THE STABLE SET OF ASSOCIATED PRIMES OF THE IDEAL OF A GRAPH

JANET CHEN, SUSAN MOREY AND ANNE SUNG

Abstract

Let G be a graph and let I be the edge ideal of G. We give a constructive method for determining primes associated to the powers of I. Brodmann showed that the sets of associated primes stabilize for large powers of I. Our construction will yield this stable set and an upper bound on where the stable set will occur.

1. Introduction. In this paper we will study the sets of prime ideals that are associated to the powers of the edge ideal of a graph. In [1], Brodmann showed that when R is a Noetherian ring and I is an ideal of R, the sets $\operatorname{Ass}\left(R / I^{n}\right)$ stabilize for large n. That is, there exists a positive integer N such that $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Ass}\left(R / I^{N}\right)$ for all $n \geq N$. Although the sets Ass $\left(R / I^{n}\right)$ have been studied extensively (see [5] for instance), little is known about where the stability occurs or about which primes are in the stable set. If the ideal is generated by a regular sequence, then it is shown in $[\mathbf{3}, 2.1]$ that $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Min}(R / I)$ for all n. If the ring R is Gorenstein and if I is a strongly Cohen-Macaulay perfect ideal generated by a d-sequence, then in [6, Theorem 2.2] the stable set is described and an upper bound on where it occurs is given. However, if the generators of the ideal do not form a d-sequence, very little is known. Even for special classes of ideals such as monomial ideals or ideals defining simplicial complexes, the stable set is unknown.
In this paper we will work with a class of monomial ideals, the edge ideals of graphs. These are ideals whose generators are square-free monomials of degree two. We will give a construction that produces the primes that are in the stable set of the ideal of a graph and that gives an upper bound for where the stability occurs.
[^0]First, we recall some standard definitions. Let I be an ideal of a ring R. A prime ideal P of R is a minimal prime of I if $I \subset P$ but there does not exist a prime $Q \neq P$ of R such that $I \subset Q \subset P$. The set of all minimal primes of I is written $\operatorname{Min}(R / I)$. A prime ideal P of R is an associated prime of I if there exists an element c in R such that $P=(I: c)$ where $(I: c)=\{r \in R \mid r c \in I\}$. The notation for the set of all associated primes of an ideal I is Ass (R / I). Thus

Ass $\left(R / I^{n}\right)=\left\{P \subset R \mid P\right.$ is prime and $P=\left(I^{n}: c\right)$ for some $\left.c \in R\right\}$.
In general, $\operatorname{Min}(R / I) \subseteq \operatorname{Ass}\left(R / I^{n}\right)$ for all positive integers n. In the case where equality holds for all n, the ideal I is said to be normally torsion-free.

A primary decomposition of an ideal is a way to write the ideal as an intersection of primary ideals. This is analogous to the factorization of an integer into a product of prime integers. An ideal I can be written as an intersection of primary ideals

$$
I=q_{1} \cap \cdots \cap q_{t} \cap Q_{1} \cap \cdots \cap Q_{s}
$$

where $\sqrt{q_{i}} \in \operatorname{Min}(R / I)$ and $\sqrt{Q_{j}}$ are embedded primes, that is, associated primes which contain one of the minimal primes. See [4, Section 6] for more details regarding the associated primes of an ideal. When I is a monomial ideal of a polynomial ring $R=k\left[x_{1}, \ldots, x_{d}\right]$, the associated primes will be monomial primes, which are primes generated by a subset of the variables. Moreover, there is a well-known algorithm for computing a primary decomposition of a monomial ideal, see, for example, [2, Chapter 3].

Formally, a graph G is a set of vertices $V=\left\{v_{1}, \ldots, v_{n}\right\}$ together with a set of edges $E \subseteq\left\{v_{i} v_{j} \mid v_{i}, v_{j} \in V\right\}$. Two vertices, v_{i} and v_{j}, of a graph are adjacent if $v_{i} v_{j}$ is in E, in other words, if they are connected by an edge of the graph. A path is a set of distinct vertices $\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ of G together with edges $v_{i_{j}} v_{i_{j+1}}$ for $1 \leq j \leq s-1$. A cycle of length s is a path together with an edge $v_{i_{s}} v_{i_{1}}$. For general terminology and notation regarding graphs, see for instance $[\mathbf{8}]$.

To form the edge ideal of a graph G, let k be a field, let d be the number of vertices of G, and let R be the polynomial ring in d variables over $k, R=k\left[x_{1}, \ldots, x_{d}\right]$. Define $I=\left(\left\{x_{i} x_{j} \mid v_{i} v_{j} \in E\right\}\right)$ to be the
ideal whose generators are the edges of G. Then I is the edge ideal of G. A minimal vertex cover of a graph G is a subset U of the vertices such that every edge of G has at least one of its two endpoints in U and no proper subset of U has this property. Note that $P=\left(x_{i_{1}}, \ldots, x_{i_{s}}\right)$ is a minimal prime of the edge ideal I of G if and only if $\left\{v_{i_{1}}, \ldots, v_{i_{s}}\right\}$ is a minimal vertex cover of G. Since the minimal primes of I and thus of I^{n} can be found from the minimal vertex covers, the focus of this work will be to find the embedded primes.
2. Preliminaries. In [7, Theorem 5.9] it is shown that the graph G is bipartite if and only if I is normally torsion-free, that is, if and only if there are no embedded primes of I^{n} for all n. Thus to find embedded primes we will restrict our consideration to graphs that contain at least one odd cycle. The following lemma (see also [7, Corollary 5.7]) will allow us to restrict our attention to connected graphs.

Lemma 2.1. Suppose G is a disconnected graph which is the disjoint union of subgraphs G_{1} and G_{2}. Let $I=\left(I_{1}, I_{2}\right)$ be the edge ideal of G, where I_{1} and I_{2} are the edge ideals of G_{1} and G_{2}, respectively. Then $P \in \operatorname{Ass}\left(R / I^{n}\right)$ if and only if $P=\left(P_{1}, P_{2}\right)$ where $P_{1} \in \operatorname{Ass}\left(R / I_{1}^{n_{1}}\right)$ and $P_{2} \in \operatorname{Ass}\left(R / I_{2}^{n_{2}}\right)$ for some positive integers n_{1} and n_{2} such that $n_{1}+n_{2}=n+1$.

Proof. Let $R=k\left[x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{m}\right]$, where x_{1}, \ldots, x_{l} are the vertices of G_{1} and y_{1}, \ldots, y_{m} are the vertices of G_{2}. Then $P_{1} \subseteq$ $\left(x_{1}, \ldots, x_{l}\right)=(\underline{x}), P_{2} \subseteq\left(y_{1}, \ldots, y_{m}\right)=(\underline{y})$ and $x_{i} y_{j}$ is not an edge for every i, j.

We first prove the converse. If $P_{i} \in \operatorname{Ass}\left(R / I_{i}^{n_{i}}\right)$, then $P_{i}=\left(I_{i}^{n_{i}}: c_{i}\right)$ for $i=1,2$ where $c_{1} \in I_{1}^{n_{1}-1}$ is a monomial in $k[\underline{x}]$ and $c_{2} \in I_{2}^{n_{2}-1}$ is a monomial in $k[\underline{y}]$. Let u be a generator of $P=\left(P_{1}, P_{2}\right)$. Then either $u \in P_{1}$ and $u c_{1} \bar{c}_{2} \in I_{1}^{n_{1}} I_{2}^{n_{2}-1} \subset I^{n}$ or $u \in P_{2}$ and $u c_{1} c_{2} \in I_{1}^{n_{1}-1} I_{2}^{n_{2}} \subset$ I^{n}. Thus $P \subseteq\left(I^{n}: c_{1} c_{2}\right)$.
Notice that $c_{1} c_{2} \in I^{n-1} \backslash I^{n}$ since the graphs are disjoint. Assume $v \in k[\underline{x}, \underline{y}]$ is a monomial such that $v c_{1} c_{2} \in I^{n}$. Write $v=v_{1} v_{2}$ where $v_{1} \in k[\underline{x}]$ and $v_{2} \in k[\underline{y}]$ are monomials. If $v_{1} c_{1} \in I_{1}^{n_{1}-1} \backslash I_{1}^{n_{1}}$ and $v_{2} c_{2} \in I_{2}^{n_{2}-1} \backslash I_{2}^{n_{2}}$, then $\left(v_{1} c_{1}\right)\left(v_{2} c_{2}\right) \notin I^{n}$ since the graphs are disjoint. But this is a contradiction, so either $v_{1} \in P_{1}$ or $v_{2} \in P_{2}$, and thus $v \in P$.

Now suppose $P \in \operatorname{Ass}\left(R / I^{n}\right)$. Then $P=\left(P_{1}, P_{2}\right)$, where $P_{1}=$ $(P \cap k[\underline{x}]) R$ and $P_{2}=(P \cap k[\underline{y}]) R$. Now $P=\left(I^{n}: c\right)$ for some monomial $c \in I^{n-1} \backslash I^{n}$. Write $c=c_{1} c_{2}$ where $c_{1} \in k[\underline{x}]$ and $c_{2} \in k[\underline{y}]$ are monomials. Then $c_{1} \in I_{1}^{k}$ and $c_{2} \in I_{2}^{s}$ for some $0 \leq k, s \leq n-1$ with $k+s=n-1$. Suppose x is a generator of P_{1}. Then $x c \in I^{n}$ forces $x c_{1} \in I_{1}^{k+1}$ so $P_{1} \subseteq\left(I_{1}^{k+1}: c_{1}\right)$. Suppose $u \in\left(I_{1}^{k+1}: c_{1}\right)$ is a monomial. Then $u=u_{1} u_{2}$, where $u_{1} \in k[\underline{x}]$ and $u_{2} \in k[\underline{y}]$ are monomials. Since the graphs are disjoint, $u_{1} \in\left(I_{1}^{k+1}: c_{1}\right)$. But then $u_{1} c=u_{1} c_{1} c_{2} \in I_{1}^{k+1} I_{2}^{s} \subseteq I^{n}$ so $u_{1} \in P$. Since $u_{1} \in P \cap k[\underline{x}], u_{1} \in P_{1}$ and $P_{1}=\left(I_{1}^{k+1}: c_{1}\right)$.

A similar argument shows that $P_{2} \in \operatorname{Ass}\left(R / I_{2}^{s+1}\right)$. Let $n_{1}=k+1$ and $n_{2}=s+1$. Then $n_{1}+n_{2}=k+s+2=n+1$.

Corollary 2.2. Suppose G is a graph with connected components G_{1}, \ldots, G_{s} and suppose $I=\left(I_{1}, \ldots, I_{s}\right)$ is the edge ideal of G. Then $P \in \operatorname{Ass}\left(R / I^{n}\right)$ if and only if $P=\left(P_{1}, \ldots, P_{s}\right)$ where $P_{i} \in \operatorname{Ass}\left(R / I_{i}^{n_{i}}\right)$ and $n-1=\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots+\left(n_{s}-1\right)$.

Corollary 2.3. Suppose $I=\left(I_{1}, I_{2}\right)$, where I_{1} is a monomial prime ideal and I_{2} is the edge ideal of a graph which has no variables in common with I_{1}. Then $P \in \operatorname{Ass}\left(R / I^{n}\right)$ if and only if $P=\left(I_{1}, P_{2}\right)$ where $P_{2} \in \operatorname{Ass}\left(R / I_{2}^{n_{2}}\right)$ for some $n_{2} \leq n$.

Proof. Since Ass $\left(R / I_{1}^{n_{1}}\right)=\left\{I_{1}\right\}$ for all n_{1} and $I_{1}=\left\{I_{1}^{n_{1}}: c_{1}\right)$ if and only if $c_{1} \in I_{1}^{n_{1}} \backslash I_{1}^{n_{1}-1}$, the above proof holds. Notice that if $n_{1}=1$, c_{1} can be chosen to be any unit in the ring.

Corollary 2.3 will prove useful when localization techniques are employed. Before stating the next lemma, we introduce some terminology and notations.

Definition 2.4. Let G be a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and let A be a subset of V. The neighbor set of A is the set

$$
N(A)=\{v \in V \mid v \text { is adjacent to some vertex in } A\}
$$

Definition 2.5. Let G be a graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and let A be a subset of V. The induced subgraph $\langle A\rangle$ is the maximal subgraph of G with vertex set A. In other words, two vertices of A are adjacent in $\langle A\rangle$ if and only if they are adjacent in G. Define $I(A)$ to be the edge ideal of $\langle A\rangle$.

One case in which we will use the above definition is the case where $A=G \backslash x_{i}$, by which we mean the set of all vertices of G except for the vertex corresponding to x_{i}.

Lemma 2.6. Suppose G is a graph, I is its edge ideal and $P=$ ($I^{n}: c$) is an associated prime of I^{n} for some $n \in \mathbf{N}$. Suppose some vertex $x \in G$ does not divide c. Let $I^{\prime}=I(G \backslash x)$. If $x \in P$, let P^{\prime} be the ideal generated by all generators of P except for x. Otherwise, let $P^{\prime}=P$. Then $P^{\prime}=\left(\left(I^{\prime}\right)^{n}: c\right)$.

Proof. Let $x_{a} \in P^{\prime}$. Then $x_{a} \in P$, so $x_{a} c \in I^{n}$. Since x does not divide c and $x_{a} \neq x, x$ does not divide $x_{a} c$. Thus $x_{a} c \in\left(I^{\prime}\right)^{n}$ and $P^{\prime} \subseteq\left(\left(I^{\prime}\right)^{n}: c\right)$.

Let $v \notin P^{\prime}$ be a monomial. Assume $v c \in\left(I^{\prime}\right)^{n}$. Then $v \in P$ so $v=x^{t} a$ for some positive integer t and some monomial $a \notin P$. Then $a c \notin\left(I^{\prime}\right)^{n}$ and since P^{\prime} is a vertex cover of $\langle G \backslash x\rangle$, no edge of $\langle G \backslash x\rangle$ can divide v. Thus there exists y such that $x y \in I^{\prime}$ and y divides c. This is a contradiction since $x y \notin I^{\prime}$. So it must be the case that $v c \notin\left(I^{\prime}\right)^{n}$. Thus $P^{\prime}=\left(\left(I^{\prime}\right)^{n}: c\right)$.
3. Building associated primes. Let G be a graph with d vertices, let $R=k\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring in d variables, let $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right)$ be the unique homogeneous maximal ideal, and let $I \subset R$ be the edge ideal of G. In this section we will describe a process that can be used to produce prime ideals in Ass $\left(I^{n}\right)$ for any n. For the remainder of the paper, a graph G is assumed to be connected and not bipartite unless otherwise indicated.

We will first treat the case where G is a cycle, in which case we completely determine Ass $\left(R / I^{n}\right)$ for all n.

Lemma 3.1. Suppose G is a cycle of length $2 k+1$ and I is the edge ideal of G. Then $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Min}(R / I)$ if $n \leq k$ and $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Min}(R / I) \cup\{\mathfrak{m}\}$ if $n \geq k+1$.

Proof. Since $\operatorname{Min}(R / I) \subseteq \operatorname{Ass}\left(R / I^{n}\right)$ for all n, we first show that $\mathfrak{m} \in \operatorname{Ass}\left(R / I^{n}\right)$ if and only if $n \geq k+1$. Let $c_{k+1}=x_{1} x_{2} \cdots x_{2 k+1}$ be the product of the variables. Since I is generated by monomials of degree two and c_{k+1} has degree $2 k+1, c_{k+1} \notin I^{k+1}$. Thus $\left(I^{k+1}: c_{k+1}\right) \neq R$. Now $x_{i} c_{k+1}=\left(x_{i} x_{i+1}\right)\left(x_{i+2} x_{i+3}\right) \cdots\left(x_{i-1} x_{i}\right)$ is a product of $k+1$ edges of G, so $x_{i} c_{k+1} \in I^{k+1}$ for all i. Thus $\mathfrak{m} \subseteq\left(I^{k+1}: c_{k+1}\right)$ which forces equality since the ideals in question are homogeneous. So $\mathfrak{m} \in \operatorname{Ass}\left(R / I^{k+1}\right)$.

For $n \geq k+1$, let $c_{n}=c_{k+1}\left(x_{1} x_{2}\right)^{n-k-1}$. Then it is easy to check that $\mathfrak{m}=\left(I^{n}: c_{n}\right)$ and $\mathfrak{m} \in \operatorname{Ass}\left(R / I^{n}\right)$.

Now suppose $n<k+1$ and $\mathfrak{m}=\left(I^{n}: c\right)$ for some $c \notin I^{n}$. Then $c \notin I^{k}$, so there must be some vertex x_{i} that does not divide c. Let $I^{\prime}=I\left(G \backslash x_{i}\right)$ be the ideal generated by all edges of G except for those containing x_{i}. Notice that I^{\prime} is normally torsion-free since $\left\langle G \backslash x_{i}\right\rangle$ is bipartite. Let $P^{\prime}=\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{d}\right)$. By Lemma 2.6, P^{\prime} is an associated prime of $\left(I^{\prime}\right)^{n}$, a contradiction since P^{\prime} does not correspond to a minimal vertex cover of $\left\langle G \backslash x_{i}\right\rangle$. So \mathfrak{m} is not an associated prime of I^{n} for any $n<k+1$.

Now suppose $P \neq \mathfrak{m}$ is a prime ideal. Since $P \neq \mathfrak{m}$, there is some variable not in P. Without loss of generality, assume $x_{2 k+1} \notin P$. Localize at $Q=\left(x_{1}, \ldots, x_{2 k}\right)$. Then $I_{Q}=\left(I_{1}, I_{2}\right)$ where I_{1} is a prime ideal generated by the vertices adjacent to $v_{2 k+1}$ and I_{2} is the ideal of a graph which consists of the vertices $v_{2}, \ldots, v_{2 k-1}$ connected in a path. Then by Corollary 2.3, P is an associated prime of I^{n} for some n if and only if $P R_{Q}=\left(I_{1}, P_{2}\right)$ where P_{2} is a prime corresponding to a minimal vertex cover of I_{2}. However, if $P R_{Q}=\left(I_{1}, P_{2}\right)$, then P corresponds to a minimal vertex cover of G. Thus P is an associated prime of I^{n} if and only if P corresponds to a minimal vertex cover of G.

We now describe the process by which we form embedded associated primes of I^{n} for more general graphs. Fix an odd cycle C of length $2 k+1$ contained in a graph G. Define R_{k+1} to be the set of vertices of
C and define B_{k+1} to be the set of vertices in $N(C) \backslash C$. Let

$$
d_{k+1}=\prod_{x_{i} \in R_{k+1}} x_{i}
$$

be the product of the $2 k+1$ vertices in the cycle. If V is any minimal subset of vertices for which $R_{k+1} \cup B_{k+1} \cup V$ is a vertex cover of G, then we will see in Theorem 3.3 that $P=\left(R_{k+1}, B_{k+1}, V\right)$ is an associated prime of I^{n} for all $n \geq k+1$.

We will now recursively build sets R_{n}. As the powers of I increase, the associated primes will be built by working outward from the sets R_{n}. Suppose x_{i} is in R_{s} for some $s \geq k+1$ and suppose $x_{i} x_{j}$ is an edge of G. Then, by definition, x_{j} is in either R_{s} or B_{s}. If $x_{j} \in R_{s}$, let $R_{s+1}=R_{s}$ and let $B_{s+1}=B_{s}$. If $x_{j} \in B_{s}$, let $R_{s+1}=R_{s} \cup\left\{x_{j}\right\}$ and let $B_{s+1}=\left(B_{s} \cup N\left(x_{j}\right)\right) \backslash R_{s+1}$. In either case, let $d_{s+1}=d_{s}\left(x_{i} x_{j}\right)$. Notice that at each stage there may be many choices for x_{i}. Thus there will be a collection of possible sets R_{s}, each with corresponding B_{s} and d_{s}. Notice also that each choice of a cycle contained in G will produce different collections of sets.

For each $n \geq k+1$, let $R(C)_{n}$ be the set of all R_{n} produced from C by the above process. Notice that $R(C)_{n} \subseteq R(C)_{n+1}$, although the corresponding d_{n} and d_{n+1} will differ by an edge.

Lemma 3.2. Suppose I is the edge ideal of a graph containing a cycle C of length $2 k+1$. Let $n \geq k+1$. Then the following are true for each $R_{n} \in R(C)_{n}$ and corresponding B_{n} and d_{n} :

1. Every vertex that divides d_{n} is in R_{n} and thus is adjacent only to vertices in $R_{n} \cup B_{n}$.
2. d_{n} has degree $2 n-1$, so $d_{n} \notin I^{n}$, but $d_{n} \in I^{n-1}$.
3. For each vertex x in $R_{n}, d_{n} / x \in I^{n-1}$ and for each vertex $x \in R_{n} \cup B_{n}, x d_{n} \in I^{n}$.

Proof. Parts 1 and 2 are clear from the definitions.
For part 3 let $x \in R_{n}$ and notice that when $n=k+1, d_{k+1} / x$ is the product of $2 k$ adjacent vertices. If $n>k+1$, then for some d_{n-1} we have $d_{n}=d_{n-1} x_{i} x_{j}$ where $x_{i} \in R_{n-1}$ and $x_{i} x_{j}$ is an edge of G. Since $x \in R_{n}$, then either $x \in R_{n-1}$ or $x=x_{j}$. In the first case
$d_{n-1} / x \in I^{n-2}$ by induction, and in the second case $d_{n-1} \in I^{n-1}$, so $d_{n} / x=d_{n-1} x_{i} \in I^{n-1}$.

Now suppose $x \in R_{n} \cup B_{n}$. Then there is an $x_{b} \in R_{n}$ that is adjacent to x. Then x_{b} divides d_{n} and $d_{n} / x_{b} \in I^{n-1}$, so $x d_{n}=x x_{b}\left(d_{n} / x_{b}\right) \in I^{n}$.
-

Theorem 3.3. Let C be any fixed odd cycle of a graph G and let R_{n} be in $R(C)_{n}$ with B_{n} and d_{n} corresponding to R_{n}. If $P=\left(R_{n}, B_{n}, V\right)$, where V is any minimal set of additional vertices needed to make P a vertex cover of G, then $P \in \operatorname{Ass}\left(R / I^{t}\right)$ for $t \geq n$.

Proof. Let $\left\{y_{1}, \ldots, y_{t}\right\}$ be the set of vertices in $G \backslash P$. Define

$$
c=d_{n} \prod_{i=1}^{t} y_{i}
$$

We claim that $P=\left(I^{n}: c\right)$. Let $x \in P$. If $x \in R_{n} \cup B_{n}$, then by Lemma 3.2, $x d_{n} \in I^{n}$ so $x c \in I^{n}$ as well. If $x \in V$, then x is adjacent to y_{j} for some j, else V was not minimal. Then $d_{n}\left(x y_{j}\right)$ divides $x c$ and since $d_{n} \in I^{n-1}, x c \in I^{n}$. Thus $P \subseteq\left(I^{n}: c\right)$.

Now suppose $v \notin P$ is a monomial. Then v is the product of a subset of $\left\{y_{1}, \ldots, y_{t}\right\}$. Since P is a vertex cover, $y_{i} y_{j}$ is not an edge for all y_{j}. Also, if x divides d_{n}, then x is not adjacent to y_{j} for all i by Lemma 3.2, so $v c \notin I^{n}$. Thus $P=\left(I^{n}: c\right)$ is an associated prime of I^{n}.

Now, let $x_{i} x_{j}$ be any edge of G with $x_{i}, x_{j} \in R_{n}$. If $t \geq n$, let $c_{t}=c\left(x_{i} x_{j}\right)^{t-n}$. Then it is easy to show that $P=\left(I^{t}: c_{t}\right)$, so $P \in \operatorname{Ass}\left(R / I^{t}\right)$ for all $t \geq n$.

In the above theorem, one should notice that for each R_{n} there might be several choices for V. Each choice will produce an associated prime.

Corollary 3.4. Let I be the edge ideal of a graph G and let \mathfrak{m} be the unique homogeneous maximal ideal of R. Then $\mathfrak{m} \in \operatorname{Ass}\left(R / I^{n}\right)$ for $n \gg 0$.

Proof. It suffices to notice that $R_{n} \cup B_{n}=\mathfrak{m}$ for $n \gg 0$ since G is connected and contains an odd cycle.

If a graph contains a single cycle, then we shall see in Theorem 5.6 that Theorem 3.3 is actually a description of all of the embedded associated primes. If G has more than one cycle, the picture is more complicated. We will see in Definition 3.5 how to combine the sets produced from each cycle to form the remaining associated primes.
Suppose G is a graph containing a cycle C of length $2 k+1$ for some $k \in \mathbf{N}$. Let $S_{n}(C)$ be the set of all possible $A=R_{n} \cup B_{n}$ where $R_{n} \in R(C)_{n}$. Let $d(A)$ be the monomial d_{n} corresponding to R_{n}. Let $S_{n}=\cup S_{n}(C)$ where the union is over all odd cycles C of length at most n. For each cycle C of a graph $G, S_{n}(C) \subseteq S_{n+1}(C)$ and so $S_{n} \subseteq S_{n+1}$. Notice that the primes in Theorem 3.3 are of the form (A, V) where $A \in S_{n}$.

Definition 3.5. Suppose G is a graph, let $n \in \mathbf{N}$ and let $s \geq 2$. Define U_{n} to be the set of all possible $A=A_{1} \cup \cdots \cup A_{s}$, such that $A_{i} \in$ $S_{n_{i}}$ where $n_{1}, \ldots, n_{s}<n$ are such that $n-1=\left(n_{1}-1\right)+\cdots+\left(n_{s}-1\right)$ and in addition if x divides $d\left(A_{i}\right)$ for some i, then $x \notin A_{j}$ for all $i \neq j$. Define $d(A)=d\left(A_{1}\right) d\left(A_{2}\right) \cdots d\left(A_{s}\right)$.

Lemma 3.6. Let $A \in U_{n}$ and $d=d(A)$ for some $n \in \mathbf{N}$. Then the following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.
2. $d \notin I^{n}$, but $d \in I^{n-1}$.
3. For each vertex x in $A, x d \in I^{n}$.

Proof. Since $A \in U_{n}, A=\left(A_{1}, \ldots, A_{s}\right)$ where $s \geq 2, A_{i} \in S_{n_{i}}$ for each i and $n_{1}, \ldots, n_{s}<n$ are such that $n-1=\left(n_{1}-1\right)+\cdots+\left(n_{s}-1\right)$. Let $d\left(A_{i}\right)=d_{i}$ and $d=d(A)=d_{1} \cdots d_{s}$.
Part one follows from Lemma 3.2 since $A_{i} \subseteq A$ and any vertex that divides d must divide d_{i} for some i. Part three also follows from Lemma 3.2. For part two, $d_{i} \in I^{n_{i}-1}$ for each $i \in\{1,2, \ldots, s\}$, so $d=d_{1} \cdots d_{s} \in I^{n-1}$. If $d \in I^{n}$, there exists some edge $x_{i} x_{j}$ that divides d but does not divide d_{a} for any a. Then x_{i} divides d_{a} and x_{j} divides d_{b} for some $a \neq b$. By Lemma 3.2, x_{i} is adjacent only to vertices in A_{a}, so $x_{j} \in A_{a}$. But x_{j} divides d_{j}, so by Definition $3.5 x_{j} \notin A_{a}$, a contradiction. Thus $d \notin I^{n}$.

We now use the sets U_{n} to build additional associated primes of I^{n}.

Theorem 3.7. Let G be a graph and let I be the edge ideal of G. Let $P=(A, V)$ where $A \in U_{n}$ for some $n \in \mathbf{N}$ and where V is a minimal set of vertices such that P is a vertex cover of G. Then P is an associated prime of I^{t} for all $t \geq n$.

Proof. The proof follows that of Theorem 3.3 using Lemma 3.6 in place of Lemma 3.2.
4. The stable set. In this section we will show that the primes described in Theorems 3.3 and 3.7 are the only embedded primes that appear in the stable set of associated primes, that is, they are the only embedded primes in $\operatorname{Ass}\left(R / I^{n}\right)$ for $n \gg 0$. For ease of notation we define P_{n} to be the set of all primes $P=(A, V)$ where either $A \in U_{n}$ or $A \in S_{n}(C)$ for some odd cycle C and where V is a minimal set of vertices needed for P to be a vertex cover of G. Notice that $P_{n} \subseteq P_{n+1}$ for all n.

Theorem 4.1. If $P \in \operatorname{Ass}\left(R / I^{s}\right)$ for some s, then either $P \in$ $\operatorname{Min}(R / I)$ or $P \in P_{n}$ for some $n \geq s$.

Proof. We will prove the theorem by induction on the number of vertices of the graph. The theorem holds for a three-cycle by Lemma 3.1.

Suppose $P \in \operatorname{Ass}\left(R / I^{s}\right)$ for some $s>0$. By Corollary $3.4, \mathfrak{m} \in P_{n}$ for $n \gg 0$. Thus we may assume that $P \neq \mathfrak{m}$. Then there is some vertex x of G which is not contained in P. Localize at the prime ideal Q generated by all of the vertices except for x. Then $I_{Q}=\left(I_{1}, I_{2}\right)$ where $I_{1}=\left(y_{1}, \ldots, y_{t}\right)$ is the prime ideal generated by all vertices y_{i} adjacent to x, and I_{2} is the edge ideal of the graph $G^{\prime}=G \backslash\left\{x, y_{1}, \ldots, y_{t}\right\}$. By Corollary 2.3, $P R_{Q}=\left(I_{1}, P_{2}\right)$ where P_{2} is an associated prime of $I\left(G^{\prime}\right)$. If G^{\prime} is bipartite, then P_{2} is a minimal vertex cover of G^{\prime} and P is a minimal vertex cover of G and thus a minimal prime of I.

Suppose G^{\prime} is not bipartite. If G^{\prime} is connected, then $P_{2} \in P_{n}\left(G^{\prime}\right)$ for some n by induction. So $P_{2}=(A, V)$ where V is a minimal set such
that P_{2} is a vertex cover of G^{\prime} and either $A \in S_{n}(C)$ for some cycle C of G^{\prime} or A is the union of such sets. Now every cycle of G^{\prime} is also a cycle of G so $A \in S_{n}(C)$, where C is now viewed as a cycle of G or $A \in U_{n}$. As before, I_{1} is a minimal set such that $\left(A, V, I_{1}\right)=P$ is a vertex cover of G, so $P \in P_{n}$.
Suppose G^{\prime} is not connected. Then by Corollary 2.2, $P_{2}=$ $\left(P_{2_{1}}, P_{2_{2}}, \ldots, P_{2_{s}}\right)$ where $P_{2_{i}} \in \operatorname{Ass}\left(R / I_{i}^{n_{i}}\right)$ where I_{i} is the edge ideal of the connected component G_{i} of G^{\prime} and $\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots+\left(n_{s}-1\right)=$ $n-1$. Then by induction each $P_{2_{i}}$ is either a minimal vertex cover of G_{i}, in which case define $A_{i}=\varnothing$ and $V_{i}=P_{2_{i}}$, or $P_{2_{i}}$ is in $P_{l_{i}}\left(G_{i}\right)$ for some $l_{i} \geq n_{i}$, in which case $P_{2_{i}}=\left(A_{i}, V_{i}\right)$ where A_{i} and V_{i} are as in the connected case. So $P=\left(A_{1}, \ldots, A_{s}, V_{1}, \ldots, V_{s}, I_{1}\right)$. Let $A=A_{1} \cup \cdots \cup A_{s}$ and let $V=\left(V_{1} \cup \cdots \cup V_{s} \cup I_{1}\right)$. Then by Definition 3.5, $A \in U_{n}$ and V is minimal such that (A, V) is a vertex cover of G. So $P \in P_{n}$.

Notice that we now have an upper bound on where the stable set will occur. By working outward from the smallest odd cycle of G, we can produce the longest possible chain of primes in the stable set. The hypothesis $d>2 k+1$ in the proposition below guarantees that the graph is not a cycle. If G is a cycle, Lemma 3.1 applies.

Proposition 4.2. Suppose G is a connected, nonbipartite graph with d vertices and suppose the smallest odd cycle which is a subgraph of G has length $2 k+1$. Assume $d>2 k+1$. Then $\operatorname{Ass}\left(R / I^{n}\right)=$ Ass $\left(R / I^{d-k-1}\right)$ for all $n \geq d-k-1$.

Proof. Let C be any odd cycle in G. If C has length $2 s+1$, then $R_{s+1} \in R(C)_{s+1}$ will contain $2 s+1$ vertices. If $d=2 s+1$, then $\left(R_{s+1}\right)$ will be the maximal ideal. Otherwise, by adding one vertex at each step in the construction process, one can construct a set $R_{(s+1)+(d-(2 s+1))-1}=R_{d-s-1}$ which contains all but one vertex of G. Since G is connected, this vertex must be in B_{d-s-1}, and so $P=\left(R_{d-s-1}, B_{d-s-1}\right)$ is the maximal ideal and thus the process must stop. So $S_{t}(C)=S_{d-s-1}(C)$ for all $t \geq d-s-1$ when $d>2 s+1$ and $S_{t}(C)=S_{d-s}(C)$ for all $t \geq d-s$ when $d=2 s+1$. Notice that $s \geq k$, so $d-s-1 \leq d-k-1$, and if $d=2 s+1$ then $s>k$, so $d-s \leq d-k-1$
as well.
Suppose $P \in \operatorname{Ass}\left(R / I^{n}\right)$ for some n. Then either $P \in \operatorname{Min}(R / I) \subset$ Ass $\left(R / I^{d-k-1}\right)$, or by Theorem 4.1, $P=(A, V)$ where $A \in S_{l}$ or $A \in U_{l}$ for some l. Choose l to be the least integer such that $P \in P_{l}$. If $A \in S_{l}$ then as above $l \leq d-k-1$. If $A \in U_{l}$, then $A=A_{1} \cup \cdots \cup A_{q}$ where $A_{i} \in S_{l_{i}}\left(C_{i}\right)$ where C_{i} is a cycle of length $2_{k_{i}}+1$ and $q \geq 2$. By definition, $A_{i}=R_{i} \cup B_{i}$ for some set R_{i}. Since l is the least integer such that $P \in P_{l}$, we can assume that $R_{i} \cap R_{j}=\varnothing$. Then $l_{i}=k_{i}+1+m_{i}$ where

$$
\sum_{i=1}^{q} m_{i} \leq d-\sum_{i=1}^{q}\left(2 k_{i}+1\right)
$$

Then
$l-1=\sum_{i=1}^{q}\left(l_{i}-1\right)=\sum_{i=1}^{q}\left(k_{i}+m_{i}\right) \leq \sum_{i=1}^{q} k_{i}+d-2 \sum_{i=1}^{q} k_{i}-q=d-\sum_{i=1}^{q} k_{i}-q$,
and so $l-1 \leq d-\sum k_{i}-q \leq d-k-2$ and $l \leq d-k-1$.

Notice that in general the above bound is not strict. For instance, suppose G is the suspension of a cycle of length $2 k+1$; that is, G consists of a cycle with vertices $x_{1}, \ldots, x_{2 k+1}$ together with vertices $y_{1}, \ldots, y_{2 k+1}$ such that $x_{i} y_{i}$ is an edge for each i and each y_{i} is a vertex of degree one (a cycle with "whiskers"). Then Ass $\left(R / I^{k+1}\right)=$ Ass $\left(R / I^{n}\right)$ for all $n \geq k+1$. However, for a graph which is an odd cycle together with a single path leading off of one vertex of the cycle (a "kite"), the above bound is strict.

If a connected graph has vertices of degree one, we can strengthen the bound given above.

Corollary 4.3. Suppose G is a connected, nonbipartite graph with d vertices and suppose the smallest odd cycle which is a subgraph of G has length $2 k+1$. If G has s vertices of degree one, then $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Ass}\left(R / I^{d-k-s}\right)$ for all $n \geq d-k-s$.
5. Graphs with only one cycle. In Theorem 4.1 it was shown that if P is an embedded associated prime of I^{s} for some s, then $P \in P_{n}$ for some $n \geq s$. We would like to say that $P \in P_{s}$, however, if the
graph contains several odd cycles, this need not be the case. A careful examination of the proof of Theorem 4.1 shows that if for all graphs $G, \mathfrak{m} \in P_{n}$ for the least positive integer n such that $\mathfrak{m} \in \operatorname{Ass}\left(R / I^{n}\right)$, then $P_{n} \cup \operatorname{Min}(R / I)=\operatorname{Ass}\left(R / I^{n}\right)$ for all n. Unfortunately this need not be true. However, if a graph G contains a unique cycle, then the above holds as will be seen in Theorem 5.6.

Before proving Theorem 5.6 we will need a few technical lemmas.

Lemma 5.1. Suppose G is a graph, I is its edge ideal and $n \in \mathbf{N}$. Let $c \in I^{n}$ be a monomial. Suppose x_{1} is a vertex of degree one in G and x_{2} is the vertex adjacent to x_{1}. If $\left(x_{1} x_{2}\right)^{a}$ divides c, then $c /\left(x_{1} x_{2}\right)^{a} \in I^{n-a}$.

Proof. Suppose $x_{1} x_{2}$ divides c. Since $c \in I^{n}$, we can write $c=$ $e_{1} e_{2} \cdots e_{n} \cdot b$ where e_{i} is an edge of G and b is some monomial. If x_{1} divides e_{i} for some i, then $e_{i}=x_{1} x_{2}$. Similarly, if x_{1} and x_{2} both divide b then we are done. If x_{1} divides b and x_{2} divides e_{i} for some i, then $e_{i}=x_{2} y$ for some y adjacent to x_{2}. Rewrite c as $c=e_{1} \cdots e_{i}^{\prime} \cdots e_{n} \cdot b^{\prime}$ where $e_{i}^{\prime}=x_{1} x_{2}$ and $b^{\prime}=(b y) / x_{1}$. The remainder of the proof follows by induction.

Lemma 5.2. Let G be a graph, let I be the edge ideal of G, and let \mathfrak{m} be the homogeneous maximal ideal of R. Suppose x is the vertex of G of degree one. Let n be the least positive integer such that $\mathfrak{m}=\left(I^{n}: c\right)$ for some monomial c. Then x does not divide c.

Proof. Let x_{2} be the unique vertex adjacent to x. Let a be the largest integer such that x^{a} divides c. Now $c \notin I^{n}$ and $x c \in I^{n}$, so $\left(x x_{2}\right)^{a} x_{2}$ divides c.

Suppose $a \neq 0$ and let $d=c /\left(x x_{2}\right)^{a}$. Let $x_{i} \in \mathfrak{m}$. Then $x_{i} c \in I^{n}$ and $\left(x x_{2}\right)^{a}$ divides $x_{i} c$. By Lemma 5.1, $x_{i} d=x_{i} c /\left(x x_{2}\right)^{a} \in I^{n-a}$, so $\mathfrak{m} \subseteq\left(I^{n-a}: d\right)$. But $\left(I^{n-a}: d\right) \neq R$ since $d \notin I^{n-a}$, so $\mathfrak{m}=\left(I^{n-a}: d\right)$. Thus \mathfrak{m} is an associated prime of I^{n-a}. This is a contradiction if $a \neq 0$, so x does not divide c.

Lemma 5.3. Let G be a graph with a unique cycle C. Suppose C
has length $2 k+1$ and $A \in S_{n}(C)$ for some $n \geq k+2$. Let $G^{\prime}=\langle A\rangle$. Let $A^{\prime} \in S_{n-1}(C)$ and $x_{j} \in A^{\prime}$ be such that $A=A^{\prime} \cup N\left(x_{j}\right)$. Let $G^{\prime \prime}=\left\langle A^{\prime}\right\rangle$. If $x \in A \backslash A^{\prime}$, then x has degree one in G^{\prime}.

Proof. Let $x \in A \backslash A^{\prime}$. Then $x \in N\left(x_{j}\right)$. Assume that $x \in N(y)$ for some vertex y in G^{\prime} with $y \neq x_{j}$. If $y \in N\left(x_{j}\right)$, then x_{j}, x and y form a cycle in G^{\prime}, a contradiction. If $y \notin N\left(x_{j}\right)$, then $y \in A^{\prime}$. Since $G^{\prime \prime}$ is connected, there is a path between y and x_{j} that lies entirely in $G^{\prime \prime}$. Since $x_{j} x, x y \in G^{\prime} \backslash G^{\prime \prime}$, there is a cycle other than C in G^{\prime}, a contradiction. So x must have degree one in G^{\prime}.

Lemma 5.4. Let G be a graph containing a cycle C of length $2 k+1$ and no other cycles. Let I be the edge ideal of G. Suppose $P=(A, V) \in P_{k+1}$. Let $G^{\prime}=\langle A\rangle$ and $I^{\prime}=I(A)$. Then $P^{\prime}=(A)$ is not an associated prime of $\left(I^{\prime}\right)^{n}$ for all $n<k+1$.

Proof. Suppose $n \leq k$. If $P=\left(\left(I^{\prime}\right)^{n}: c\right)$ for some monomial c, then there is a vertex $x \in C$ that does not divide c. Let $G^{\prime \prime}=\left\langle G^{\prime \prime} \backslash x\right\rangle$. Note that $G^{\prime \prime}$ is bipartite. Let $I^{\prime \prime}=I\left(G^{\prime \prime}\right)$, and let $P^{\prime \prime}=(A \backslash x)$ be the prime ideal generated by all the vertices of A except for x. Then $I^{\prime \prime}$ is normally torsion-free. By Lemma $2.6, P^{\prime \prime}$ is an associated prime of $\left(I^{\prime \prime}\right)^{n}$, a contradiction since $P^{\prime \prime}$ is not a minimal vertex cover of $G^{\prime \prime}$. So P^{\prime} is not an associated prime of $\left(I^{\prime}\right)^{n}$ for any $n<k+1$.

We are now ready to prove the main proposition of this section.

Proposition 5.5. Let G be a graph containing an odd cycle C of length $2 k+1$ and no other cycles. Let I be the edge ideal of G. Let N be the least positive integer such that $\mathfrak{m} \in P_{N}$. Then $\mathfrak{m} \notin \operatorname{Ass}\left(R / I^{n}\right)$ for all $n \leq N$.

Proof. If $\mathfrak{m} \in S_{k+1}(C)$, by Lemma $5.4, \mathfrak{m}$ is not an associated prime of I^{n} for any $n<N$. So suppose $N>k+1$. Since $\mathfrak{m} \in S_{N}(C)$, there exist $A \in S_{N-1}(C)$ and x_{i}, x_{j} such that $x_{i}, x_{j} \in A, x_{i}$ and x_{j} are adjacent and $\mathfrak{m}=A \cup N\left(x_{j}\right)$. Let $G^{\prime}=\langle A\rangle$, let $I^{\prime}=I(A)$ and let $P=(A)$. Notice that P is the maximal ideal of the ring corresponding to the graph G^{\prime}. Notice that $\mathfrak{m} \neq P$ and that $N-1$ is the least positive
integer such that $A \in S_{N-1}(C)$.
Assume that there exists $n<N$ such that \mathfrak{m} is an associated prime of I^{n}. Also assume that n is the least such integer. Then $\mathfrak{m}=\left(I^{n}: c\right)$ for some monomial $c \notin I^{n}$. Let $x \in \mathfrak{m} \backslash A$. By Lemma 5.3, x has degree one in G. By Lemma 5.2, x does not divide c. Therefore, by repeated use of Lemma 2.6, $P=\left(\left(I^{\prime}\right)^{n}: c\right)$. By induction $n \geq N-1$, so $n=N-1$. Then n is the least positive integer such that P is an associated prime of $\left(I^{\prime}\right)^{n}$.

Notice that $x_{j} \notin C$ since otherwise $N\left(x_{j}\right) \subseteq A$. Assume x_{j} has degree greater than one in G^{\prime}. Then x_{j} is adjacent to some vertex in G^{\prime} besides x_{i}, call it y. Since G^{\prime} is connected, there is a path from the cycle to y. Similarly, there is a path from the cycle to x_{i}. These two paths, $C, x_{i} x$ and $x y$ form another cycle, a contradiction. So x_{j} must have degree one in G^{\prime}. By Lemma 5.2, since $P=\left(\left(I^{\prime}\right)^{n}: c\right)$ and n is minimal as seen above, x_{j} does not divide c.

If $x \in \mathfrak{m} \backslash A$, then $x c \in I^{n}$, so there exists z such that $x z \in I$ and z divides c. As above, x has degree one in G, so $z=x_{j}$, a contradiction since x_{j} does not divide c. So \mathfrak{m} is not an associated prime of I^{n} for any $n<N$.

Notice that by combining Theorem 4.1 and Proposition 5.5, we have shown that if a graph G has a unique cycle, then $\operatorname{Ass}\left(R / I^{n}\right)$ is precisely described for all n. If the cycle is even, then $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Min}(R / I)$ for all n, and if the cycle is odd, then every embedded associated prime is produced by the construction in Section 3.

Theorem 5.6. If a graph G contains a unique cycle C, then $\operatorname{Ass}\left(R / I^{n}\right)=\operatorname{Min}(R / I) \cup P_{n}$.

Proof. First notice that if the cycle C has even length, then $P_{n}=\varnothing$ and the result holds. So we may assume C has odd length. Suppose $P \in \operatorname{Ass}\left(R / I^{n}\right)$ but $P \notin \operatorname{Min}(R / I)$. If $P=\mathfrak{m}$ is the homogeneous maximal ideal, then $\mathfrak{m} \in P_{k}$ for $k \gg 0$ by Corollary 3.4. Let s be the least positive integer such that $\mathfrak{m} \in P_{s}$. Then by Proposition $5.5 s \leq n$. Since the sets P_{i} form an ascending chain, $\mathfrak{m} \in P_{n}$. If $P \neq \mathfrak{m}$, the proof now follows inductively from a careful examination of the proof of Theorem 4.1.

Corollary 5.7. If a graph G contains a unique cycle, then the sets Ass $\left(R / I^{n}\right)$ form an ascending chain.
6. Graphs with multiple cycles. We saw in Theorem 4.1 that our construction does produce all of the embedded associated primes of a graph. However, if the graph contains more than one cycle, the inequality in Theorem 4.1 can be strict. For the remainder of the paper we will see how to modify the definitions of U_{n} and P_{n} so that some of the embedded associated primes will now be in P_{n} for smaller values of n.

Definition 6.1. Suppose G is a graph containing a cycle C of length $2 k+1$ for some $k \in \mathbf{N}$. Let $\widetilde{S}_{n}(C)$ be the set of all possible $A=\left(R_{n}, B_{n}\right), R_{n} \in R(C)_{n}$, such that $\langle A\rangle$ contains exactly one cycle. Let $d(A)$ be the monomial d_{n} corresponding to $R_{n}=R(A)$.

Notice that for each cycle C of a graph $G, \tilde{S}_{n}(C) \subseteq S_{n}(C)$. Also $\tilde{S}_{n}(C)$ could be empty. We will use the sets $\tilde{S}_{n}(C)$ to build associated primes.

Definition 6.2. Let G be a graph and let I be its edge ideal. If the smallest odd cycle C of G has length $2 k+1$ for some $k \in \mathbf{N}$, define $T_{k+1}=\tilde{S}_{k+1}(C)$. For each $n>k+1$, define T_{n} to be the collection of all sets A such that either

1. $A \in \tilde{S}_{n}(C)$ for some cycle C of G, in which case $d(A)$ and $R(A)$ are as in Definition 6.1, or
2. $A=A_{1} \cup A_{2} \cup \cdots \cup A_{s}$ where $A_{i} \in T_{n_{i}}$ for some $n_{i}<n$, $R(A)=\cup R\left(A_{i}\right)$ and for each $i \in\{1, \ldots, s-1\}$, there is an edge $x_{i} y_{i}$ with $x_{i} \in R\left(A_{i}\right)$ and $y_{i} \in R\left(A_{i+1}\right)$. In addition,
(a) if $s=2 t+1$ for some $t \in \mathbf{N}$ and there is an edge $x_{s} y_{s}$ with $x_{s} \in R\left(A_{s}\right)$ and $y_{s} \in R\left(A_{1}\right)$, then $n=n_{1}+\cdots+n_{s}-t$. In this case $d(A)=d\left(A_{1}\right) d\left(A_{2}\right) \cdots d\left(A_{s}\right)$.
(b) else $n=n_{1}+\cdots+n_{s}$ and $d(A)=\left(x_{1} d\left(A_{1}\right)\right)\left(x_{2} d\left(A_{2}\right)\right) \cdots$ $\left(x_{s-1} d\left(A_{s-1}\right)\right) d\left(A_{s}\right)$.

We now prove the analogue of Lemmas 3.2 and 3.6.

Lemma 6.3. Let G be a graph and let I be its edge ideal. Let $n \in \mathbf{N}$, $A \in T_{n}$ and $d=d(A)$. Then the following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.
2. d has degree $2 n-1$, so $d \notin I^{n}$, but $d \in I^{n-1}$.
3. For each vertex x in $A, x d \in I^{n}$ and if $x \in R(A)$, then x divides d and $d / x \in I^{n-1}$.

Proof. By Lemma 3.2 the three properties hold for $A \in T_{k+1}$ where k is such that the smallest odd cycle has length $2 k+1$. Let $N \in \mathbf{N}$ and suppose that the three properties hold for all $n<N$. Let $A \in T_{N}$. If $A \in \tilde{S}_{N}(C)$ for some cycle C, the three properties hold by Lemma 3.2. So assume $A=A_{1} \cup \cdots \cup A_{s}$ for some $s \geq 2, n_{1}, \ldots, n_{s}<N$ and ideals $A_{1} \in T_{n_{1}}, \ldots, A_{s} \in T_{n_{s}}$ as in Definition 6.2. Let x_{a} be a vertex that divides d. Then x_{a} divides $d\left(A_{i}\right)=d_{i}$ for some i, or x_{a} divides $x_{i} d_{i}$ where $x_{i} \in R\left(A_{i}\right)$; so by induction all vertices adjacent to x_{a} are in $A_{i} \subseteq A$.

To see parts 2 and 3 , first consider the case where $s=2 t+1$ for some $t \in \mathbf{N}$ and there is an edge $x_{s} y_{s}$ with $x_{s} \in R\left(A_{s}\right)$ and $y_{s} \in R\left(A_{1}\right)$. Then $d=d_{1} \cdots d_{s}$ and $N=n_{1}+\cdots+n_{s}-t$. Each d_{i} has degree $2 n_{i}-1$, so d has degree $2\left(n_{1}+\cdots+n_{s}\right)-s=2 N-1$. Thus $d \notin I^{N}$. For each $i \in\{1,2, \ldots, s\}, y_{i}$ divides d_{i+1} since y_{i} is in $R\left(A_{i+1}\right)$ and $n_{i+1}<N$. Since $x_{i} \in R\left(A_{i}\right)$ and y_{i} is adjacent to x_{i}, $y_{i} \in A_{i}$. By induction, $d_{i+1} / y_{i} \in I^{n_{i+1}}$ and $d_{i} y_{i} \in I^{n_{i}}$. Then $d_{i} d_{i+1}=$ $\left(d_{i} y_{i}\right)\left(d_{i+1} / y_{i}\right) \in I^{n_{i}+n_{i+1}-1}$. Since $d=\left(d_{1} d_{2}\right) \cdots\left(d_{2 t-1} d_{2 t}\right)\left(d_{s}\right)$, $d \in I^{\left(n_{1}+n_{2}-1\right)+\cdots+\left(n_{2 t-1}+n_{2 t}-1\right)+\left(n_{s}-1\right)} \subseteq I^{N-1}$.

Now let x be a vertex in $R(A)$. Then $x \in R\left(A_{j}\right)$ for some j, so by induction x divides d_{j}. Then x divides d and $d / x=$ $\left(d_{j} / x\right)\left(d_{j+1} d_{j+2}\right) \cdots\left(d_{j-2} d_{j-1}\right)$. Since $d_{j} / x \in I^{n_{j}-1}$ by hypothesis, $d / x \in I^{N-1}$.

Now consider the case where s is even or there is no edge $x_{s} y_{s}$ with $x_{s} \in R\left(A_{s}\right)$ and $y_{s} \in R\left(A_{1}\right)$. Then $N=n_{1}+\cdots+n_{s}$ and $d=\left(d_{1} x_{1}\right) \cdots\left(d_{s-1} x_{s-1}\right)\left(d_{s}\right)$. Therefore, d has degree $2 n_{1}+\cdots+$ $2_{n_{s-1}}+\left(2 n_{s}-1\right)=2 N-1$. Thus $d \notin I^{N}$. For each $i, x_{i} \in A_{i}$, so $d_{i} x_{i} \in I^{n_{i}}$. Since $d_{s} \in I^{n_{s}-1}, d \in I^{n-1}$.

Let x be a vertex in $R(A)$. Then $x \in R\left(A_{j}\right)$ for some j. By the inductive hypothesis, $d_{j} / x \in I^{n_{j}-1}$. Then $d / x=\left(d_{1} x_{1}\right) \cdots\left(d_{j-1} x_{j-1}\right)\left(d_{j} / x\right)$
$\left(d_{j+1} x_{j}\right) \cdots\left(d_{s} x_{s-1}\right)$. Then $d / x \in I^{N-1}$.
So for either case $d / x \in I^{N-1}$ for each vertex x in $R(A)$. Let x be a vertex in A. Since $\langle A\rangle$ is connected, x must be adjacent to some vertex y in $R(A)$. Then $d / y \in I^{N-1}$ and $x y \in I$, so $d x=(x y)(d / y) \in I^{N}$. -

We now use the sets T_{n} to give a modified definition of U_{n}, from which we will again build the embedded associated primes.

Definition 6.4. Suppose G is a graph, let $n \in \mathbf{N}$ and let $s \geq 2$. Define \tilde{U}_{n} to be the set of all possible $A=A_{1} \cup \cdots \cup A_{s}$ such that $A_{i} \in$ $T_{n_{i}}$ where $n_{1}, \ldots, n_{s}<n$ are such that $n-1=\left(n_{1}-1\right)+\cdots+\left(n_{s}-1\right)$ and in addition, if x divides $d\left(A_{i}\right)$ for some i, then $x \notin A_{j}$ for all $i \neq j$. Define $d(A)=d\left(A_{1}\right) d\left(A_{2}\right) \cdots d\left(A_{s}\right)$.

Lemma 6.5. Let $A \in \tilde{U}_{n}$ and $d=d(A)$ for some $n \in \mathbf{N}$. Then the following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.
2. $d \notin I^{n}$, but $d \in I^{n-1}$.
3. For each vertex x_{a} in $A, x_{a} d \in I^{n}$.

Proof. The proof follows from Lemma 6.3 and the proof of Lemma 3.6 with minor modifications.

Theorem 6.6. Let G be a graph and let I be the edge ideal of G. Let $n \in \mathbf{N}$. Let $P=(A, V)$ where $A \in \tilde{U}_{n}$ and V is a minimal set of vertices such that P is a vertex cover of G. Then P is an associated prime of I^{m} for all $m \geq n$.

Proof. The proof is similar to that of Theorem 3.7, using Lemma 6.5 in place of Lemma 3.6.

Define \tilde{P}_{n} to be the set of all primes $P=(A, V)$ where $A \in \tilde{U}_{n}$. Then the above theorem shows that $\tilde{P}_{n} \subseteq \operatorname{Ass}\left(R / I^{n}\right)$. Since $P_{n} \subseteq \tilde{P}_{n}$ the analog of Theorem 4.1 also holds. The embedded primes may appear
in \tilde{P}_{n} for smaller values of n. Thus using \tilde{U}_{n} we produce some of the embedded primes at an earlier stage in the construction.

REFERENCES

1. M. Brodmann, Asymptotic stability of Ass $\left(M / I^{n} M\right)$, Proc. Amer. Math. Soc. 74 (1979), 16-18.
2. D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag, New York, 1995.
3. M. Hochster, Criteria for the equality of ordinary and symbolic powers of primes, Math. Z. 133 (1973), 53-65.
4. H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1986.
5. S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math. 103, Springer-Verlag, New York, 1983.
6. S. Morey, Stability of associated primes and equality of ordinary and symbolic powers of ideals, Comm. Algebra 27 (1999), 3221-3231.
7. A. Simis, W.V. Vasconcelos and R. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), 389-416.
8. D. West, Introduction to Graph Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1996.

Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138
E-mail address: jjchen@math.harvard.edu
Department of Mathematics, Southwest Texas State University, San Marcos, TX 78666
E-mail address: sm26@swt.edu
11534 Wickersham Ln., Houston, TX 77077
E-mail address: asung@post.harvard.edu

[^0]: All three authors were partially supported by a Research Enhancement Grant from Southwest Texas State University. The first and third authors were also counselors in the Southwest Texas State University Honors Summer Math Camp when the research was begun.

 Received by the editors on November 19, 1999, and in revised form on March 30, 2001.

