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ON THE SOLVABILITY OF TWO SIMULTANEOUS
SYMMETRIC CUBIC DIOPHANTINE EQUATIONS

WITH APPLICATIONS TO SEXTIC
DIOPHANTINE EQUATIONS

AJAI CHOUDHRY

ABSTRACT. This paper provides a necessary and sufficient
condition for the solvability of the simultaneous diophantine
equations C1(x, y) = C1(u, v) and C2(x, y) = C2(u, v) where
Ci(x, y), i = 1, 2, are arbitrary binary cubic forms. If the
forms Ci(x, y) have a common factor, we obtain the com-
plete solution of these equations; otherwise, we obtain in-
finitely many solutions provided the condition of solvability
is satisfied. The method has been used to solve some dio-
phantine problems such as finding triads of cubes with equal
sums and equal products, finding two arithmetic progressions
of six terms each with equal products of terms, as well as
for solving certain sextic diophantine equations of the type
f(x, y) = f(u, v).

This paper is concerned with the solvability of the simultaneous
diophantine equations

C1(x, y) = C1(u, v),(1.1)
C2(x, y) = C2(u, v),(1.2)

where Ci(x, y), i = 1, 2, are two distinct binary cubic forms defined by

C1(x, y) = a0x
3 + a1x

2y + a2xy
2 + a3y

3,(1.3)
C2(x, y) = b0x

3 + b1x
2y + b2xy

2 + b3y
3,(1.4)

where the coefficients aj , bj , j = 0, 1, 2, 3, are integers. As both
equations (1.1) and (1.2) are homogeneous, any rational solution of
these equations may be multiplied by a suitable constant to obtain
a solution in integers. A solution in integers, say (x1, y1, u1, v1), will
be said to be primitive if gcd (x1, y1, u1, v1) = 1. Further, any solution
other than the trivial solution x = u, y = v will be said to be nontrivial.
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We give in Section 2 the complete solution of equations (1.1) and
(1.2) in certain simple cases. In Section 3 we obtain a necessary and
sufficient condition for the solvability of these equations when the forms
Ci(x, y) are arbitrary. In Section 4 we illustrate the method of solving
equations (1.1) and (1.2) and we also obtain triads of cubes with equal
sums and equal products. In Section 5 we apply the method to solve
certain equations of the type

f(x, y) = f(u, v)

where f(x, y) is a binary sextic form and obtain inter alia infinitely
many examples of two arithmetic progressions of six terms each with
equal products of terms.

2. In this section we give the complete solution in integers of
equations (1.1) and (1.2) in certain simple cases.

2.1. It is easy to find all solutions of equations (1.1) and (1.2)
with both sides of one or both the equations equal to zero. When
the two cubic forms Ci(x, y), i = 1, 2, have a common linear factor,
say (mx+ ny), infinitely many primitive nontrivial solutions are given
by the parametric solution (x, y, u, v) = (nα,−mα, nβ,−mβ). We,
however, note that there can only be finitely many primitive nontrivial
integer solutions of the simultaneous equations C1(x, y) = C1(u, v) = 0
and C2(x, y) = C2(u, v) �= 0.

When the two forms Ci(x, y), i = 1, 2, have a common quadratic
factor, it is readily seen that for nontrivial solutions, both sides of
equations (1.1) and (1.2) must be zero, and thus the complete solution
may be found.

2.2. We will now find the complete solution of equations (1.1) and
(1.2) when the two forms Ci(x, y) have a common linear factor, say y.
Without loss of generality, we may write the two equations as follows:

y(x2 +my2) = v(u2 +mv2),(2.1)
y(px2 + qxy + ry2) = v(pu2 + quv + rv2).(2.2)

We now write y = tv, when these equations give u = t2x+q−1s(t3−1)v
where s = r −mp. Now (2.1) leads to a quadratic equation in x and
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v and we get a rational solution when t = α2(mq2 + s2), where α is
rational. This readily gives the following solution of equations (2.1)
and (2.2):

(2.3)
x = −k{s(mq2 + s2)α3 − 1}, y = kq(mq2 + s2)α3,

u = k{(mq2 + s2)2α4 − sα}, v = kqα,

where k and α are arbitrary rational parameters. This rational solution
may be suitably rewritten to give integer solutions. In addition, there
are the solutions given by y = 0, v = 0, with x and u arbitrary.

As an example, the complete integer solution of the equations

(2.4)
(x+ y)(x2 + xy − y2) = (u+ v)(u2 + uv − v2),
(x+ y)(x2 − xy − y2) = (u+ v)(u2 − uv − v2),

which may be reduced to equations of type (2.1) and (2.2) by a non-
singular linear transformation, is given by (x, y, u, v) = (α,−α, β,−β)
and

(2.5)
x = k(512α3β − β4), y = k(512α3β + β4),
u = −k(4096α4 + 8αβ3), v = k(4096α4 − 8αβ3),

where α and β are arbitrary integral parameters and k is a suitable
rational number.

3. In this section we will obtain a necessary and sufficient condition
for the solvability of equations (1.1) and (1.2).

Lemma 1. A nontrivial solution of the simultaneous equations

C1(x, y) = C1(u, v),(3.1)
xy(x+ y) = uv(u+ v),(3.2)

where C1(x, y) is an arbitrary cubic form defined by (1.3) is given by

(3.3)
x = a0 − a1 + a2 − 2a3, y = a0 + a3,

u = a0 + a3, v = −2a0 + a1 − a2 + a3,
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except when C1(x, y) is a linear combination of the cubic forms x3 −
3xy2−y3 and xy(x+y), in which case a nontrivial parametric solution
is given by x = v, y = −u− v where u, v are arbitrary.

Proof. The truth of the lemma is readily verified by direct computa-
tion.

Lemma 2. Let Li(x, y), i = 1, 2, 3, be three rational linear forms in
x and y such that no two of these forms are linearly dependent, and
C1(x, y) be a cubic form defined by (1.3). A nontrivial solution of the
simultaneous equations

C1(x, y) = C1(u, v),(3.4)
L1(x, y)L2(x, y)L3(x, y) = L1(u, v)L2(u, v)L3(u, v),(3.5)

can be obtained by an application of Lemma 1.

Proof. It is easily seen that there exist integers p, q, r such that
pL1(x, y) + qL2(x, y) + rL3(x, y) vanishes identically. The nonsingular
linear transformation determined by pL1(x, y) = X, qL2(x, y) = Y ,
pL1(u, v) = U , qL2(u, v) = V , reduces the above equations to two
equations of type (3.1) and (3.2) in variables X,Y, U, V whereupon
Lemma 1 gives a nontrivial solution.

To obtain a necessary and sufficient condition for the solvability of
equations (1.1) and (1.2), we first define the following four functions in
terms of the coefficients of the forms Ci(x, y) and a variable ξ:

(3.6)

φ1(ξ) = a0(b1ξ2 + b2ξ + b3)− b0(a1ξ
2 + a2ξ + a3),

φ2(ξ) = (a0b2 − a2b0)ξ2 + (a0b3 + a1b2 − a2b1 − a3b0)ξ
+ a1b3 − a3b1,

φ3(ξ) = −a3(b0ξ2 + b1ξ + b2) + b3(a0ξ
2 + a1ξ + a2),

f(ξ) = φ2
2(ξ)− 4φ1(ξ)φ3(ξ).

We then have the following theorem:

Theorem. Let C1(x, y) = a0x
3+a1x

2y+a2xy
2+a3y

3 and C2(x, y) =
b0x

3 + b1x
2y + b2xy

2 + b3y
3 be two arbitrary cubic forms. A necessary
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and sufficient condition that the simultaneous equations

C1(x, y) = C1(u, v),(3.7)
C2(x, y) = C2(u, v),(3.8)

have infinitely many primitive nontrivial solutions in integers is that
either the quartic function f(ξ) is identically a perfect square for all
values of ξ, or the quartic equation in ξ and η given by

η2 = f(ξ)

represents an elliptic curve over Q of positive rank.

Proof. We first assume that the forms C1(x, y) and C2(x, y) do not
have a common linear or quadratic factor and show that the condition
stated in the theorem is both sufficient and necessary.

The condition is sufficient. We write

(3.9) C(x, y) = (b0ξ3+ b1ξ
2+ b2ξ+ b3)(a0x

3+ a1x
2y+ a2xy

2+ a3y
3)

− (a0ξ
3+ a1ξ

2+ a2ξ+ a3)(b0x3+ b1x
2y+ b2xy

2+ b3y
3)

and observe that

(3.10) C(x, y) = (x− ξy){φ1(ξ)x2 + φ2(ξ)xy + φ3(ξ)y2},

where φ1(ξ), φ2(ξ), φ3(ξ) are defined by (3.6).

We now show that the quartic function f(ξ) cannot vanish identically.
Assuming that f(ξ) = 0 identically, it follows from (3.9) and (3.10) that

(3.11)
C2(ξ, 1)C1(x, y)−C1(ξ, 1)C2(x, y)

= ψ0(ξ)(x− ξy){ψ1(ξ)x+ ψ2(ξ)y}2

where ψ0(ξ), ψ1(ξ), ψ2(ξ) are suitable functions of ξ. Let ξ1 and ξ2 be
any two roots, not necessarily rational, of C1(ξ, 1) = 0. Substituting in
turn ξ = ξ1 and ξ = ξ2 in the identity (3.11), we get the identities:

(3.12)
C2(ξ1, 1)C1(x, y) = ψ0(ξ1)(x− ξ1y){ψ1(ξ1)x+ ψ2(ξ1)y}2,

C2(ξ2, 1)C1(x, y) = ψ0(ξ2)(x− ξ2y){ψ1(ξ2)x+ ψ2(ξ2)y}2.
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As the forms Ci(x, y), i = 1, 2, do not have a common factor, C2(ξ1) �= 0
and C2(ξ2) �= 0, and hence we obtain from (3.12) the following identity:

(3.13)
C1(x, y) = C−1

2 (ξ1, 1)ψ0(ξ1)(x− ξ1y){ψ1(ξ1)x+ ψ2(ξ1)y}2

= C−1
2 (ξ2, 1)ψ0(ξ2)(x− ξ2y){ψ1(ξ2)x+ ψ2(ξ2)y}2.

As the above two factorizations of C1(x, y) must be identical, it follows
that ξ1 and ξ2 must be equal. In other words, C1(ξ, 1) cannot have two
distinct roots, and so we must have

(3.14) C1(x, y) = L3
1(x, y)

where L1(x, y) is an integral linear form in x and y. Similarly, we must
have

(3.15) C2(x, y) = L3
2(x, y)

where L2(x, y) is another integral linear form in x and y. Using (3.14)
and (3.15), we now obtain from (3.11) the following identity:

(3.16) {L2(ξ, 1)L1(x, y)}3 − {L1(ξ, 1)L2(x, y)}3

= ψ0(ξ)(x− ξy){ψ1(ξ)x+ ψ2(ξ)y}2.

The lefthand side is the difference of cubes of two distinct linear forms
and hence cannot have the square of a linear form as a factor. This
contradiction shows that our assumption must be false, that is, f(ξ)
cannot vanish identically.

We will now choose a suitable rational value of ξ such that f(ξ)
becomes a perfect square and none of the following four relations is
satisfied:

(3.17)

f(ξ) = 0,
φ1(ξ)ξ2 + φ2(ξ)ξ + φ3(ξ) = 0,
a0ξ

3 + a1ξ
2 + a2ξ + a3 = 0,

b0ξ
3 + b1ξ

2 + b2ξ + b3 = 0.

The lefthand side of each of these equations does not vanish identically,
and accordingly these are four equations in ξ, of degrees at most
4, 4, 3, 3, respectively, and thus have at most 14 rational roots.
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When f(ξ) is identically a perfect square, we can readily choose,
in infinitely many ways, a rational numerical value of ξ different
from the possible 14 rational roots for which any one of the relations
(3.17) may be satisfied. If f(ξ) is not identically a perfect square,
but the equation η2 = f(ξ) represents an elliptic curve over Q of
positive rank, there exist infinitely many rational points on this curve,
and hence we can again choose in infinitely many ways a suitable
numerical value of ξ such that f(ξ) is a perfect square while none
of the relations (3.17) is satisfied. With such a value of ξ, say ξ0,
the discriminant of the quadratic form φ1(ξ0)x2 +φ2(ξ0)xy+φ3(ξ0)y2,
namely, f(ξ0) is a nonzero perfect square, and hence this quadratic
form has two distinct factors, say L1(x, y) and L2(x, y). Moreover,
since φ1(ξ0)ξ2

0 + φ2(ξ0)ξ0 + φ3(ξ0) �= 0, therefore, (x − ξ0y) is not a
factor of the quadratic form φ1(ξ0)x2 +φ2(ξ0)xy+φ3(ξ0)y2. Thus, the
three linear forms (x− ξ0y), L1(x, y) and L2(x, y) are such that no two
of them are linearly dependent. Thus, when we take the value of ξ as
ξ0 in (3.10), we get

C(x, y) = (x− ξ0y)L1(x, y)L2(x, y).

Similarly,
C(u, v) = (u− ξ0v)L1(u, v)L2(u, v),

and we can solve the simultaneous equations (3.7) and

(3.18) C(x, y) = C(u, v),

by an application of Lemma 2. Since we had chosen ξ0 such that
a0ξ

3+a1ξ
2+a2ξ+a3 �= 0 and also b0ξ

3+ b1ξ
2+ b2ξ+ b3 �= 0, it follows

from (3.7), (3.9) and (3.18) that the solution so obtained also satisfies
equation (3.8). We now let ξ0 run through the infinitely many possible
values such that f(ξ0) is a perfect square and none of the conditions
(3.17) is satisfied. We thus obtain a number of solutions of equations
(3.7) and (3.8). The solutions (x, y, u, v) thus obtained will be rational
functions of ξ0. Any solution (x, y, u, v) will be trivial if x(ξ0) = u(ξ0)
and y(ξ0) = v(ξ0). These last two conditions which lead to a trivial
solution may be considered as two polynomial equations in ξ0, and these
equations have a finite number of roots. We can choose ξ0 in infinitely
many ways such that the earlier requirements for ξ0 are fulfilled and, at
the same time, ξ0 is not equal to anyone of the finite number of values
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that satisfy the conditions which lead to trivial solutions. Thus, we
obtain infinitely many nontrivial solutions of equations (3.7) and (3.8).
This shows that the condition stated in the theorem is sufficient for the
existence of infinitely many nontrivial solutions.

The condition is necessary: Let equations (3.7) and (3.8) have in-
finitely many primitive nontrivial solutions.

We have already seen in Section 2 that there can only be a finite
number of primitive nontrivial solutions of equations (3.7) and (3.8)
with C1(x, y) = 0 or C2(x, y) = 0. Further, it is easy to see that
there can only be finitely many primitive nontrivial solutions of these
equations with y = 0 or with v = 0.

We also note that there can only be finitely many solutions of (3.7)
and (3.8) with x = ky where k is a nonzero constant. If x = ky, it
follows from equation (3.7) that y3C1(k, 1) = C1(u, v) and similarly,
from equation (3.8) we get y3C2(k, 1) = C2(u, v). Thus, we must have
C1(k, 1)C2(u, v)− C2(k, 1)C1(u, v) = 0, and this equation has at most
three primitive nontrivial solutions which, in turn, lead to at most three
primitive nontrivial solutions of equations (3.7) and (3.8).

Excluding the finitely many primitive nontrivial solutions of (3.7)
and (3.8) with C1(x, y) = 0 or C2(x, y) = 0 or y = 0 or v = 0,
we choose from the remaining infinitely many nontrivial solutions a
solution (x, y, u, v) = (α, β, γ, δ) so that β �= 0 and δ �= 0, and

C1(α, β) = C1(γ, δ)(3.19)
C2(α, β) = C2(γ, δ).(3.20)

The assumption α/β = γ/δ implies that α = βm, γ = δm for some
rational number m, and so it follows from (3.19) that β3C1(m, 1) =
δ3C1(m, 1). Since C1(α, β) �= 0, we also have C1(m, 1) �= 0, and hence
it follows that β = δ, so that α = γ, contradicting the assumption that
(α, β, γ, δ) was a nontrivial solution. Thus, we must have α/β �= γ/δ
and hence also γ − αβ−1δ �= 0.

We now rewrite the identities (3.9) and (3.10) as follows:

(3.21)
(x−ξy){φ1(ξ)x2+ φ2(ξ)xy + φ3(ξ)y2}

= C(x, y)
= C2(ξ, 1)C1(x, y)−C1(ξ, 1)C2(x, y).
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Substituting ξ = αβ−1, x = γ, y = δ in (3.21), we get

(γ − αβ−1δ){φ1(αβ−1)γ2 + φ2(αβ−1)γδ + φ3(αβ−1)δ2}
= C2(αβ−1, 1)C1(γ, δ)− C1(αβ−1, 1)C2(γ, δ)
= β−3{C2(α, β)C1(γ, δ)− C1(α, β)C2(γ, δ)}
= 0.

As (γ − αβ−1δ) �= 0, it follows that φ1(αβ−1)γ2 + φ2(αβ−1)γδ +
φ3(αβ−1)δ2 must be zero. Thus, the quadratic equation

φ1(αβ−1)θ2 + φ2(αβ−1)θ + φ3(αβ−1) = 0

has a rational root θ = γδ−1, and hence its discriminant, i.e., f(αβ−1)
must be a perfect square. We can choose the solution (α, β, γ, δ) in
infinitely many ways, and since there can only be finitely many solutions
of (3.7) and (3.8) with x = ky for some constant k, these infinitely many
solutions (α, β, γ, δ) provide infinitely many rational values αβ−1 for ξ
such that f(ξ) is a perfect square. Thus, either f(ξ) is identically
a perfect square for all values of ξ, or these infinitely many rational
values of ξ provide infinitely many rational points on the quartic curve
η2 = f(ξ), and hence this curve must represent an elliptic curve over
Q of positive rank. This proves that the condition of the theorem is
necessary.

When the forms C1(x, y) and C2(x, y) have a common linear or
quadratic factor, the complete solution has already been obtained and
the theorem is readily verified to be true in this case as well.

4. We now illustrate the method of Section 3 by two examples.

4.1. We consider the equations

x3 + 9x2y + 24xy2 + 2y3 = u3 + 9u2v + 24uv2 + 2v3,(4.1)
2x3 + 24x2y + 9xy2 + y3 = 2u3 + 24u2v + 9uv2 + y3.(4.2)

Here,

(4.3) f(ξ) = 9(177ξ4 + 4368ξ3 + 27198ξ2 + 4368ξ + 177),
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and we find by trial that f(−2) = 7832. With ξ = −2, using (3.10) we
get

C(x, y) = 9(x+ 2y)(x+ 8y)(11x+ y).

We will solve equation (4.1) together with the equation

(4.4) (x+ 2y)(x+ 8y)(11x+ y) = (u+ 2v)(u+ 8v)(11u+ v).

We now write

(4.5)
x = (56X + 58Y ), y = −(7X + 29Y ),
u = (56U + 58V ), v = −(7U + 29V ),

so that equations (4.1) and (4.4) are transformed respectively to the
equations

(4.6)
2401X3 − 4263X2Y + 17661XY 2 + 24389Y 3

=2401U3 − 4263U2V + 17661UV 2 + 24389V 3,

and

(4.7) XY (X + Y ) = UV (U + V ),

which, by Lemma 1 of Section 3, have the solution X = −429, Y = 470,
U = 470, V = −41. Using (4.5) we get x = 3236, y = −10627,
u = 23942, v = −2101 as a solution of equations (4.1) and (4.2). It is
readily verified using APECS (a package written in MAPLE for working
with elliptic curves) that the rank of the elliptic curve η2 = f(ξ) is 1.
The infinitely many rational points on this curve will yield infinitely
many solutions of the simultaneous equations (4.1) and (4.2). For
instance, f(ξ) becomes a perfect square when ξ = −9223/56333 and,
with this value of ξ, using (3.10), we get

C(x, y) =
504(56333x+ 9223y)(2101x+ 23942y)(10627x+ 3236y)

178767530278037
,

which leads to the following solution of equations (4.1) and (4.2):

x = −1818723620411622197402572828639890176,
y = 2690254822190548794838236148105093327,
u = −790980673776995802109887507607510682,
v = 7067060890566162810402511361474789881.
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4.2. Guy [4, p. 142] has mentioned the problem of finding triads
of cubes with equal sums and equal products, that is, of solving the
simultaneous equations

(4.8)
a3 + b3 + c3 = d3 + e3 + f3,

abc = def.

On writing

(4.9)
a = px, b = qy, c = x+ y,

d = pu, e = qv, f = u+ v,

the above equations reduce to the following two cubic equations

(4.10)
p3x3 + q3y3 + (x+ y)3 = p3u3 + q3v3 + (u+ v)3,

xy(x+ y) = uv(u+ v).

We solve the equations (4.10) by applying Lemma 1 of Section 3 and
using (4.9), we get a solution of (4.8) which on substituting p = α/γ,
q = β/γ and multiplying throughout by γ4, may be written as follows:

a = α(α3 − 2β3 − γ3), d = α(α3 + β3 + 2γ3),
b = β(α3 + β3 + 2γ3), e = β(−2α3 + 2β3 − γ3),
c = γ(2α3 − β3 + γ3), f = γ(−α3 + 2β3 + γ3).

5. We now apply the results of Section 3 to solve certain equations
of the type

(5.1) f(x, y) = f(u, v),

where f(x, y) is a binary sextic form. If f(x, y) is expressible as the
product of two cubic factors C1(x, y) and C2(x, y), a solution of (5.1)
may be obtained by solving the simultaneous equations (1.1) and (1.2).
More generally, if we can write f(x, y) as a quadratic combination of
two cubic forms, that is, as {pC1(x, y)2+qC1(x, y)C2(x, y)+rC2(x, y)2}
where p, q, r are rational numbers, then also a solution of (5.1) may be
obtained by solving equations (1.1) and (1.2).
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5.1. Let us consider the equation

(5.2)
x6 + 2x5y − 2x4y2 − 6x3y3 − 2x2y4 + 2xy5 + y6

=u6 + 2u5v − 2u4v2 − 6u3v3 − 2u2v4 + 2uv5 + v6.

Here we observe that

x6 + 2x5y − 2x4y2−6x3y3 − 2x2y4 + 2xy5 + y6

= (x+ y)2(x2 + xy − y2)(x2 − xy − y2).

It follows that equation (5.2) may be solved by solving the equations
(2.4), and thus a parametric solution of equation (5.2) is given by (2.5).

5.2. We now consider the equation

(5.3) x6 + 2158x3y3 + y6 = u6 + 2158u3v3 + v6.

We note that

3(x6 + 2158x3y3 + y6)
= −7(x3 + 9x2y + 24xy2 + 2y3)2 − 7(2x3 + 24x2y + 9xy2 + y3)2

+ 19(x3 + 9x2y + 24xy2 + 2y3)(2x3 + 24x2y + 9xy2 + y3).

It now follows that the infinitely many solutions of equations (4.1) and
(4.2) also satisfy (5.3).

5.3. We now consider the problem, posed by Gabovich [3], of finding
two arithmetic progressions with n terms each such that the products of
the terms in the two arithmetic progressions are equal. When n = 3 or
4 or 5, infinitely many solutions are known [2], [3]. There are also two
solutions known for arbitrary n [2], [5]. We now show how infinitely
many solutions to this problem may be obtained when n = 6.

The two arithmetic progressions x, x + y, . . . , x + 5y and u, u +
v, . . . , u+ 5v will have equal products if

(5.4)
x(x+ y)(x+ 2y)(x+ 3y)(x+ 4y)(x+ 5y)

=u(u+ v)(u+ 2v)(u+ 3v)(u+ 4v)(u+ 5v).
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To solve equation (5.4), we solve, as described earlier, the equations

x(x+ y)(x+ 2y) = u(u+ v)(u+ 2v),(5.5)
(x+3y)(x+4y)(x+5y) = (u+3v)(u+4v)(u+5v),(5.6)

to get the solution x = 6, y = 8, u = −28, v = 17. We thus get two
arithmetic progressions, namely, 6, 14, 22, 30, 38, 46 and −28, −11, 6,
23, 40, 57 such that the products of their terms are equal. Moreover,
in view of equation (5.5), the products of the first three terms of both
the arithmetic progressions are also equal, and similarly, the products
of their last three terms are also equal.

We may obtain more solutions of equations (5.5) and (5.6) by the
method already described. Here f(ξ) = −9(15ξ4 + 150ξ3 + 399ξ2 +
120ξ−400). The curve η2 = f(ξ) represents an elliptic curve of rank 1,
as may be verified using APECS. Since f(0) = 3600 = 602, we readily
obtain another rational point on this curve with ξ = −55/31. This
leads to the following two arithmetic progressions with equal products
of all six terms, equal products of first three terms as well as equal
products of the last three terms:

(i) − 17148021631332, −7988284710581, 1171452210170,
10331189130921, 19490926051672, 28650662972423;

(ii) − 11240729728109, −3681544447240, 3877640833629,
1143682611498, 18996011395367, 26555196676236.

As the curve η2 = f(ξ) represents an elliptic curve of positive rank,
infinitely many examples of such arithmetic progressions may be ob-
tained.

We could also obtain solutions of equation (5.4) by choosing the two
cubic equations in several other ways.

5.4. We finally note that the above method does not yield solutions
of the sextic equation x6−y6 = u6−v6, or of the equation xy(x4−y4) =
uv(u4 − v4) which has been mentioned by Bremner and Guy [1] as a
difficult diophantine problem. This, however, does not disprove the
existence of integer solutions of either of these equations.
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