 +r, where 0 < a and

r is the sum of monomials that correspond to the points lying above
the two segments that connect the pairs of points (0,4), (2,1) and (2,1),
(4,0) in Newton’s polygon of the quartic curve q; qt = t2 −2t

√
a x2 + q.

(b.37) D4(X9) → 3A1
0(3A1); q = x(y2 − a2x2) + r, where r is the

sum of monomials that correspond to the points lying above the line
y + x− 3 = 0 in Newton’s polygon of q; qt = tx+ q.

(b.38) D6(X ′
11) → 3A1

0(3A1); q = xy3 − yx2 + ax3 + r, where a < 0,
r is the sum of monomials that correspond to the points lying above
the two segments that connect the pairs of points (1,3), (2,1) and (2,1),
(3,0) in Newton’s polygon of the quartic curve q; qt = t(y − bx) + q
where b > a.

(b.39) D6(X ′
13) → {2A1

0, A
2
0}({2A1, A3}); q = xy3 − yx2 + x4 + r,

where r is the sum of monomials that correspond to the points lying
above the two segments that connect the pairs of points (1,3), (2,1)
and (2,1), (4,0) in Newton’s polygon of the quartic curve q; qt =
−t3(y − cx2) − t(y − ax2)(x− by2) + q where c > a > 1, b > 1.

(b.40) D4(X ′
11) → {2A1

0, A
2
0}({2A1, A3}); q = y3 − yx2 + cx2 + r = 0,

where 0 < c and r is the sum of monomials that correspond to the
points lying above the line 4y + 3x − 12 = 0 in Newton’s polygon of
the quartic curve q; qt = −t3(y − dx2) + t(y2 + axy + bx2) + f , where
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0 < c < −b/a < d, a < −1.

(b.41) X9(N16) → {4A1
0}({4A1}); q = (y2−x2)(y2−ax2) = 0, where

0 < a < 1; qt = t[(2a+ 1)y − 3ax2 + 2at] + q.

In the remaining cases (b.42) (b.45), we choose the affine coordinate
system such that the line at infinity is y = 0 and the complex point pairs
{2Ai,2

0 }({2Ai
3}), {2Ai

1}({2Di
4}), {2Ai

2}({2Di
5}) and {2Ai

3}({2Di
6)} are

placed at the points (
√−1, 0) and (−√−1, 0).

(b.42) {2Ai,2
0 }({2Ai

3}) → {4Ai,1
0 }({4Ai

1}); q = (x2 + 1)2 + r(x)y + s,
where the greatest common factor of the polynomials r(x) of degree 3
and x2 +1 is a constant, and s is the sum of monomials that correspond
to the points lying above the line y− 1 = 0 in Newton’s polygon of the
quartic curve q; qt = −t2 + q. Note that instead of this deformation
we can just perturb the line at infinity and remove any tangency at its
complex points. From a geometrical point of view this is simpler.

(b.43) {2Ai
1}({2Di

4}) → {4Ai,1
0 }({4Ai

1}); q = (x2+1)2+(x2+1)(ax+
b)y + r(x)y2 + s, where a �= 0, the greatest common factor of the
polynomial r(x) of degree 2 and x2 + 1 is a constant, and s is the
sum of monomials that correspond to the points lying above the line
y − 2 = 0 in Newton’s polygon of the quartic curve q; qt = −t2 + q.

(b.44) {2Ai
2}({2Di

5}) → {4Ai,1
0 }({4Ai

1}); q = (x2+1)2+a(x2+1)y2+
r, where a is an integer, and r is the sum of monomials that correspond
to the points lying above the line y− 2 = 0 in Newton’s polygon of the
quartic curve q; qt = −t2 + q.

(b.45) {2Ai
3}({2Di

6}) → {4Ai,1
0 }({4Ai

1}); q = (x2+1)2+a(x2+1)y2+
by4, where a and b are integers; qt = −t2 + q.

Theorem 6. Each isotopy class of real affine quartic curves without
multiple components contains a singular-simple curve.

Proof. Let f0 be an affine quartic curve without multiple components.
We will prove that there exists a singular-simple curve fτ such that
Rfτ is isotopic to Rf0. The curve f0 can have singular points both in
R2 = RP 2 \ L∞ and on the line at infinity L∞. This suggests that
we consider the projective reducible quintic curve zF0 where z = 0 is
the equation of the line at infinity L∞ and F0(x, y, z) is a homogeneous
polynomial of degree 4 such that F0(x, y, 1) = f0(x, y). It is clear
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that deformations of individual singular points of the quintic curve
zF0 lying in R2 = RP 2 \ L∞ are provided by Theorem 5(a) and
deformations of individual singular points of zF0 lying on the line at
infinity L∞ are provided by Theorem 5(b). According to Theorem 3
there exists a family of curves {zFt}t∈(0,τ ] that realizes the required
isotopy between R(zF0) and R(zFτ ) if the curve zF0 satisfies the
inequality of Theorem 3.

Theorem 3 treats real and complex singular point on an equal footing
and implies that only the sum of the Milnor numbers of the singular
points counts. For example, we may ignore the distinction between
A1, A

∗
1, A

i
1; it suffices to treat the case A1. This enables us to avoid

enumerating many cases of real singular points with real and complex
branches and complex conjugate singular points of quintic curves zF0.
The sets of singular points of such reducible quintic curves can be
divided into two parts: singular points of the quartic curve that do
not lie on the line L∞ and singular points that appear as the result of
the intersection of the quartic curve and the line L∞. For the purposes
of enumerating the sets of singular points, the cases of irreducible and
reducible quartic curves will be presented separately. Let X be the set
of singular points of the curve F0 and Y be the set of singular points
of the curve zF0.

0. In this item we enumerate all sets of singular points that a quartic
curve F0 can have.

0.1. In [31], [12], [13], it was proved that irreducible projective
quartic curves can have only the following sets of singular points.

0.1.0. 0-point set: X = ∅ corresponds to nonsingular quartic curves.

0.1.1. 1-point sets: X = {A1}, {A2}, {A3}, {A4}, {A5}, {A6},
{D4}, {D5}, {E6}.

0.1.2. 2-point sets: X = {2A1}, {A1, A2}, {A1, A3}, {A1, A4},
{2A2}, {A2, A3}, {A2, A4}.

0.1.3. 3-point sets: X = {3A1}, {2A1, A2}, {A1, 2A2}, {3A2}.

0.2. Based on the singular-isotopy classification of plane reducible
projective quartic curves [29], it is easy to enumerate the sets of singular
points of reducible projective quartic curves.

0.2.1. 1-point sets: X = {A5}, {A7}, {E7}, {D6}, {X9}.
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0.2.2. 2-point sets: X = {A1, A5}, {A1, D4}, {A1, D5}, {A1, D6},
{A2, A5}, {2A3}.

0.2.3. 3-point sets: X = {3A1}, {2A1, A3}, {2A1, D4}, {A1, A2, A3},
{A1, 2A3}.

0.2.4. 4-point sets: X = {4A1}, {3A1, A2}, {3A1, A3}, {3A1, D4}.

0.2.5. 5-point sets: X = {5A1}.

0.2.6. 6-point sets: X = {6A1}.

There are two possibilities for the intersection of a quartic curve
F0 and the line at infinity L∞: either the quartic curve does have
singular point(s) lying on the line or does not. In the second case
the quintic curve zF0 has singular points that appear as a result of
the intersection of the line at infinity and the quartic curve, and the
singular points of such an intersection can be either {4A1} or {2A1, A3}
or {A1, A5}, or {2A3} or {A7}. The existence of the sets of singular
points of the quintic curves enumerated below follows from Gudkov’s
classification of forms of irreducible quartic curves [10] [14], [26] and
from the classification of forms of reducible quartic curves [29].

1. The set X of singular points of the quartic curve F0 consists of
one singular point.

1.1. First we consider quintic curves zF0 such that the quartic
component is irreducible and the singular point of F0 does not lie on
the line L∞. We take X from item 0.1.1. The quintic curve zF0 has
the following sets of singular points Y.

1.1.1. If X = {A1}, then Y = {5A1}, {3A1, A3}, {2A1, A5},
{A1, 2A3}, {A1, A7}.

1.1.2. If X = {A2}, then Y = {4A1, A2}, {2A1, A3, A2}, {A1, A2, A5},
{2A3, A2}, {A2, A7}.

1.1.3. If X = {A3}, then Y = {4A1, A3}, {2A1, 2A3}, {A1, A3, A5},
{3A3}, {A3, A7}.

1.1.4. If X = {A4}, then Y = {4A1, A4}, {2A1, A3, A4}, {A1, A4, A5},
{2A3, A4}, {A4, A7}.

1.1.5. If X = {A5}, then Y = {4A1, A5}, {2A1, A3, A5}, {A1, 2A5},
{2A3, A5}, {A5, A7}.
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1.1.6. If X = {A6}, then Y = {4A1, A6}, {2A1, A3, A6}, {A1, A5, A6}.

1.1.7. If X = {D4}, then Y = {4A1, D4}, {2A1, A3, D4}, {A1, A5, D4},
{2A3, D4}, {A7, D4}.

1.1.8. If X = {D5}, then Y = {4A1, D5}, {2A1, A3, D5}, {A1, A5, D5},
{2A3, D5}, {A7, D5}.

1.1.9. If X = {E6}, then Y = {4A1, E6}, {2A1, A3, E6}, {A1, A5, E6},
{2A3, E6}, {A7, E6}.

1.2. We consider quintic curves such that the quartic component is
irreducible and a singular point of F0 lies on the line L∞. The quintic
curve zF0 has the following sets of singular points Y.

1.2.1. If X = {A1}, then Y = {2A1, D4}, {A1, D6}, {D8}, {A3, D4}.

1.2.2. If X = {A2}, then Y = {2A1, D5}, {A1, E7}, {A3, D5}.

1.2.3. If X = {A3}, then Y = {2A1, D6}, {J10}, {A3, D6}.

1.2.4. If X = {A4}, then Y = {2A1, D7}, {J11}, {A3, D7}.

1.2.5. If X = {A5}, then Y = {2A1, D8}, {J12}, {A3, D8}.

1.2.6. If X = {A6}, then Y = {2A1, D9}, {J13}, {A3, D9}.

1.2.7. If X = {D4}, then Y = {A1, X9}, {X ′
11}.

1.2.8. If X = {D5}, then Y = {A1, X10}, {X12}, {X ′
12}.

1.2.9. If X = {E6}, then Y = {A1, X11}, {X13}.

1.3. We consider quintic curves such that the quartic component is
reducible and the singular point of F0 does not lie on the line L∞. We
take X from item 0.2.1. The quint curve zF0 has the following sets of
singular points Y.

1.3.1. If X = {A5}, then Y = {4A1, A5}, {2A1, A3, A5}, {A1, 2A5}.

1.3.2. If X = {A7}, then Y = {4A1, A7}, {2A1, A3, A7}.

1.3.3. If X = {E7}, then Y = {4A1, E7}, {2A1, A3, E7}, {A1, A5, E7}.

1.3.4. If X = {D6}, then Y = {4A1, D6}, {2A1, A3, D6}, {A1, A5, D6}.

1.3.5. If X = {X9}, then Y = {4A1, X9}.

1.4. We consider quintic curves such that the quartic component is
reducible and the singular point of F0 lies on the line L∞. The quintic
curve zF0 has the following sets of singular points Y.
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1.4.1. If X = {A5}, then Y = {2A1, D8}, {A3, D8}.

1.4.2. If X = {A7}, then Y = {2A1, D10}, {J14}.

1.4.3. If X = {E7}, then Y = {A1, X
′
12}.

1.4.4. If X = {D6}, then Y = {A1, X
′
11}, {X13}.

1.4.5. If X = {X9}, then Y = {N16}.

2. The set X of singular points of the quartic curve consists of two
singular points.

2.1. We consider quintic curves such that the quartic component is
irreducible and the singular points of F0 do not lie on the line L∞. We
take X from item 0.1.2. The quintic curve zF0 has the following sets
of singular points Y.

2.1.1. If X = {2A1}, then Y = {6A1}, {4A1, A3}, {3A1, A5},
{2A1, 2A3}, {2A1, A7}.

2.1.2. If X = {A1, A2}, then Y = {5A1, A2}, {3A1, A2, A3},
{2A1, A2, A5}, {A1, A2, 2A3}, {A1, A2, A7}.

2.1.3. If X={A1, A3}, then Y={5A1, A3}, {3A1, 2A3}, {2A1, A3, A5},
{A1, 3A3}, {A1, A3, A7}.

2.1.4. If X = {A1, A4}, then Y = {5A1, A4}, {3A1, A3, A4},
{2A1, A4, A5}, {A1, 2A3, A4}, {A1, A4, A7}.

2.1.5. If X = {2A2}, then Y = {4A1, 2A2}, {2A1, A3, 2A2},
{A1, 2A2, A5}, {2A2, 2A3}, {2A2, A7}.

2.1.6. If X = {A2, A3}, then Y = {4A1, A2, A3}, {2A1, A2, 2A3},
{A1, A2, A3, A5}.

2.1.7. If X = {A2, A4}, then Y = {4A1, A2, A4}, {2A1, A2, A3, A4},
{A1, A2, A4, A5}.

2.2. We consider quintic curves such that the quartic component is
irreducible and one of the singular points of F0 lies on the line L∞.
The quintic curve zF0 has the following sets of singular points Y.

2.2.1. If X = {2A1}, then Y = {3A1, D4}, {2A1, D6}, {A1, D8},
{A1, A3, D4}.

2.2.2. If X = {A1, A2}, then Y = {2A1, A2, D4}, {A1, A2, D6},
{A2, D8}, {A2, A3, D4}, {3A1, D5}, {2A1, E7}, {A1, A3, D5}.
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2.2.3. If X = {A1, A3}, then Y = {2A1, A3, D4}, {A1, A3, D6},
{A3, D8}, {2A3, D4}, {3A1, D6}, {A1, J10}, {A1, A3, D6}.

2.2.4. If X = {A1, A4}, then Y = {2A1, A4, D4}, {A1, A4, D6},
{A4, D8}, {A3, A4, D4}, {3A1, D7}, {A1, J11}, {A1, A3, D7}.

2.2.5. If X = {2A2}, then Y = {2A1, A2, D5}, {A1, A2, E7},
{A3, A2, D5}.

2.2.6. If X = {A2, A3}, then Y = {2A1, A3, D5}, {A1, A3, E7},
{2A3, D5}, {2A1, A2, D6}, {A2, J10}, {A2, A3, D6}.

2.2.7. If X = {A2, A4}, then Y = {2A1, A4, D5}, {A1, A4, E7},
{A3, A4, D5}, {2A1, A2, D7}, {A2, J11}.

2.3. We consider quintic curves such that the quartic component is
irreducible and both singular points of F0 lie on the line L∞. The
quintic curve zF0 has the following sets of singular points Y.

2.3.1. If X = {2A1}, then Y = {2D4}.

2.3.2. If X = {A1, A2}, then Y = {D4, D5}.

2.3.3. If X = {A1, A3}, then Y = {D4, D6}.

2.3.4. If X = {A1, A4}, then Y = {D4, D7}.

2.3.5. If X = {2A2}, then Y = {2D5}.

2.3.6. If X = {A2, A3}, then Y = {D5, D6}.

2.3.7. If X = {A2, A4}, then Y = {D5, D7}.

2.4. We consider quintic curves such that the quartic component is
reducible and the singular points of F0 do not lie on the line L∞. We
take X from item 0.2.2. The quintic curve zF0 has the following sets
of singular points Y.

2.4.1. If X = {A1, A5}, then Y = {5A1, A5}, {3A1, A3, A5},
{A1, 2A3, A5}.

2.4.2. If X = {A1, D4}, then Y = {5A1, D4}, {3A1, A3, D4},
{2A1, A5, D4}.

2.4.3. If X = {A1, D5}, then Y = {5A1, D5}, {3A1, A3, D5},
{2A1, A5, D5}.

2.4.4. If X = {A1, D6}, then Y = {5A1, D6}, {3A1, A3, D6}.

2.4.5. If X = {A2, A5}, then Y = {4A1, A2, A5}, {2A1, A2, A3, A5}.
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2.4.6. If X = {2A3}, then Y = {4A1, 2A3}, {2A1, 3A3}.

2.5. We consider quintic curves such that the quartic component is
reducible and one of the singular points of F0 lies on the line L∞. The
quintic curve zF0 has the following sets of singular points Y.

2.5.1. If X = {A1, A5}, then Y = {2A1, A5, D4}, {A1, A5, D6},
{3A1, D8}, {A1, A3, D8}, {A1, J12}.

2.5.2. If X = {A1, D4}, then Y = {2A1, 2D4}, {A3, 2D4},
{A1, D4, D6}, {D4, D8}, {2A1, X9}, {A1, X

′
11}.

2.5.3. If X = {A1, D5}, then Y = {2A1, D4, D5}, {A1, D5, D6},
{D5, D8}, {2A1, X10}, {A1, X

′
12}.

2.5.4. If X = {A1, D6}, then Y = {2A1, D4, D6}, {A1, 2D6},
{2A1, X

′
11}.

2.5.5. If X = {A2, A5}, then Y = {2A1, A5, D5}, {A1, A5, E7},
{2A1, A2, D6}.

2.5.6. If X = {2A3}, then Y = {2A1, A3, D6}, {A3, J10}.

2.6. We consider quintic curves such that the quartic component is
reducible and both singular points of F0 lie on the line L∞. The quintic
curve zF0 has the following set of singular points Y.

2.6.1. If X = {A1, A5}, then Y = {D4, D6}.

2.6.2. If X = {A1, D4}, then the quintic curve has the line L∞ as a
double component.

2.6.3. If X = {A1, D5}, then the quintic curve has the line L∞ as a
double component.

2.6.4. If X = {A1, D6}, then the quintic curve has the line L∞ as a
double component.

2.6.5. If X = {A2, A5}, then Y = {D5, D8}.

2.6.6. If X = {2A3}, then Y = {2D6}.

3. The set X of singular points of the quartic curve consists of three
singular points.

3.1. We consider quintic curves such that the quartic component is
irreducible and the singular points of F0 do not lie on the line L∞. We
take X from item 0.1.3. The quintic curve zF0 has the following sets
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of singular points Y.

3.1.1. If X = {3A1}, then Y = {7A1}, {5A1, A3}, {4A1, A5},
{3A1, 2A3}, {3A1, A7}.

3.1.2. If X = {2A1, A2}, then Y = {6A1, A2}, {4A1, A2, A3},
{3A1, A2, A5}, {2A1, A2, 2A3}, {2A1, A2, A7}.

3.1.3. If X = {A1, 2A2}, then Y = {5A1, 2A2}, {3A1, 2A2, A3},
{2A1, 2A2, A5}, {A1, 2A2, 2A3}, {A1, 2A2, A7}.

3.1.4. If X = {3A2}, then Y = {4A1, 3A2}, {2A1, A3, 3A2}.

3.2. We consider quintic curves such that the quartic component is
irreducible and one of the singular points of F0 lies on the line L∞.
The quintic curve zF0 has the following sets of singular points Y.

3.2.1. If X = {3A1}, then Y = {4A1, D4}, {3A1, D6}, {2A1, D8},
{2A1, A3, D4}.

3.2.2. If X = {2A1, A2}, then Y = {3A1, A2, D4}, {2A1, A2, D6},
{A1, A2, D8}, {A1, A2, A3, D4}, {4A1, D5}, {3A1, E7}, {2A1, A3, D5}.

3.2.3. If X = {A1, 2A2}, then Y = {2A1, 2A2, D4}, {A1, 2A2, D6},
{3A1, A2, D5}, {2A1, A2, E7}, {A1, A2, A3, D5}.

3.2.4. If X = {3A2}, then Y = {2A1, 2A2, D5}, {A1, 2A2, E7}.

3.3. We consider quintic curves such that the quartic component is
irreducible and two singular points of F0 lie on the line L∞. The quintic
curve zF0 has the following sets of singular points Y.

3.3.1. If X = {3A1}, then Y = {A1, 2D4}.

3.3.2. If X = {2A1, A2}, then Y = {A2, 2D4}, {A1, D4, D5}.

3.3.3. If X = {A1, 2A2}, then Y = {A2, D4, D5}, {A1, 2D5}.

3.3.4. If X = {3A2}, then Y = {A2, 2D5}.

3.4. We consider quintic curves such that the quartic component is
reducible and the singular points of F0 do not lie on the line L∞. We
take X from item 0.2.3. The quintic curve zF0 has the following sets
of singular points Y.

3.4.1. If X = {3A1}, then Y = {7A1}, {5A1, A3}, {4A1, A5}.

3.4.2. If X = {2A1, A3}, then Y = {6A1, A3}, {4A1, 2A3},
{2A1, 3A3}.
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3.4.3. If X = {2A1, D4}, then Y = {6A1, D4}, {4A1, A3, D4}.

3.4.4. If X = {A1, A2, A3}, then Y = {5A1, A2, A3}, {3A1, A2, 2A3},
{2A1, A2, A3, A5}.

3.4.5. If X = {A1, 2A3}, then Y = {5A1, 2A3}, {3A1, 3A3}.

3.5. We consider quintic curves such that the quartic component is
reducible and one of the singular points of F0 lies on the line L∞. The
quintic curve zF0 has the following sets of singular points Y.

3.5.1. If X = {3A1}, then Y = {4A1, D4}, {2A1, A3, D4}, {3A1, D6},
{2A1, D8}.

3.5.2. If X = {2A1, A3}, then Y = {3A1, A3, D4}, {A1, 2A3, D4},
{2A1, A3, D6}, {A1, A3, D8}, {4A1, D6}.

3.5.3. If X = {2A1, D4}, then Y = {3A1, 2D4}, {2A1, D4, D6},
{3A1, X9}, {2A1, X

′
11}.

3.5.4. If X = {A1, A2, A3}, then Y = {2A1, A2, A3, D4}, {3A1, A3, D5},
{2A1, A3, E7}, {3A1, A2, D6}, {A1, A2, A3, D6}.

3.5.5. If X = {A1, 2A3}, then Y = {2A1, 2A3, D4}, {3A1, A3, D6}.

3.6. We consider quintic curves such that the quartic component is
reducible and two singular points of F0 lie on the line L∞. The quintic
curve zF0 has the following sets of singular points Y.

3.6.1. If X = {3A1}, then the quintic curve has the line L∞ as a
double component;

3.6.2. If X = {2A1, A3}, then Y = {A3, 2D4}, {A1, D4, D6}.

3.6.3. If X = {2A1, D4}, then Y = {3D4}.

3.6.4. If X = {A1, A2, A3}, then Y = {A3, D4, D5}, {A1, D5, D6}.

3.6.5. If X = {A1, 2A3}, then Y = {A1, 2D6}.

4. The set X of singular points of the quartic curve consists of four
singular points. In this case the quartic curve F0 decomposes either into
two conics intersecting transversally, or into a line and cuspidal cubic
curve intersecting transversally, or into two lines and an irreducible
conic with only one of the lines tangent to the conic, or four lines,
three of which are concurrent. We take X from item 0.2.4.

4.1. We consider quintic curves such that the quartic component is
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reducible and the singular points of F0 do not lie on the line L∞. The
quintic curve zF0 has the following sets of singular points Y.

4.1.1. If X = {4A1}, then Y = {8A1}, {6A1, A3}, {4A1, 2A3},
{5A1, A3, A5}.

4.1.2. If X = {3A1, A2}, then Y = {7A1, A2}, {5A1, A2, A3},
{4A1, A2, A5}.

4.1.3. If X = {3A1, A3}, then Y = {7A1, A3}, {5A1, 2A3}.

4.1.4. If X = {3A1, D4}, then Y = {7A1, D4}.

4.2. We consider quintic curves such that the quartic component is
reducible and one of the singular points of F0 lies on the line L∞. The
quintic curve zF0 has the following sets of singular points Y.

4.2.1. If X = {4A1}, then Y = {5A1, D4}, {4A1, D6}, {3A1, D8}.

4.2.2. If X = {3A1, A2}, then Y = {4A1, A2, D4}, {2A1, A2, A3, D4},
{3A1, A2, D6}, {2A1, A2, D8}, {5A1, D5}, {4A1, E7}.

4.2.3. If X = {3A1, A3}, then Y = {5A1, A3, D4}, {3A1, A3, D6},
{5A1, D6}.

4.2.4. If X = {3A1, D4}, then Y = {4A1, 2D4}, {4A1, X9}.

4.3. We consider quintic curves such that the quartic component is
reducible and two singular points of F0 lie on the line L∞. The quintic
curve zF0 has the following sets of singular points Y.

4.3.1. If X = {4A1}, then Y = {2A1, 2D4}.

4.3.2. If X = {3A1, A2}, then Y = {A1, A2, 2D4}, {2A1, D4, D5}.

4.3.3. If X = {3A1, A3}, then Y = {2A1, D4, D6}.

4.3.4. If X = {3A1, D4}, then the quintic curve has the line L∞ as a
double component.

5. The quartic curve has five singular points. We take X = {5A1}
from item 0.2.5. In this case the quartic curve decomposes into two
lines and an irreducible conic intersecting transversally.

5.1. If F0 is reducible and the singular points of F0 do not lie on the
line L∞, then Y = {9A1}.

5.2. If F0 is reducible and one of the singular points of F0 lies on the
line L∞, then Y = {6A1, D4}, {5A1, D6}.
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5.3. If F0 is reducible and two singular points of F0 lie on the line
L∞, then Y = {3A1, 2D4}.

6. The quartic curve has six singular points. We take X = {6A1}
from item 0.2.6. In this case the curve decomposes into four lines.

6.1. If F0 is reducible and the singular points of F0 do not lie on the
line L∞, then Y = {10A1}.

6.2. If F0 is reducible and one of the singular points of F0 lies on the
line L∞, then Y = {7A1, D4}.

6.3. If F0 is reducible and two singular points of F0 lie on the line
L∞, then the quintic curve has the line L∞ as a double component.

The quintic curves from items 2.6.2 2.6.4, 3.6.1, 4.3.4 and 6.3 have
multiple components and so are considered separately. The quintic
curves from the following items with the indicated sets of singular points
already have quartic components that represent singular-simple curves:

item 1.1.1 with {5A1},

item 1.1.7 with {4A1, D4},

item 1.3.5 with {4A1, X9},

item 2.1.1 with {6A1},

item 2.4.2 with {5A1, D4},

item 3.1.1 with {7A1},

item 3.4.1 with {7A1},

item 4.1.1 with {8A1},

item 4.1.4 with {7A1, D4}.

For the remainder of the quintic curves here one can see that only one
projective quintic curve, from item 1.4.5, does not satisfy the inequality
from Theorem 3. This exceptional quintic curve zF0 consists of five
concurrent lines (one of these lines is L∞), and so has one singular
point N16. For this quintic curve we apply the deformation of item
(b.39) of Theorem 5. The isotopy class of the corresponding affine
quartic curve f0(x, y) = F0(x, y, 1) contains all affine quartic curves
of the family ft with t ∈ (0, τ ] provided by Theorem 5. For each
other projective quintic curve zF0 (different from the quintic curve of
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item 1.4.5) we apply Theorem 3 and the prescribed deformations from
Theorem 5. The isotopy class of the corresponding affine quartic curve
f0(x, y) contains all affine quartic curves of the family ft with t ∈ (0, τ ]
provided by Theorem 3.

Corollary 6.1. Each isotopy class of real projective quartic curves
without multiple components contains a singular-simple curve.

Corollary 6.2. The isotopy classification of all real projective
quartic curves is equivalent to the isotopy classification of real projective
quartic curves whose singular points, if any, are of types A1, A

∗
1, D4 or

X9.

Corollary 6.3. The topological classification of pairs of all real affine
quartic curves is equivalent to the topological classification of pairs of
real affine quartic curves whose singular points, if any, are of types
A1, A

∗
1, D4 or X9, and with no singular points on the line at infinity.

Corollary 6.4. The isotopy classification of all real affine quartic
curves is equivalent to the isotopy classification of real affine quartic
curves whose singular points, if any, are of types A1, A

∗
1, D4 or X9 and

with no singular points on the line at infinity.

3. Isotopy classification of affine quartic curves. To get an
isotopy classification of some given set of algebraic curves, the following
procedure is traditional. In the first step one enumerates the admissible
isotopy classes of topological curves that satisfy the theorems of Bezout
and Harnack and perhaps another restriction. A priori there are two
kinds of admissible classes of topological curves: classes that contain
algebraic curves from the given set and classes that don’t. Thus, the
second step in solving the problem is to prove the existence of the curves
(usually just to construct these algebraic curves) for the first case and
to prove that such curves do not exist for the second one.

In our first step we enumerate the affine admissible isotopy classes by
considering all possible intersections of a topological line, representing
the line at infinity, with representatives of all projective isotopy classes
of quartic curves from Figure 3. By applying Bezout’s theorem to
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the intersection of a projective algebraic curve of degree d and the
line at infinity, it follows that the number N of noncompact connected
components of the affine algebraic curve can be less than or equal to
d. By applying Harnack’s theorem to affine curves, the total number
of real connected components of an affine curve of degree d can be less
than or equal to g + 1 if N = [1 − (−1)d]/2, and can be less than or
equal to g + N if [1 − (−1)d]/2 < N < d, where g is the genus of
the corresponding projective curve. To calculate the genus we use the
formula g = (d−1)(d−2)/2−g(zi) from [30], where g(zi) is the genus of
the singular point zi of the projective curve, and the sum runs over all
singular points of the curve. To calculate the genus of a singular point
we use the formula g(z)={κ(z)−∑

[g(Pj−1)]}/2 from [30], where κ(z) is
the class of the singular point z, g(Pj) is the order of the branch Pj [46],
and the sum runs over all branches with center at singular point z. In
the case of reducible quartic curves one can apply Harnack’s inequality
and the formula for the calculation of the genus for each irreducible
algebraic component. Thus, we obtain that a compact affine quartic
curve has no more than 4 connected components, and a noncompact
affine quartic curve has no more than 7 connected components.

During this enumeration we divide the set of singular-simple quartic
curves into seven divisions with respect to their behavior at infinity (the
1st 6th divisions) and the presence of multiple algebraic components
(the 7th division). This is justified by Theorem 6.

The 1st division. The affine quartic curves of this division intersect
the line at infinity at 4 real points. These quartic curves have 8
real branches going to infinity along 4 asymptotic lines in opposite
directions.

The 2nd division. The affine quartic curves of this division have 2 real
points of intersection and 1 point of tangency with the line at infinity.
These quartic curves have 6 real branches going to infinity, 4 of which
go along 2 asymptotic lines in opposite directions and two of which are
parabolic branches.

The 3rd division. The affine quartic curves of this division have 2 real
points of tangency with the line at infinity. These quartic curves have
4 real branches going to infinity; all of them are parabolic branches.

The 4th division. The affine quartic curves of this division have 2 real
and 2 complex points of intersection with the line at infinity. These
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quartic curves have 4 real branches going to infinity along 2 asymptotic
lines in opposite directions.

The 5th division. The affine quartic curves of this division have 1
point of tangency and 2 complex points of intersection with the line
at infinity. These quartic curves have 2 real branches going to infinity;
both of them are parabolic branches.

The 6th division. The affine quartic curves of this division have 4
complex points of intersection with the line at infinity. These quartic
curves do not have real branches going to infinity.

The 7th division. The affine quartic curves of this division have
multiple algebraic components.

One property of affine quartic curves that we place in the foundation
of the enumeration is the decomposition into irreducible algebraic
components. There are 11 kinds of such decompositions of projective
quartic curves, where l, c, cb and q denote an affine line, irreducible
conic, cubic and quartic curve, respectively:

(1) four lines l1l2l3l4,

(2) two lines and a conic l1l2c,

(3) a line and a cubic curve lcb,

(4) two conics c1c2,

(5) a quartic curve q,

(6) a 4-fold line l4,

(7) 1- and 3-fold lines l1l32,

(8) two 1-fold lines and a 2-fold line l1l2l23,

(9) two 2-fold lines l21l
2
2,

(10) a 2-fold line and an irreducible conic l2c, and

(11) a 2-fold conic curve c2.

The complete isotopy classification of affine quartic curves contains all
curves: both reducible and irreducible, and singular and nonsingular
curves. In this general situation it is more appropriate to put the
topological classification of triples (R2,Rf , Sing f) in the foundation
of the isotopy classification of affine quartic curves in the same manner
as we have done for projective quartic curves. Recall that Rf is
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the set of real points of an affine curve f , and we denote the set of
its real singular points as Sing f . We take the isotopy classification
of the triples into consideration because the addition of the third
member Sing (f) simplifies the enumeration of isotopy classes. The
set of (admissible) isotopy classes with the same kind of irreducible
algebraic components and with the same set of real singular points is
called a grade of quartic curves. Each grade can be described by a pair
(Rf, Sing (f)). One can see that there are 32 grades of affine quartic
curves without multiple algebraic components and 12 grades of curves
with multiple components. The real affine quartic curves have the same
grades as projective quartic curves. These grades were enumerated in
the Introduction and we apply them to affine quartic curves. Note that
the 1st 6th divisions contain the 1st 32nd grades and the 7th division
contains the 33rd 44th grades.

There are two isotopy classes in the set of all homeomorphisms
R2 → R2. One of the classes contains the identity map id (x, y) =
(x, y), and the other one contains the reflection ref (x, y) = (−x, y).
Obviously, homeomorphisms from the first isotopy class [id] preserve
the orientation of the plane and from the second class [ref] reverse the
orientation. If h ∈ [ref] and C is a curve in R2, then either the curves
C and h(C) are isotopic or are not. In the first case the isotopy class
[C] is called reflectable and otherwise nonreflectable. We denote isotopy
classes of affine quartic curves by means of numbers and letters. We
denote the admissible classes that contain quartic curves by numbers
(for example 1, . . . , 5, 6±, . . . ) and denote the admissible classes that do
not contain quartic curves by capital letters (for example, A,B±, . . . ).
A number n means a reflectable class. A number n± means two
nonreflectable isotopy classes n+ and n−. We draw a picture only
for the class n+. One can obtain the picture for class n− by means of
the reflection of n+.

There are two classifications of interest. One is the isotopy classifica-
tion and the other is the topological classification of pairs. The latter
refers to the equivalence relation where C1 and C2 are equivalent pro-
vided the pairs (R2, C1) and (R2, C2) are topologically equivalent. The
topological classification of pairs is distinct from the isotopy classifica-
tion, but the latter is easily obtained from the former. It turns out
that 131 out of the 516 homeomorphism types of pairs (described in
Theorem 7) are such that their mirror images (i.e., the result of reflec-
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tion with respect to any line in the plane) are not isotopic to the initial
pair. This phenomenon can be regarded as new in the sense that for
affine curves of degree lower than four there is no distinction between
the topological classification of pairs and the isotopy classification. If
a denotes the number of reflectable classes and 2b the number of non-
reflectable classes, then the topological classification of pairs contains
a+b classes, and the isotopy classification contains a+2b classes. Both
of these classifications are presented in the following theorem.

Theorem 7. (a)There are 667 distinct admissible (397 reflectable
and 270 nonreflectable) isotopy classes for affine quartic curves.

(b) There are 647 distinct isotopy classes (385 reflectable and 262
nonreflectable) of affine quartic curves.

(c) There are 516 distinct equivalence classes of topological pairs
(R2, C), where C is an affine quartic curve.

Proof. According to Theorem 6 of Section 2, each isotopy class of
affine quartic curves contains a singular-simple curve. This allows us
to classify just the singular-simple quartic curves and simplifies the
enumeration of admissible isotopy classes substantially. It means that it
suffices to consider affine quartic curves that have only singular-simple
points of the types A1, A

∗
1, D4 and X9 in R2 and that have transversal

intersection with the line at infinity in real or complex points or simple
tangency with the line at infinity in real points.

We remark here that the existence of the irreducible affine quartic
curves can be verified by referring to Gudkov’s projective classification
of forms [16], [17], [18] [24], [10] [14], [26], which takes into account
the arrangement of the flex points. We also remark that the existence of
the reducible affine quartic curves consisting of a line and an irreducible
cubic curve can be verified by referring to one of Newton’s classifications
of cubic curves [38]. However, a much shorter proof is obtained by
independently constructing the quartic representatives from the affine
admissible classes (denoted by numbers), and this is what we do. In
the notation m±(n±) under the pictures, the first integer m± refers to
the number of the admissible isotopy class and the second integer n±,
in parentheses, means that the quartic curve from the admissible class
m± can be constructed from a quartic curve from admissible isotopy
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class n± either by means of Theorem 3 and a small deformation of
a singular point preserving, if necessary, other singular points, or by
contracting an oval of a quartic curve to a point, or by moving the line
at infinity. Below we describe such constructions, which allow us to
generate, in tree-like fashion, the quartic curves that realize all of the
affine isotopy classes.

All restrictions are treated in Lemma 8.

The 1st division. The quartic curve has 4 real points of intersection
with the line at infinity and thus it has 4 asymptotes.

To obtain an admissible class for affine quartic curves of the n-th
affine grade, first we take a projective topological curve C from an
isotopy class of the n-th projective grade depicted in Figure 3, second,
we consider all isotopy types of the different unions C∪L∞ that satisfy
Bezout’s theorem and, third, we declare L∞ as the line at infinity and
obtain an affine topological curve C \ L∞ as a representative for the
admissible class of affine quartic curves. The admissible classes of the
1st division are shown in Figure 8. Recall that the open disk is a
model of the affine plane and the line at infinity, just chosen, is the
boundary circle, and that 1p, 2p, . . . , 66p refer to the isotopy classes of
the projective quartic curves depicted in Figure 3.

The 1st 21st grades represent admissible isotopy classes for reducible
quartic curves.

The 1st 6th grades represent admissible isotopy classes for reducible
quartic curves that consist of 4 line components.

The 1st grade (R(l1l2l3l4), {X9}) contains 1 reflectable admissible
class: 1, obtained from the class 1p by an obvious selection of the line
at infinity. The existence of such a quartic curve is obvious.

The 2nd grade (R(l1l2l3l4), {D4, 3A1}) contains 1 reflectable admis-
sible class: 2, obtained from the class 2p by an obvious selection of the
line at infinity. If we move one of the lines of a curve of the 1st grade
off the singular point X9, we obtain the required quartic curve.

The 3rd grade (R(l1l2l3l4), {6A1}) contains 1 reflectable admissible
class: 3, obtained from the class 3p by an obvious selection of the line
at infinity. The quartic curve is easily constructed by moving one of the
lines of a quartic curve from the 2nd grade off the singular point D4.
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FIGURE 8 (beginning). The 1st division.

The 4th grade (R(l1l2l3l4), {A1, A
∗
1}), the 5th grade (R(l1l2l3l4),

{2A∗
1}), and the 6th grade (R(l1l2l3l4), {4A∗

1}) don’t contain admissible
classes.

The 7th 10th grades represent admissible isotopy classes for reducible
quartic curves that consist of 2 line and 1 conic components.

The 7th grade (R(l1l2c), {D4, 2A1}) contains 6 new admissible classes
(2 reflectable and 4 nonreflectables classes): 4, 5, 6±, and 7±. Enu-
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FIGURE 8 (continued). The 1st division.

meration: These classes can be obtained from the class 7p by means
of appropriate selections of the line at infinity. Construction: The ar-
rangements of a hyperbola and two lines shown in the figure for the
7th grade are obvious. However, the quartic curves from these affine
admissible classes can be constructed by means of a small deformation
of one of the singular points of quartic curves from the 1st and 2nd
grades.
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FIGURE 8 (continued). The 1st division.
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FIGURE 8 (continued). The 1st division.
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FIGURE 8 (conclusion). The 1st division.

The 8th grade (R(l1l2c), {5A1}) contains 10 admissible classes (6
reflectable and 4 nonreflectable): 8, 9, 10, 11±, 12±, 13, 14 and 15.
Enumeration: The classes 8 12± can be obtained from the class 8p, and
the classes 13 15 from the class 9p by means of appropriate selections
of the line at infinity. Construction: The arrangements of a hyperbola
and two lines show in the figure for this grade are obvious. However, the
quartic curves from these affine admissible classes can be constructed
by means of small deformations of one of the double points of a quartic
curve from the 3rd grade or the 3-fold point of quartic curves from the
7th grade.

The 9th grade (R(l1l2c), {3A1}) contains 3 admissible classes (1
reflectable and 2 nonreflectable): 16 and 17±. Enumeration: These
classes can be obtained from the class 10p by means of appropriate
selections of the line at infinity. Construction: The arrangements of a
hyperbola and two lines shown in the figure for this grade are obvious.
However, the quartic curves from these affine admissible classes are
constructed by means of small deformations of the 4-fold point of a
quartic curve from the 1st grade or the 3-fold point of a quartic curve
from the 2nd grade.

The 10th grade (R(l1l2c), {A1}) contains one reflectable admissible
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class: 18. Enumeration: This class can be obtained from the class
12p by an obvious selection of the line at infinity. Construction: The
arrangement of a hyperbola and two lines shown in the figure for this
grade is obvious. However, a quartic curve from this affine admissible
class can be constructed by means of a small deformation of the 4-fold
point of a quartic curve from the 1st grade.

The 11th grade (R(l1l2c), {A∗
1}) does not contain admissible classes.

The 12th 14th grades represent admissible isotopy classes for re-
ducible quartic curves that consist of 2 conic components.

The 12th grade (R(c1c2), {4A1}) contains 8 reflectable admissible
classes: 19 26. Enumeration: The classes 19 22 can be obtained from
the class 16p, and the classes 23 26 from the class 17p by means
of appropriate selections of the line at infinity. Construction: The
arrangements of two hyperbolas shown in the figure for this grade
are obvious. However, the quartic curves from these affine admissible
classes can be constructed by means of small deformations of the point
of intersection of the two line components of quartic curves from the
8th grade.

The 13th grade (R(c1c2), {2A1}) contains 3 reflectable admissible
classes: 27, 28 and 29. Enumeration: These classes can be obtained
from the class 18p by means of appropriate selections of the line at
infinity. Construction: The arrangements of two hyperbolas shown in
the figure for this grade are obvious. However, the quartic curves from
these affine admissible classes can be constructed by means of small
deformations of the point of intersection of the two line components of
quartic curves from the 9th grade.

The 14th grade (R(c1c2),∅) contains 2 reflectable admissible classes:
30 and 31. Enumeration: These classes can be obtained from the classes
21p and 22p, respectively, by obvious selections of the line at infinity.
Construction: The arrangements of two hyperbolas shown in the figure
for this grade are obvious. However, the quartic curves from these affine
admissible classes can be constructed by means of small deformations
of the point of intersection of the two line components of quartic curves
from the 10th grade.

The 15th 21st grades represent admissible isotopy classes for re-
ducible quartic curves that consist of 1 line and 1 cubic component.
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The 15th grade (R(lcb), {D4, A1}) contains 11 admissible classes
(1 reflectable and 10 nonreflectable): 32±, 33±, 34±, 35, 36±, 37±.
Enumeration: The classes 32±−34± can be obtained from the class 23p,
and the classes 35, 36±, 37± from the class 24p by means of appropriate
selections of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of small
deformations of one of the double points of quartic curves from the 7th
grade.

The 16th grade (R(lcb), {4A1}) contains 26 nonreflectable admissi-
ble classes: 38± − 50±. Enumeration: The classes 38± − 44± can be
obtained from the class 24p, and the classes 45± − 50± from 25p by
means of appropriate selections of the line at infinity. Construction:
The quartic curves from these affine admissible classes can be con-
structed by means of small deformations of one of the double points of
quartic curves from the 8th grade. To preserve a line component, one
must choose a double point that differs from the point of intersection
of the two line components.

The 17th grade (R(lcb), {3A1}) contains 3 old (1 reflectable and 2
nonreflectable) admissible classes: 16, 17±, and 10 new (2 reflectable
and 8 nonreflectable) admissible classes: 51±, 52±, 53, 54, 55±, 56±.
Enumeration: The classes 51± and 52± can be obtained from the class
27p, the classes 53, 16 and 17± from class 10p, and the classes 54,
55± and 56± from the class 28p by means of appropriate selections of
the line at infinity. Construction: The quartic curves from these affine
admissible classes can be constructed by means of small deformations
of one of the double points of quartic curves from the 16th grade. To
preserve a line component, one must choose a double point that differs
from the points of intersection of the line and cubic curve.

The 18th grade (R(lcb), {2A1}) contains 6 new nonreflectable ad-
missible classes: 57±, 58±, 59±. Enumeration: These classes can be
obtained from the projective class 29p by means of appropriate selec-
tions of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of small
deformations of one of the double points of quartic curves from the 9th
grade. To preserve a line component, one must choose a double point
that differs from the point of intersection of the two line components.

The 19th grade (R(lcb), {A1}) contains 1 old reflectable admissible
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class: 18, and 3 new (1 reflectable and 2 nonreflectable) admissible
classes: 60±, 61. Enumeration: The classes 60± can be obtained from
the class 11p and the classes 18 and 61 from the class 12p by means of
appropriate selections of the line at infinity. Construction: The quartic
curves from these affine admissible classes can be constructed by means
of small deformations of one of the double points of quartic curves from
the 18th grade. To preserve a line component, one must choose a double
point that differs from the point of intersection of the line and cubic
curve.

The 20th grade (R(lcb), {3A1, A
∗
1}) contains 4 new nonreflectable

admissible classes: 62± and 63±. Enumeration: These classes can
be obtained from the projective class 30p by means of appropriate
selections of the line at infinity. Construction: The quartic curves
from these affine admissible classes can be constructed by means of
contracting the oval of the cubic component of these quartic curves to
a point. If lcb = 0 is an equation of a quartic curve from classes 55±

or 56± such that the signs of l and cb are different inside the oval, then
the segment of curves with equation l(cb + tl) = 0, t ∈ [0, t0], provides
the required contraction for some t0 > 0 and connects quartic curves
of classes 55± and 56± with 62± and 63±, respectively.

The 21st grade (R(lcb), {A1, A
∗
1}) contains 2 nonreflectable admissi-

ble classes: 64±. Enumeration: They can be obtained from the class
4p by an obvious selection of the line at infinity. Construction: The
quartic curves from these affine admissible classes can be constructed
by means of contracting the oval of the cubic component of these quar-
tic curves to a point in the same manner as in the 20th grade. Another
way to construct these curves is parallel motion of a line component of
quartic curves from the 20th grade.

The 22 32nd grades represent admissible classes of irreducible affine
quartic curves.

The 22nd grade (Rq, {D4}) contains 5 new (3 reflectable and 2 non-
reflectable) admissible classes: 65, 66, 67±, and 68. Enumeration:
The classes 65 and 66 can be obtained from the class 31p, and the
classes 67± and 68 from the class 32p by means of appropriate selec-
tions of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of suitable
deformations of the double point of intersection of a line and cubic curve
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of the 15th grade.

The 23rd grade (Rq, {3A1}) contains 48 new (16 reflectable and 32
nonreflectable) admissible classes: 69 71, 72± − 76±, 77, 78, 79±, 80±,
81 83, 84±, 85 91, 92± 97±, A and B±. Enumeration: The classes
69 76± can be obtained from the class 33p, the classes 77 80± from
the class 34p, the classes 81 84± from the class 35p, the classes 85 88
from the class 36p, and the classes 89 97±, A and B± from the class 37p
by means of appropriate selections of the line at infinity. Construction:
The classes 69 97± contain quartic curves. The quartic curves from
these affine admissible classes can be constructed by means of suitable
deformations of one of the double points of intersection of a line and
cubic curve of the 16th grade. Restriction: The classes A and B± don’t
contain quartic curves (see Lemma 8).

The 24th grade (Rq, {2A1}) contains 9 old (3 reflectable and 6
nonreflectable) admissible classes: 27 29, 57± 59± and 40 new (18
reflectable and 22 nonreflectable) admissible classes 98, 98±, 100, 101,
102±, 103±, 104 106, 107±, 108 111, 112± 115±, 116 121, 122± 125±

and C. Enumeration: The classes 98 and 99± can be obtained from the
class 38p, the classes 100 102± from the class 39p, the classes 103±,
57± 59± from the class 29p, the classes 104, 27 29 from the class 18p,
the classes 105 107± from the class 40p, the classes 108 115 from the
class 41p, the classes 116 125± and C from the class 42p by means of
appropriate selection of the line at infinity. Construction: The classes
27 29, 57± 59±, 98 125± contain quartic curves. The quartic curves
from these affine admissible classes can be constructed by means of
suitable deformations of one of the double points of a quartic curve of
the 23rd grade. The double point in each case can be found in figures
of the 23rd grade. Restriction: The class C doesn’t contain quartic
curves (see Lemma 8).

The 25th grade (Rq, {A1}) contains 4 old (2 reflectable and 2 non-
reflectable) admissible classes: 61, 18, 60± and 20 new (14 reflectable
and 6 nonreflectable) admissible classes, 126 130, 131±, 132 135, 136±,
137 141, and 142±. Enumeration: The class 61 can be obtained from
the class 11p, the classes 18 and 60± from the class 12p, the classes
126 128 from the class 43p, the classes 129 131± from the class 44p,
the classes 132 136± from the class 45p, the classes 137 142± from the
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class 46p by means of appropriate selection of the line at infinity. Con-
struction: The quartic curves from these affine admissible classes can
be constructed by means of suitable deformations of one of the double
points of a quartic curve of 24th grade. The double point in each case
can be found in figures of the 24th grade.

The 26th grade (Rq,∅) contains 2 old reflectable admissible classes:
30, 31, and 7 new reflectable, 143 149. All of them contain quartic
curves. Enumeration: The class 143 can be obtained from the class
20p, the classes 144 and 31 from the class 21p, the classes 145 and
30 from the class 22p, the classes 146 and 147 from the class 47p,
the classes 148 and 149 from the class 48p by means of appropriate
selection of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of suitable
deformations of the double point of a quartic curve of the 25th grade.

The 27th grade (Rq, {2A1, A
∗
1}) contains 15 new (5 reflectable and

10 nonreflectable) admissible classes: 150 152, 153± 156±, 157, 158±,
and D. Enumeration: The classes 150 156± and D can be obtained
from the class 49p, and the classes 157 and 158± from the class 50p
by means of appropriate selection of the line at infinity. Construction:
The classes 150 156±, 157 and 158± contain quartic curves. Quartic
curves from these affine admissible classes, with the exception of 151,
can be constructed by means of suitable deformations of one of the
nonisolated double points of a quartic curve of the 20th grade. The
double point in each case can be found in figures of the 20th grade.
A curve of the class 151 can be constructed by means of contracting
to a point the oval of a quartic curve of class 118 of the 24th grade.
Let q = 0 be an equation of the quartic curve and l = 0 an equation
of the line connecting the double points of the quartic curve. Let the
signs of q and l be different inside the quartic oval; then the segment
of curves with equation q + tl3 = 0, t ∈ [0, t0], provides the required
contraction for some t0 > 0. Restriction: The class D doesn’t contain
quartic curves (see Lemma 8).

The 28th grade (Rq{A1, A
∗
1}) contains 2 old nonreflectable admissible

classes: 64±, and 9 new (7 reflectable and 2 nonreflectable) 159 165,
166±. Enumeration: The class 64± can be obtained from the class 4p,
the classes 159 161 can be obtained from the class 51p, and the classes
162 166± can be obtained from the class 52p by means of appropriate
selection of the line at infinity. Construction: The quartic curves from
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these affine admissible classes can be constructed by means of suitable
deformations of one of the double points of quartic curves of the 27th
grade. The double point in each case can be found in figures of the
27th grade.

The 29th grade (Rq, {A∗
1}) contains 6 new reflectable admissible

classes: 167 172. Enumeration: The class 167 can be obtained from
the class 14p, the class 168 from the class 15p, the classes 169 and 170
from the class 53p, and the classes 171 and 172 from the class 54p by
means of appropriate selection of the line at infinity. Construction: The
quartic curves from these affine admissible classes can be constructed
by means of suitable deformations of the double point of quartic curves
of the 28th grade.

The 30th grade (Rq, {A1, 2A∗
1}) contains 4 new (2 reflectable and 2

nonreflectable) admissible classes: 173, 174, 175±. Enumeration: These
classes can be obtained from the class 55p by means of appropriate
selection of the line at infinity. Construction: These classes contain
quartic curves. The quartic curves from these affine admissible classes
can be constructed by means of contracting to a point the oval of the
quartic curves of classes 163, 165 and 166±. Let q = 0 be an equation
of the quartic curve and l = 0 an equation of the line connecting the
double points of the quartic curve. Let the signs of q and l be different
inside the quartic oval; then the segment of curves with equation
q + tl3 = 0, t ∈ [0, t0], provides the required contraction for some
t0 > 0.

The 31st grade (Rq, {2A∗
1}) contains 3 new reflectable admissible

classes: 176 178. Enumeration: The class 176 can be obtained from
the class 56p, the classes 177 and 178 from the class 57p by means of
appropriate selection of the line at infinity. Construction: The quartic
curves from these affine admissible classes can be constructed by means
of suitable deformations of the double point of quartic curves of the 30th
grade.

The 32nd grade (Rq, {3A∗
1}) contains 1 new reflectable admissible

class: 179. Enumeration: The class 179 can be obtained from the
class 59p by means of appropriate selection of the line at infinity.
Construction: This class contains quartic curves. The quartic curves
from these affine admissible classes can be constructed by means of
contracting to a point the oval of a quartic curve of class 177. Let
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q = 0 be an equation of the quartic curve and l = 0 be an equation
of the line connecting the double points of the quartic curve. Let the
signs of q and l be different inside the quartic oval; then the segment
of curves with equation q + tl3 = 0, t ∈ [0, t0], provides the required
contraction for some t0 > 0.

In conclusion, the 1st division contains 254 admissible (112 reflectable
and 142 nonreflectable) classes. The 5 admissible (3 reflectable and 2
nonreflectable) classes A,B±, C and D do not contain quartic curves.

The 2nd division. The quartic curves have 2 real points of
intersection and 1 point of tangency with the line at infinity, and thus
have 2 two-sided asymptotes and 2 parabolic branches.

Let us consider a noncompact nonsingular (homeomorphic to an open
segment) component of an affine curve that goes to infinity along two
asymptotes. The complement of such a component in the affine plane
consists of two components homeomorphic to a disk. If one of the
components does not contain any other points of the curve, then the
component of the curve is called a simple arc.

Let us consider a quartic curve of the 2nd division. Such a curve
has 2 real points of intersection and 1 point of tangency with the line
at infinity. If we make a small rotation of the line at infinity around
a point of intersection with the corresponding projective curve in the
direction which replaces the point of tangency with two real points of
intersection, then we obtain a curve that has acquired a new simple
arc and belongs to the 1st division. The point here is that each curve
of the 2nd division can be constructed from a curve of the 1st division
that has a simple arc. Thus, to construct a curve of the 2nd division
it is enough to rotate the line at infinity around a point of intersection
with the curve that is not an endpoint of a simple arc until the new
line at infinity becomes tangent to that simple arc. In Figure 9 one
may see the admissible classes and their quartic representatives. We
show in parentheses the numbers of the admissible classes that we use
for construction. We show all quartic curves that can be obtained from
the 1st division, even if they represent classes obtained earlier.

The 1st 6th grades don’t contain admissible classes.

The 7th 21st grades represent admissible isotopy classes for reducible
quartic curves. All these admissible classes contain quartic curves.
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FIGURE 9 (beginning). The 2nd division.
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FIGURE 9 (continued). The 2nd division.
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FIGURE 9 (continued). The 2nd division.
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FIGURE 9 (continued). The 2nd division.

The 7th grade (R(l1l2c), {D4, 2A1}) contains 3 new (1 reflectable and
2 nonreflectable) admissible classes: 180 and 181±.

The 8th grade (R(l1l2c), {5A1}) contains 5 new (1 reflectable and 4
nonreflectable) admissible classes: 182, 183± and 184±.
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FIGURE 9 (conclusion). The 2nd division.

The 9th grade (R(l1l2c), {3A1}) contains 2 new nonreflectable admis-
sible classes: 185±.

The 10th grade (R(l1l2c), {A1}) contains 1 new reflectable admissible
class: 186.

The 11th grade (R(l1l2c), {A∗
1}) does not contain admissible classes.

The 12th grade (R(c1c2), {4A1}) contains 4 new reflectable admissi-
ble classes: 187 190.

The 13th grade (R(c1c2), {2A1}) contains 2 new reflectable admissi-
ble classes: 191 and 192.
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The 14th grade (R(c1c2),∅) contains 2 new reflectable admissible
classes: 193 and 194.

The 15th grade (R(lcb), {D4, A1}) contains 12 new nonreflectable
admissible classes: 195± 200±.

The 16th grade (R(lcb), {4A1}) contains 21 new (1 reflectable and 20
nonreflectable) admissible classes: 201± 205±, 206, 207± 211±.

The 17th grade (R(lcb), {3A1}) contains 2 old nonreflectable admis-
sible classes: 185± and 12 new (2 reflectable and 10 nonreflectable)
admissible classes: 212±, 213, 214, 215± 218±.

The 18th grade (R(lcb), {2A1}) contains 6 new (2 reflectable and 4
nonreflectable) admissible classes: 219, 220±, 221± and 222.

The 19th grade (R(lcb), {A1}) contains 1 old reflectable admissible
class: 185 and 4 new nonreflectable admissible classes: 223± and 224±.

The 20th grade (R(lcb), {3A1, A
∗
1}) contains 6 new nonreflectable

admissible classes: 225± 227±.

The 21st grade (R(lcb), {A1, A
∗
1}) contains 3 new (1 reflectable and

2 nonreflectable) admissible classes: 228 and 229±.

The 22nd grade (Rq, {D4}) contains 6 new reflectable admissible
classes: 230 235.

The 23rd grade (Rq, {3A1}) contains 46 new (18 reflectable and
28 nonreflectable) admissible classes: 236, 237, 238± 240±, 241, 242,
243± 245±, 246 249, 250±, 251 256, 257± 260±, 261, E, F , G±, H±.
Restriction: The 2 reflectable classes E and F and the 4 nonreflectable
classes G± and H± don’t contain quartic curves (see Lemma 8).

The 24th grade (Rq, {2A1}) contains 8 old (4 reflectable and 4
nonreflectable) admissible classes: 222, 192, 191, 220±, 219 and 221±

and 30 new (24 reflectable and 6 nonreflectable) admissible classes:
262, 263±, 264, 265±, 266 282, 286±, I and J . Restriction: The 2
reflectable classes I and J don’t contain quartic curves (see Lemma 8).

The 25th grade (Rq, {A1}) contains 4 old (2 reflectable and 2 nonre-
flectable) admissible classes: 186, 223 and 224± and 15 new reflectable
admissible classes: 287 301.

The 26th grade (Rq,∅) contains 2 old admissible classes: 194 and
193 and 7 new reflectable admissible classes: 302 308.
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The 27th grade (Rq, {2A1, A
∗
1}) contains 14 new (12 reflectable and

2 nonreflectable) admissible classes: 309 316, 317±, 318, 319, K and
L. Restriction: The 2 reflectable classes K and L don’t contain quartic
curves (see Lemma 8).

The 28th grade (Rq, {A1, A
∗
1}) contains 3 old (1 reflectable and 2

nonreflectable) admissible classes: 228 and 229± and 10 new reflectible
admissible classes: 320 329.

The 29th grade (Rq, {A∗
1}) contains 7 new reflectable admissible

classes: 330 336.

The 30th grade (Rq, {A1, 2A∗
1}) contains 5 new reflectable admissible

classes: 337 341.

The 31st grade (Rq, {2A∗
1}) contains 5 new reflectable admissible

classes: 342 346.

The 32nd grade (Rq, {3A∗
1}) contains 2 new reflectable admissible

classes: 347 and 348.

In conclusion, the 2nd division contains 227 new (127 reflectable and
100 nonreflectable) admissible classes. The 10 admissible (6 reflectable
and 4 nonreflectable) classes E,F,G±, H±, I, J,K,L do not contain
quartic curves.

The 3rd division. These quartic curves have 2 real points of
tangency with the line at infinity and thus have 4 parabolic asymptotic
branches.

Let us consider a quartic curve of the 3rd division. Such a curve F
has 2 points of tangency with the line at infinity L∞. Let U1 and U2 be
regular neighborhoods of the points of tangency a1 and a2, respectively.
Let us slide the line at infinity so that it is tangent to Rf ∩ U1 and
intersects Rf ∩ U2 in two real points. We then obtain a quartic curve
that has acquired a new simple arc and belongs to the 2nd division. The
point here is that each curve of the 3rd division can be constructed from
a curve of the 2nd division that has a simple arc. Thus, to construct a
curve of the 3rd division, it is enough to slide the line at infinity along
the curve of the 2nd division until the line at infinity becomes tangent
to that simple arc. In Figure 10 one may see the admissible classes
and their quartic representatives. We show in parentheses the numbers
of the admissible classes that we use for construction. We show all
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FIGURE 10 (beginning). The 3rd division.

quartic curves that can be obtained from the 2nd division, even if they
represent classes obtained earlier.

The 1st 11th grades don’t contain admissible classes.

The 12th 14th grades represent admissible isotopy classes for re-
ducible quartic curves. All these admissible classes contain quartic
curves.
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FIGURE 10 (conclusion). The 3rd division.

The 12th grade (R(c1c2), {4A1}) contains 1 new reflectable admissi-
ble class: 349.

The 13th grade (R(c1c2), {2A1}) contains 1 new reflectable admissi-
ble class: 350.

The 14th grade (R(c1c2),∅) contains 1 new reflectable admissible
class: 351.

The 15th 21st grades don’t contain admissible classes.

The 22nd grade (Rq, {D4}) contains 2 reflectable admissible classes:
352 and 353.

The 23rd grade (Rq, {3A1}) contains 11 new (7 reflectable and 4 non-
reflectable) admissible classes: 354 359, 360±, M and N±. Restriction:
The 1 reflectable class M and 2 nonreflectable classes N± don’t contain
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quartic curves (see Lemma 8).

The 24th grade (Rq, {2A1}) contains 1 old reflectable admissible
class: 350 and 14 new (10 reflectable and 4 nonreflectable) admissible
classes: 361 365, 366±, 367 370, 371± and O. Restriction: The 1
reflectable class O doesn’t contain quartic curves (see Lemma 8).

The 25th grade (Rq, {A1}) contains 12 new reflectable admissible
classes: 372 383.

The 26th grade (Rq,∅) contains 1 old reflectable admissible class:
351 and 5 new reflectable admissible classes: 384 388.

The 27th grade (Rq, {2A1, A
∗
1}) contains 5 new (3 reflectable and 2

nonreflectable) admissible classes: 389, 390, 391± and P . Restriction:
The 1 reflectable class P doesn’t contain quartic curves (see Lemma 8).

The 28th grade (Rq, {A1, A
∗
1}) contains 6 new reflectable admissible

classes: 392 397.

The 29th grade (Rq, {A∗
1}) contains 5 new reflectable admissible

classes: 398 402.

The 30th grade (Rq, {A1, 2A∗
1}) contains 2 new reflectable admissible

classes: 403 and 404.

The 31st grade (Rq, {2A∗
1}) contains 3 new reflectable admissible

classes: 405 407.

The 32nd grade (Rq, {3A∗
1}) contains 1 new reflectable admissible

class: 408.

In conclusion, the 3rd division contains 69 new (59 reflectable and 10
nonreflectable) admissible classes. The 5 admissible (3 reflectable and
2 nonreflectable) classes M , N±, O, P do not contain quartic curves.

The 4th division. These quartic curves have 2 real and 2 complex
points of intersection with the line at infinity. We enumerate the
admissible classes and construct quartic curves in the same manner
as in the 1st division. In Figure 11 one may see the admissible classes
and their quartic representatives. We show in parentheses the numbers
of the admissible classes that we use for construction. We show all
quartic curves, even if they represent classes obtained earlier.

The 1st 3rd grades don’t contain admissible classes.
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FIGURE 11 (beginning). The 4th division.
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FIGURE 11 (continued). The 4th division.
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FIGURE 11 (conclusion). The 4th division.

The 4th grade (R(l1l2l3l4), {X9}) contains 1 old reflectable admissible
class: 393, obtained from the class 4p by an obvious selection of the
line at infinity. The existence of such a quartic curve is obvious.

The 5th and 6th grades don’t contain admissible classes.

The 7th grade (R(l1l2c), {D4, 2A1}) contains 1 new reflectable ad-
missible class: 409, obtained from the class 7p by means of an obvious
selection of the line at infinity. The existence of such a quartic curve is
obvious.

The 8th grade (R(l1l2c), {5A1}) contains 2 new reflectable admissible
classes: 410 and 411, obtained from the classes 8p and 9p, respectively,
by means of obvious selections of the line at infinity. The existence of
such quartic curves is obvious.

The 9th grade (R(l1l2c), {3A1}) contains 1 new reflectable admissible
classes: 412, obtained from the class 10p by means of an obvious
selection of the line at infinity. The existence of such a quartic curve is
obvious.

The 10th grade (R(l1l2c), {A1}) contains 2 old reflectable admissible
classes: 374 and 378, obtained from the classes 11p and 12p, respec-
tively, by an obvious selection of the line at infinity. The existence of
such quartic curves is obvious.

The 11th grade (R(l1l2c), {A∗
1}) contains 2 old admissible classes 398

and 399, obtained from the classes 14p and 15p, respectively, by an
obvious selection of the line at infinity. The existence of such quartic
curves is obvious.

The 12th grade (R(c1c2), {4A1}) contains 2 new reflectable admis-
sible classes: 413 and 414, obtained from the classes 16p and 17p,
respectively, by means of an obvious selection of the line at infinity.
The existence of such quartic curves is obvious.
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The 13th grade (R(c1c2), {2A1}) contains 1 old reflectable admissible
class: 361, obtained from the class 18p by means of an obvious selection
of the line at infinity. The existence of such a quartic curve is obvious.

The 14th grade (R(c1c2),∅) contains 3 old reflectable admissible
classes: 351, 384 and 385, obtained from the classes 20p, 21p and 22p,
respectively, by means of obvious selections of the line at infinity. The
existence of such quartic curves is obvious.

The 15th 21st grades represent admissible isotopy classes for re-
ducible quartic curves that consist of 1 line and 1 cubic component.

The 15th grade (R(lcb), {D4, A1}) contains 3 new (1 reflectable and 2
nonreflectable) admissible classes: 415± and 416. Enumeration: They
can be obtained from the classes 23p and 24p by means of obvious
selections of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of small
deformations of one of the double points of quartic curves of the 7th
grade.

The 16th grade (R(lcb), {4A1}) contains 6 new nonreflectable admis-
sible classes: 417± 419±. Enumeration: They can be obtained from
the classes 25p and 26p by means of appropriate selections of the line at
infinity. Construction: The quartic curves from these affine admissible
classes can be constructed by means of small deformations of one of
the double points of quartic curves from the 8th grade. To preserve the
line component one must choose a double point that differs from the
point of intersection of the two line components.

The 17th grade (R(lcb), {3A1}) contains 1 old admissible class: 412,
and 3 new (1 reflectable and 2 nonreflectable) admissible classes: 420
and 421±. Enumeration: The classes can be obtained from the classes
10p, 27p and 28p, respectively, by means of appropriate selections of
the line at infinity. Construction: The quartic curves from these affine
admissible classes can be constructed by means of small deformations
of one of the double points of quartic curves from the 16th grade. To
preserve a line component one must choose a double point that differs
from the points of intersection of the line and cubic curve.

The 18th grade (R(lcb), {2A1}) contains 1 old reflectable admissible
class: 366±. Enumeration: This class can be obtained from the
class 29p by means of appropriate selection of the line at infinity.
Construction: A quartic curve from this affine admissible class can be
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constructed by means of small deformations of one of the double points
of a quartic curve from the 9th grade. To preserve a line component one
must choose a double point that differs from the point of intersection
of the two line components.

The 19th grade (R(lcb), {A1}) contains 2 old reflectable admissible
classes: 374 and 378. Enumeration: These classes can be obtained from
the classes 11p and 12p by means of appropriate selections of the line at
infinity. Construction: The quartic curves from these affine admissible
classes can be constructed by means of small deformations of one of
the double points of quartic curves from the 18th grade. To preserve
a line component one must choose a double point that differs from the
points of intersection of the line and cubic curve.

The 20th grade (R(lcb), {3A1, A
∗
1}) contains 2 new nonreflectable

admissible classes: 422±. Enumeration: These classes can be obtained
from the projective class 30p by means of appropriate selections of the
line at infinity. Construction: The quartic curves from these affine
admissible classes can be constructed by means of contracting the oval
of the cubic component to a point. If lcb = 0 is an equation of a quartic
curve from class 421± such that the signs of l and cb are different inside
the oval, then the segment of curves with equation l(cb + tl) = 0,
t ∈ [0, t0], provides the required contraction for some t0 > 0 and
constructs quartic curves of classes 422± from those of classes 421±.

The 21st grade (R(lcb), {A1, A
∗
1}) contains 1 old reflectable admis-

sible class: 393. Enumeration: This class can be obtained from the
class 4p by an obvious selection of the line at infinity. Construction:
A quartic curve from this affine admissible class can be constructed by
means of contracting the oval of the cubic component of a quartic curve
of 19th grade to a point in the same way as in the 20th grade. Another
way to construct this curve is parallel motion of a line component of a
quartic curve from the 20th grade.

The 22nd grade (Rq, {D4}) contains 1 old reflectable class: 353, and
1 new reflectable admissible class: 423. Enumeration: The classes 423
and 353 can be obtained from the classes 31p and 32p respectively
by means of appropriate selections of the line at infinity. Construc-
tion: The quartic curves from these affine admissible classes can be
constructed by means of suitable deformations of the double point of
intersection of the line and cubic curve of the 15th grade.



332 A.B. KORCHAGIN AND D.A. WEINBERG

The 23rd grade (Rq, {3A1}) contains 2 old reflectable classes: 355 and
357, and 9 new (5 reflectable and 4 nonreflectable) admissible classes:
424±, 425 429 and 430±. Enumeration: The classes 355 and 424± can
be obtained from the class 33p, the class 357 from 34p, the classes 425
and 426 from class 35p, class 427 from class 36p, classes 428, 429 and
430± from 37p by means of appropriate selections of the line at infinity.
Construction: The quartic curves from these affine admissible classes
can be constructed by means of suitable deformations of one of the
double points of intersection of the line and cubic curve of the 16th
grade.

The 24th grade (Rq, {2A1}) contains 7 old (5 reflectable and 2
nonreflectable) admissible classes: 350, 369, 366±, 361, 370 and 363,
and 6 new reflectable admissible classes: 431 436. Enumeration: The
class 350 can be obtained from the class 38p, the class 369 from
39p, the classes 366± from 29p, the class 361 from 18p, the class 431
from 40p, the classes 370, 363 and 432 from 41p, the classes 433 436
from 42p by means of appropriate selections of the line at infinity.
Construction: The quartic curves from these affine admissible classes
can be constructed by means of suitable deformations of one of the
double points of quartic curves of the 23rd grade. The double point in
each case can be found in figures of the 23rd grade.

The 25th grade (Rq, {A1}) contains 6 old reflectable admissible
classes: 374, 378, 373, 372, 381 and 382, and 2 new reflectable classes:
437 and 438. Enumeration: The class 374 can be obtained from the
class 11p, the class 378 from the class 12p, the class 373 from 43p, the
class 372 from the class 44p, the classes 381 and 382 from the class 45p,
the classes 437 and 438 from the class 46p by means of appropriate
selections of the line at infinity. Construction: The quartic curves from
these affine admissible classes can be constructed by means of suitable
deformations of one of the double points of quartic curves of the 24th
grade. The double point in each case can be found in figures of the
24th grade.

The 26th grade (Rq,∅) contains 4 old reflectable admissible classes:
351, 385, 384 and 388, and 1 new reflectable admissible class: 439.
Enumeration: The class 351 can be obtained from the class 20p, the
class 385 from 22p, the class 384 from 21p, the class 388 from 47p, the
class 439 from 48p by means of appropriate selections of the line at
infinity. Construction: The quartic curves from these affine admissible
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classes can be constructed by means of suitable deformations of the
double point of quartic curves of the 25th grade.

The 27th grade (Rq, {2A1, A
∗
1}) contains 1 old reflectable admissible

class: 390 and 3 new reflectable admissible classes: 440 442. Enumer-
ation: The classes 440 442 can be obtained from the class 49p, the
class 390 from 50p by means of appropriate selections of the line at
infinity. Construction: The quartic curves from these affine admissible
classes can be constructed by means of contracting to a point the oval
of quartic curves of the 24th grade in the same manner as in the 27th
grade of the 1st division.

The 28th grade (Rq{A1, A
∗
1}) contains 2 old reflectable admissible

classes: 393 and 396 and 2 new reflectable admissible classes: 443 and
444. Enumeration: The class 393 can be obtained from the class 4p, the
class 396 from 51p and the classes 443 and 444 from 52p by means of
appropriate selections of the line at infinity. Construction: The quartic
curves from these affine admissible classes can be constructed by means
of suitable deformations of one of the double points of quartic curves of
the 27th grade. The double point in each case can be found in figures
of the 27th grade.

The 29th grade (Rq, {A∗
1}) contains 3 old reflectable admissible

classes: 399, 398 and 402 and 1 new reflectable admissible class:
445. Enumeration: The class 399 can be obtained from the class
14p, the class 398 from 15p, the class 402 from 53p and the class 445
from 54p by means of appropriate selections of the line at infinity.
Construction: The quartic curves from these affine admissible classes
can be constructed by means of suitable deformations of the double
point of quartic curves of the 28th grade.

The 30th grade (Rq, {A1, 2A∗
1}) contains 1 new reflectable admissible

class: 446. Enumeration: This class can be obtained from the class 55p
by means of appropriate selection of the line at infinity. Construction:
A quartic curve from this affine admissible class can be constructed by
means of contracting to a point the oval of a quartic curve of class 443
in the same manner as in the 30th grade of the 1st division.

The 31st grade (Rq, {2A∗
1}) contains 1 old and 1 new reflectable

admissible classes: 407 and 447. Enumeration: The class 407 can be
obtained from the class 56p, the class 447 from the class 57p by means
of appropriate selections of the line at infinity. Construction: The



334 A.B. KORCHAGIN AND D.A. WEINBERG

quartic curves from these affine admissible classes can be constructed
by means of suitable deformations of the double point of quartic curves
of the 30th grade.

The 32nd grade (Rq, {3A∗
1}) contains 1 new reflectable admissible

class: 448. Enumeration: The class 448 obtained from the class 59p
by means of appropriate selection of the line at infinity. Construction:
A quartic curve from this affine admissible class can be constructed by
means of contracting to a point the oval of a quartic curve of class 447
in the same manner as in the 32nd grade of the 1st division.

In conclusion, the 4th division contains 48 new (32 reflectable and
16 nonreflectable) admissible classes. All admissible classes contain
quartic curves.

The 5th division. These quartic curves have 1 real point of
tangency with the line at infinity and thus 2 parabolic asymptotic
branches.

Let us consider a quartic curve of the 5th division. Such a curve has
1 point of tangency with the line at infinity. If we move the line at
infinity so that the point of tangency is replaced by two real points of
intersection with the curve, then we obtain a curve from an admissible
class of the 4th division. So to construct the curves from the 5th
division it is enough to consider each curve of the 4th division that has
a simple arc and move the line at infinity so that it becomes tangent
to this simple arc. It is easy to see that for projective quartic curves
there exists such a motion during which the line does not intersect
other branches of the curve. In Figure 12 one may see the admissible
classes and their quartic representatives. We show in parentheses the
number of the admissible classes that we use for construction. We show
all quartic curves that can be obtained from the 4th division, even if
they represent classes obtained earlier.

The 1st 10th grades don’t contain admissible classes.

The 11th 14th grades represent admissible isotopy classes for re-
ducible quartic curves. All these admissible classes contain quartic
curves.

The 11th grade (R(l1l2c), {A∗
1}) contains 1 new reflectable admissible

class: 449.
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FIGURE 12 (beginning). The 5th division.
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FIGURE 12 (conclusion). The 5th division.

The 12th grade (R(c1c2), {4A1}) contains 1 new reflectable admissi-
ble class: 450.

The 13th grade (R(c1c2), {2A1}) contains 1 new reflectable admissi-
ble class: 451.

The 14th grade (R(c1c2),∅) contains 2 new reflectable admissible
classes: 452 and 453.

The 15th 21st grades don’t contain admissible classes.

The 22nd grade (Rq, {D4}) contains 1 new reflectable admissible
class: 454.

The 23rd grade (Rq, {3A1}) contains 5 new (3 reflectable and 2
nonreflectable) admissible classes: 455 457 and 458±.

The 24th grade (Rq, {2A1}) contains 1 old reflectable admissible
class: 451 and 6 new reflectable admissible classes: 459 464.

The 25th grade (Rq, {A1}) contains 5 new reflectable admissible
classes: 465 469.

The 26th grade (Rq,∅) contains 2 old reflectable admissible classes:
452 and 453 and 2 new reflectable admissible classes: 470 and 471.

The 27th grade (Rq, {2A1, A
∗
1}) contains 2 new reflectable admissible

classes: 472 and 473.

The 28th grade (Rq, {A1, A
∗
1}) contains 3 new reflectable admissible

classes: 474 476.

The 29th grade (Rq, {A∗
1}) contains 1 old reflectable admissible class:

449 and 2 new reflectable admissible classes: 477 and 478.
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The 30th grade (Rq, {A1, 2A∗
1}) contains 1 new reflectable admissible

class: 479.

The 31st grade (Rq, {2A∗
1}) contains 2 new reflectable admissible

classes: 480 and 481.

The 32nd grade (Rq, {3A∗
1}) contains 1 new reflectable admissible

class: 482.

In conclusion, the 5th division contains 35 new (33 reflectable and
2 nonreflectable) admissible classes. All admissible classes contain
quartic curves.

The 6th division. These quartic curves do not have real points of
intersection with the line at infinity.

To enumerate the admissible classes and construct their quartic rep-
resentatives, it is enough to consider the isotopy classes of contractible
projective curves of Figure 3. In Figure 13 one may see the affine ad-
missible classes and their quartic representatives for the 6th division.

The 1st 4th grades don’t contain admissible classes.

The 5th grade (R(l1l2l3l4), {2A∗
1}) contains 1 new reflectable admis-

sible class: 483.

The 6th grade (R(l1l2l3l4), {4A∗
1}) contains 1 new reflectable admis-

sible class: 484.

The 7th 10th grades don’t contain admissible classes.

The 11th grade (R(l1l2c), {A∗
1}) contains 3 new reflectable admissible

classes: 485 487.

The 12th grade (R(c1c2), {4A1}) contains 1 new reflectable admissi-
ble class: 488.

The 13th grade (R(c1c2), {2A1}) contains 1 new reflectable admissi-
ble class: 489.

The 14th grade (R(c1c2),∅) contains 4 new reflectable admissible
classes: 490 493.

The 15th 21st grades don’t contain admissible classes.

The 22nd grade (Rq, {D4}) contains 1 new reflectable admissible
class: 494.
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FIGURE 13. The 6th division.

The 23rd grade (Rq, {3A1}) contains 3 new reflectable admissible
classes: 495 497.

The 24th grade (Rq, {2A1}) contains 1 old reflectable admissible
class: 489 and 3 new reflectable admissible classes: 498 500.

The 25th grade (Rq, {A1}) contains 4 new reflectable admissible
classes: 501 504.
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The 26th grade (Rq,∅) contains 4 old reflectable admissible classes:
490, 491, 493 and 492, and 2 new reflectable admissible classes: 505
and 506.

The 27th grade (Rq, {2A1, A
∗
1}) contains 1 new reflectable admissible

class: 507.

The 28th grade (Rq, {A1, A
∗
1}) contains 2 new reflectable admissible

classes: 508 and 509.

The 29th grade (Rq, {A∗
1}) contains 3 old reflectable admissible

classes: 485 487, and 2 new reflectable admissible classes: 510 and
511.

The 30th grade (Rq, {A1, 2A∗
1}) contains 1 new reflectable admissible

class: 512.

The 31st grade (Rq, {2A∗
1}) contains 1 old reflectable admissible class:

483, and 2 new reflectable admissible classes: 513 and 514.

The 32nd grade (Rq, {3A∗
1}) contains 2 new reflectable admissible

classes: 515 and 516.

In conclusion, the 6th division contains 34 new reflectable admissible
classes. All admissible classes contain quartic curves.

The 7th division. This division contains admissible classes and
their quartic representatives with multiple components. If a quartic
curve has a multiple component, then the degree of such a component
is no more than 2. We divide the affine quartic curves with multiple
components into 12 grades as was done for the projective quartic curves.
Thus, the enumeration and construction of such quartic curves is easy
enough and we consider them without comments. In Figure 14, one
may see the affine admissible classes and their quartic representatives
for the 7th division.

The 33rd grade (R(l4), Sing (l) = ∅) contains 1 old reflectable admis-
sidble class: 452.

The 34th grade (R(l1l32), Sing (l1l2) = {A1}) contains 2 old reflectable
admissible classes: 374 and 351.

The 35th grade (R(l21l
2
2), Sing (l1l2) = {A1}) contains 2 old reflectable

admissible classes: 374 and 351.

The 36th grade (R(l21l
2
2), Sing (l1l2) = {A∗

1}) contains 2 old reflectable



340 A.B. KORCHAGIN AND D.A. WEINBERG

FIGURE 14. The 7th division.

admissible classes: 485 and 490.

The 37th grade (R(l1l2l23), Sing (l1l2l3) = {D4}) contains 2 old re-
flectable admissible classes: 235 and 193.

The 38th grade (R(l1l2l23), Sing (l1l2l3) = {D∗
4}) contains 1 old re-

flectable admissible class: 452.

The 39th grade (R(l1l2l23), Sing (l1l2l3) = {3A1}) contains 2 old
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reflectable admissible classes: 237 and 222.

The 40th grade (R(l1l2l23), Sing (l1l2l3) = {A∗
1}) contains 2 old re-

flectable admissible classes: 449 and 452.

The 41st grade (R(l2c), Sing (lc) = {2A1}) contains 6 old reflectable
admissible classes: 451, 350, 191, 374, 186 and 222.

The 42nd grade (R(l2c), Sing (lc) = {A3}) contains 4 old reflectable
admissible classes: 465, 374, 186 and 193.

The 43rd grade (R(l2c), Sing (lc) = ∅) contains 3 old reflectable
admissible classes: 453, 351 and 193.

The 44th grade (R(c2), Sing (c) = ∅) contains 4 old reflectable
admissible classes: 465, 374, 186 and 193.

In conclusion, the 7th division does not contain new admissible
classes.

In conclusion, the 1st 7th divisions contain 667 admissible (397 re-
flectable and 270 nonreflectable) isotopy classes. There are 20 admis-
sible isotopy classes, A,B±, C,D,E, F , G±, H±, I, J,K,L,M , N±, O
and P (12 reflectable and 8 nonreflectable), that do not contain quartic
curves (see Lemma 8). So the isotopy classification of quartic curves
contains 647 (385 reflectable and 262 nonreflectable) isotopy classes.
The topological classification of pairs (R2, quartic curve) contains 516
classes.

4. Restrictions.

Lemma 8. There do not exist polynomials f(x, y) of degree 4 whose
sets of real points Rf realize representatives of the isotopy classes
A,B±, C,D,E, F , G±, H±, I,K, L, M,N±, O and P .

Proof. Topological curves from the isotopy classes A,B±, C,D that
satisfy the theorems of Bezout and Harnack for degree 4 are depicted
in Figures 15.1 15.4, where L∞ is the line at infinity and R is some
auxiliary line. If f is a projective algebraic curve of degree d with
singular points z1, . . . , zk of the type A1 or A2, then according to the
first Plücker formula [46] the class m∗ of the curve (the number of
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FIGURE 15.

tangent lines to the curve from a point counted properly) is

m∗(f) = d(d− 1) −
∑

i

κ(zi)

where κ(zi) is the class of singular point zi and the sum runs over all
singular points of the curve. We consider quartic curves (d = 4) with
singular points A1 or A∗

1, for which κ(A1) = κ(A∗
1) = 2.

We choose the auxiliary lines as follows. It is easy to see that each
curve from the admissible classes A,B±, C,D has at least 4 points of
inflection. Each curve has three simple arcs. At least two points of
inflection lie on the segment X of the curve that is the union of three
simple arcs, and at least two lie in the complement of the segment
X. We draw the line R through a point of inflection that lies in the
complement of X such that there are three points of intersection of the
curve, and the line R is in a small enough neighborhood of the point
of inflection.
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If a quartic curve f belongs to one of the classes A,B± or D, then
m∗(f) = 6. On the other hand, it is easy to see in Figures 15.1, 15.2
and 15.4 that each pencil of lines with center L∞ ∩R contains at least
8 real tangent lines to the curves. This contradiction proves that the
isotopy classes A,B± and D do not contain quartic curves. In the same
way one can prove that the isotopy classes E,F,G±, H±, K,L,M,N±

and P do not contain quartic curves.

If a quartic curve f belongs to the class C, then m∗(f) = 8. On the
other hand, it is easy to see in Figure 15.3 that the pencil of lines with
center L∞∩R contains at least 10 real tangent lines to the curve. This
contradiction proves that the isotopy class C does not contain quartic
curves. In the same way one can prove that the isotopy classes I, J and
O do not contain quartic curves.
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ENDNOTES

1. In the literature on real algebraic geometry, another definition of isotopy
equivalence in RP 2 is used. Two topological subspaces T1 and T2 in X are called
isotopy equivalent if the pairs (X, T1) and (X, T2) are topologically equivalent. This
definition is equivalent to the definition above because every homeomorphism from
RP 2 to RP 2 is isotopic to the identity map.

2. According to tradition the words an affine curve has singular points at infinity
mean that the corresponding projective curve has singular points on the line L∞.
The expressions the line at infinity is tangent to affine curve, or an asymptote is
tangent to the curve at an infinite point, and the like, have an analogous meaning.

3. In this paper we also apply this definition to curves with multiple components.
In this case we reduce such a curve to the corresponding curve without multiple
components and then apply the definition.

4. Note that the definition of singular-isotopy equivalence differs from Gudkov’s
classification of the algebraic-topological type of an algebraic curve [15], [8], [28],
but both definitions generate a one-to-one correspondence between the algebraic-
topological types and classes of the singular-isotopy classification. Thus, both
definitions lead to the same classification of irreducible conic, cubic and quartic
curves.
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5. According to Polotovskii (private communication), the numbers 92, 93 and 96
for the singular-isotopy classes of reducible projective quartic curves shown in [27],
[28] and [29], respectively, are not correct.

6. This correct number can be found by counting coarse forms in [10] [14]; it
differs from the number of classes (396) shown in [10]. We explain the reason for
the difference in [37].

7. The restriction in this definition to lines and conics is suggested by their
connectedness. One can find a discussion of the subject and a problem in [39].

8. In the definition of admissible quartic curve, Gudkov requires satisfying the
Klein-Viro formula in addition to Bezout’s and Harnack’s theorems.

9. We estimate this number in the following manner. We take into account only

coarse forms: 349 irreducible plus 95 reducible ones. The average number of singular

points of a quartic curve is about 2. The simplest projective quartic curve that has

two complex-conjugate double points and does not have real points, generates one

affine isotopy class, consisting of the empty quartic curve. We select as one of the

most complicated projective quartic curves with two double points, the curve shown

in Figure(2.12)28 in Gudkov’s paper [12], which generates about 40 distinct affine

isotopy classes. So the average number of affine isotopy classes that are generated

by a projective quartic curve is about 20.5. Thus (349 + 95)× 20.5 = 9102.

REFERENCES

1. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of differentiable
maps, Vol. 1, Birkhauser, Boston, 1985.

2. W.W. Rouse Ball, On Newton’s classification of cubic curves, Proc. London
Math. Soc. 50 (1891), 104 143.

3. E. Bertini, Sui sistemi lineari, Rend. del R. Instit. Lomb. 15 (1882), 24 28.

4. , Introduzione alla geometria proiettiva degli iperspazi, 2nd ed., Messina,
1923.

5. J.W. Bruce and P.J. Giblin, A stratification of the space of plane quartic
curves, Proc. London Math. Soc. (3) 42 (1981), 270 289.

6. D.A. Gudkov, On the topology of plane algebraic curves, Ph.D. Thesis, Gorky,
1969 (Russian).

7. , Construction of anew series of M-curves, Dokl. Acad. Nauk SSSR
200 (1971), 1269 1272; English transl., Soviet Math. Dokl. 12 (1971), 1559 1563.

8. , On the topology of real projective algebraic varieties, Uspekhi Mat.
Nauk 29 (1974), 3 79; English transl. in Russian Math. Surveys 29 (1974), 1 79.

9. , Plane real projective quartic curves, Springer-Verlag, Berlin, 1988.

10. , Special forms of fourth order curves, Part 1, Deposited in VINITI
9208-B88, 1 36 (Russian).

11. , Special forms of fourth order curves, Part 2, Deposited in VINITI
9207-B88, 1 57 (Russian).



ISOTOPY CLASSIFICATION 345

12. , Special forms of fourth order curves, Part 3, Deposited in VINITI
6435-B89, 1 67 (Russian).

13. , Special forms of fourth order curves, Part 4, Deposited in VINITI
1239-B90, 1 55 (Russian).

14. , Special forms of fourth order curves, Part 5, Deposited in VINITI
3847-B90, 1 30 (Russian).

15. , On the ideas of roughness and degrees of nonroughness for plane
algebraic curves, Mat. Sb. 67(109) (1965), 481 527 (Russian).

16. D.A. Gudkov, N.A. Kirsanova and G.F. Nebukina, Points of inflection and
double tangents of four order curves, Part 1, Deposited in VINITI 4207-82Dep,
1 9 (Russian).

17. , Points of inflection and double tangents of four order curves, Part
2, Deposited in VINITI 17-83Dep, 1 14 (Russian).

18. D.A. Gudkov and G.F. Nebukina, Points of inflection and double tangents
of four order curves, Part 3, Deposited in VINITI 704-84Dep, 1 18 (Russian).

19. , Points of inflection and double tangents of four order curves, Part
4, Deposited in VINITI 6708-B85, 1 23 (Russian).

20. , Points of inflection and double tangents of four order curves, Part
5, Deposited in VINITI 6709-B85, 1 17 (Russian).

21. , Points of inflection and double tangents of four order curves, Part
6, Deposited in VINITI 6710-B85, 1 26 (Russian).

22. , Points of inflection and double tangents of four order curves, Part
7, Deposited in VINITI 6711-B85, 1 15 (Russian).

23. , Double tangents and points of inflection of 4th order curves, Uspekhi
Mat. Nauk 39 (1984), 112 113; English transl. in Russian Math. Survey 39 (1984),
no 4.

24. , Types and forms of 4th order curves with imaginary singular points,
Uspekhi Mat. Nauk 40 (1985), 112 113; English transl. in Russian Math. Survey
40 (1984), no. 5.

25. , Real curves of fourth order with imaginary singular points, Deposited
in VINITI 1108-B86, 1 22 (Russian).

26. D.A. Gudkov, G.F. Nebukina and T.I. Tetneva, Special forms of fourth
order curves with imaginary singular points, Deposited in VINITI 4374-B88, 1 18
(Russian).
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