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THE STABLE SET OF ASSOCIATED PRIMES
OF THE IDEAL OF A GRAPH

JANET CHEN, SUSAN MOREY AND ANNE SUNG

ABSTRACT. Let G be a graph and let I be the edge ideal
of G. We give a constructive method for determining primes
associated to the powers of I. Brodmann showed that the
sets of associated primes stabilize for large powers of I. Our
construction will yield this stable set and an upper bound on
where the stable set will occur.

1. Introduction. In this paper we will study the sets of prime ideals
that are associated to the powers of the edge ideal of a graph. In [1],
Brodmann showed that when R is a Noetherian ring and I is an ideal
of R, the sets Ass (R/In) stabilize for large n. That is, there exists a
positive integer N such that Ass (R/In) = Ass (R/IN ) for all n ≥ N .
Although the sets Ass (R/In) have been studied extensively (see [5]
for instance), little is known about where the stability occurs or about
which primes are in the stable set. If the ideal is generated by a regular
sequence, then it is shown in [3, 2.1] that Ass (R/In) = Min (R/I) for
all n. If the ring R is Gorenstein and if I is a strongly Cohen-Macaulay
perfect ideal generated by a d-sequence, then in [6, Theorem 2.2] the
stable set is described and an upper bound on where it occurs is given.
However, if the generators of the ideal do not form a d-sequence, very
little is known. Even for special classes of ideals such as monomial ideals
or ideals defining simplicial complexes, the stable set is unknown.

In this paper we will work with a class of monomial ideals, the edge
ideals of graphs. These are ideals whose generators are square-free
monomials of degree two. We will give a construction that produces
the primes that are in the stable set of the ideal of a graph and that
gives an upper bound for where the stability occurs.
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First, we recall some standard definitions. Let I be an ideal of a ring
R. A prime ideal P of R is a minimal prime of I if I ⊂ P but there
does not exist a prime Q �= P of R such that I ⊂ Q ⊂ P . The set of
all minimal primes of I is written Min (R/I). A prime ideal P of R
is an associated prime of I if there exists an element c in R such that
P = (I : c) where (I : c) = {r ∈ R | rc ∈ I}. The notation for the set
of all associated primes of an ideal I is Ass (R/I). Thus

Ass (R/In) = {P ⊂ R | P is prime and P = (In : c) for some c ∈ R}.

In general, Min (R/I) ⊆ Ass (R/In) for all positive integers n. In the
case where equality holds for all n, the ideal I is said to be normally
torsion-free.

A primary decomposition of an ideal is a way to write the ideal as an
intersection of primary ideals. This is analogous to the factorization of
an integer into a product of prime integers. An ideal I can be written
as an intersection of primary ideals

I = q1 ∩ · · · ∩ qt ∩ Q1 ∩ · · · ∩ Qs

where
√

qi ∈ Min (R/I) and
√

Qj are embedded primes, that is,
associated primes which contain one of the minimal primes. See [4,
Section 6] for more details regarding the associated primes of an ideal.
When I is a monomial ideal of a polynomial ring R = k[x1, . . . , xd], the
associated primes will be monomial primes, which are primes generated
by a subset of the variables. Moreover, there is a well-known algorithm
for computing a primary decomposition of a monomial ideal, see, for
example, [2, Chapter 3].

Formally, a graph G is a set of vertices V = {v1, . . . , vn} together
with a set of edges E ⊆ {vivj | vi, vj ∈ V }. Two vertices, vi and
vj , of a graph are adjacent if vivj is in E, in other words, if they are
connected by an edge of the graph. A path is a set of distinct vertices
{vi1 , . . . , vis

} of G together with edges vij
vij+1 for 1 ≤ j ≤ s − 1. A

cycle of length s is a path together with an edge vis
vi1 . For general

terminology and notation regarding graphs, see for instance [8].

To form the edge ideal of a graph G, let k be a field, let d be the
number of vertices of G, and let R be the polynomial ring in d variables
over k, R = k[x1, . . . , xd]. Define I = ({xixj | vivj ∈ E}) to be the
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ideal whose generators are the edges of G. Then I is the edge ideal of
G. A minimal vertex cover of a graph G is a subset U of the vertices
such that every edge of G has at least one of its two endpoints in U and
no proper subset of U has this property. Note that P = (xi1 , . . . , xis

)
is a minimal prime of the edge ideal I of G if and only if {vi1 , . . . , vis

}
is a minimal vertex cover of G. Since the minimal primes of I and thus
of In can be found from the minimal vertex covers, the focus of this
work will be to find the embedded primes.

2. Preliminaries. In [7, Theorem 5.9] it is shown that the graph G
is bipartite if and only if I is normally torsion-free, that is, if and only
if there are no embedded primes of In for all n. Thus to find embedded
primes we will restrict our consideration to graphs that contain at least
one odd cycle. The following lemma (see also [7, Corollary 5.7]) will
allow us to restrict our attention to connected graphs.

Lemma 2.1. Suppose G is a disconnected graph which is the disjoint
union of subgraphs G1 and G2. Let I = (I1, I2) be the edge ideal of G,
where I1 and I2 are the edge ideals of G1 and G2, respectively. Then
P ∈ Ass (R/In) if and only if P = (P1, P2) where P1 ∈ Ass (R/In1

1 )
and P2 ∈ Ass (R/In2

2 ) for some positive integers n1 and n2 such that
n1 + n2 = n+ 1.

Proof. Let R = k[x1, . . . , xl, y1, . . . , ym], where x1, . . . , xl are the
vertices of G1 and y1, . . . , ym are the vertices of G2. Then P1 ⊆
(x1, . . . , xl) = (x), P2 ⊆ (y1, . . . , ym) = (y) and xiyj is not an edge for
every i, j.

We first prove the converse. If Pi ∈ Ass (R/Ini
i ), then Pi = (Ini

i : ci)
for i = 1, 2 where c1 ∈ In1−1

1 is a monomial in k[x] and c2 ∈ In2−1
2 is a

monomial in k[y]. Let u be a generator of P = (P1, P2). Then either
u ∈ P1 and uc1c2 ∈ In1

1 In2−1
2 ⊂ In or u ∈ P2 and uc1c2 ∈ In1−1

1 In2
2 ⊂

In. Thus P ⊆ (In : c1c2).

Notice that c1c2 ∈ In−1 \ In since the graphs are disjoint. Assume
v ∈ k[x, y] is a monomial such that vc1c2 ∈ In. Write v = v1v2 where
v1 ∈ k[x] and v2 ∈ k[y] are monomials. If v1c1 ∈ In1−1

1 \ In1
1 and

v2c2 ∈ In2−1
2 \ In2

2 , then (v1c1)(v2c2) /∈ In since the graphs are disjoint.
But this is a contradiction, so either v1∈P1 or v2∈P2, and thus v∈P .
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Now suppose P ∈ Ass (R/In). Then P = (P1, P2), where P1 =
(P ∩ k[x])R and P2 = (P ∩ k[y])R. Now P = (In : c) for some
monomial c ∈ In−1 \ In. Write c = c1c2 where c1 ∈ k[x] and c2 ∈ k[y]
are monomials. Then c1 ∈ Ik

1 and c2 ∈ Is
2 for some 0 ≤ k, s ≤ n − 1

with k + s = n − 1. Suppose x is a generator of P1. Then xc ∈ In

forces xc1 ∈ Ik+1
1 so P1 ⊆ (Ik+1

1 : c1). Suppose u ∈ (Ik+1
1 : c1) is

a monomial. Then u = u1u2, where u1 ∈ k[x] and u2 ∈ k[y] are
monomials. Since the graphs are disjoint, u1 ∈ (Ik+1

1 : c1). But then
u1c = u1c1c2 ∈ Ik+1

1 Is
2 ⊆ In so u1 ∈ P . Since u1 ∈ P ∩ k[x], u1 ∈ P1

and P1 = (Ik+1
1 : c1).

A similar argument shows that P2 ∈ Ass (R/Is+1
2 ). Let n1 = k + 1

and n2 = s+ 1. Then n1 + n2 = k + s+ 2 = n+ 1.

Corollary 2.2. Suppose G is a graph with connected components
G1, . . . , Gs and suppose I = (I1, . . . , Is) is the edge ideal of G. Then
P ∈ Ass (R/In) if and only if P = (P1, . . . , Ps) where Pi ∈ Ass (R/Ini

i )
and n − 1 = (n1 − 1) + (n2 − 1) + · · ·+ (ns − 1).

Corollary 2.3. Suppose I = (I1, I2), where I1 is a monomial prime
ideal and I2 is the edge ideal of a graph which has no variables in
common with I1. Then P ∈ Ass (R/In) if and only if P = (I1, P2)
where P2 ∈ Ass (R/In2

2 ) for some n2 ≤ n.

Proof. Since Ass (R/In1
1 ) = {I1} for all n1 and I1 = {In1

1 : c1) if and
only if c1 ∈ In1

1 \ In1−1
1 , the above proof holds. Notice that if n1 = 1,

c1 can be chosen to be any unit in the ring.

Corollary 2.3 will prove useful when localization techniques are em-
ployed. Before stating the next lemma, we introduce some terminology
and notations.

Definition 2.4. Let G be a graph with vertex set V = {v1, . . . , vn}
and let A be a subset of V . The neighbor set of A is the set

N(A) = {v ∈ V | v is adjacent to some vertex in A}.
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Definition 2.5. Let G be a graph with vertex set V = {v1, . . . , vn}
and let A be a subset of V . The induced subgraph 〈A〉 is the maximal
subgraph of G with vertex set A. In other words, two vertices of A are
adjacent in 〈A〉 if and only if they are adjacent in G. Define I(A) to
be the edge ideal of 〈A〉.

One case in which we will use the above definition is the case where
A = G \ xi, by which we mean the set of all vertices of G except for
the vertex corresponding to xi.

Lemma 2.6. Suppose G is a graph, I is its edge ideal and P =
(In : c) is an associated prime of In for some n ∈ N. Suppose some
vertex x ∈ G does not divide c. Let I ′ = I(G \ x). If x ∈ P , let P ′ be
the ideal generated by all generators of P except for x. Otherwise, let
P ′ = P . Then P ′ = ((I ′)n : c).

Proof. Let xa ∈ P ′. Then xa ∈ P , so xac ∈ In. Since x does not
divide c and xa �= x, x does not divide xac. Thus xac ∈ (I ′)n and
P ′ ⊆ ((I ′)n : c).

Let v /∈ P ′ be a monomial. Assume vc ∈ (I ′)n. Then v ∈ P so
v = xta for some positive integer t and some monomial a /∈ P . Then
ac /∈ (I ′)n and since P ′ is a vertex cover of 〈G\x〉, no edge of 〈G\x〉 can
divide v. Thus there exists y such that xy ∈ I ′ and y divides c. This
is a contradiction since xy /∈ I ′. So it must be the case that vc /∈ (I ′)n.
Thus P ′ = ((I ′)n : c).

3. Building associated primes. Let G be a graph with d
vertices, let R = k[x1, . . . , xd] be a polynomial ring in d variables,
let m = (x1, . . . , xd) be the unique homogeneous maximal ideal, and
let I ⊂ R be the edge ideal of G. In this section we will describe a
process that can be used to produce prime ideals in Ass (In) for any n.
For the remainder of the paper, a graph G is assumed to be connected
and not bipartite unless otherwise indicated.

We will first treat the case where G is a cycle, in which case we
completely determine Ass (R/In) for all n.
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Lemma 3.1. Suppose G is a cycle of length 2k + 1 and I is
the edge ideal of G. Then Ass (R/In) = Min (R/I) if n ≤ k and
Ass (R/In) = Min (R/I) ∪ {m} if n ≥ k + 1.

Proof. Since Min (R/I) ⊆ Ass (R/In) for all n, we first show that
m ∈ Ass (R/In) if and only if n ≥ k + 1. Let ck+1 = x1x2 · · ·x2k+1

be the product of the variables. Since I is generated by monomials
of degree two and ck+1 has degree 2k + 1, ck+1 /∈ Ik+1. Thus
(Ik+1 : ck+1) �= R. Now xick+1 = (xixi+1)(xi+2xi+3) · · · (xi−1xi) is
a product of k + 1 edges of G, so xick+1 ∈ Ik+1 for all i. Thus
m ⊆ (Ik+1 : ck+1) which forces equality since the ideals in question
are homogeneous. So m ∈ Ass (R/Ik+1).

For n ≥ k + 1, let cn = ck+1(x1x2)n−k−1. Then it is easy to check
that m = (In : cn) and m ∈ Ass (R/In).

Now suppose n < k + 1 and m = (In : c) for some c /∈ In. Then
c /∈ Ik, so there must be some vertex xi that does not divide c. Let
I ′ = I(G \ xi) be the ideal generated by all edges of G except for those
containing xi. Notice that I ′ is normally torsion-free since 〈G \ xi〉
is bipartite. Let P ′ = (x1, . . . , x̂i, . . . , xd). By Lemma 2.6, P ′ is an
associated prime of (I ′)n, a contradiction since P ′ does not correspond
to a minimal vertex cover of 〈G \ xi〉. So m is not an associated prime
of In for any n < k + 1.

Now suppose P �= m is a prime ideal. Since P �= m, there is some
variable not in P . Without loss of generality, assume x2k+1 /∈ P .
Localize at Q = (x1, . . . , x2k). Then IQ = (I1, I2) where I1 is a prime
ideal generated by the vertices adjacent to v2k+1 and I2 is the ideal of a
graph which consists of the vertices v2, . . . , v2k−1 connected in a path.
Then by Corollary 2.3, P is an associated prime of In for some n if and
only if PRQ = (I1, P2) where P2 is a prime corresponding to a minimal
vertex cover of I2. However, if PRQ = (I1, P2), then P corresponds to
a minimal vertex cover of G. Thus P is an associated prime of In if
and only if P corresponds to a minimal vertex cover of G.

We now describe the process by which we form embedded associated
primes of In for more general graphs. Fix an odd cycle C of length
2k+1 contained in a graph G. Define Rk+1 to be the set of vertices of



ASSOCIATED PRIMES OF IDEAL OF A GRAPH 77

C and define Bk+1 to be the set of vertices in N(C) \ C. Let

dk+1 =
∏

xi∈Rk+1

xi

be the product of the 2k + 1 vertices in the cycle. If V is any minimal
subset of vertices for which Rk+1∪Bk+1∪V is a vertex cover of G, then
we will see in Theorem 3.3 that P = (Rk+1, Bk+1, V ) is an associated
prime of In for all n ≥ k + 1.

We will now recursively build sets Rn. As the powers of I increase,
the associated primes will be built by working outward from the sets
Rn. Suppose xi is in Rs for some s ≥ k + 1 and suppose xixj is an
edge of G. Then, by definition, xj is in either Rs or Bs. If xj ∈ Rs, let
Rs+1 = Rs and let Bs+1 = Bs. If xj ∈ Bs, let Rs+1 = Rs ∪ {xj} and
let Bs+1 = (Bs ∪ N(xj)) \ Rs+1. In either case, let ds+1 = ds(xixj).
Notice that at each stage there may be many choices for xi. Thus there
will be a collection of possible sets Rs, each with corresponding Bs and
ds. Notice also that each choice of a cycle contained in G will produce
different collections of sets.

For each n ≥ k + 1, let R(C)n be the set of all Rn produced from
C by the above process. Notice that R(C)n ⊆ R(C)n+1, although the
corresponding dn and dn+1 will differ by an edge.

Lemma 3.2. Suppose I is the edge ideal of a graph containing a
cycle C of length 2k + 1. Let n ≥ k + 1. Then the following are true
for each Rn ∈ R(C)n and corresponding Bn and dn:

1. Every vertex that divides dn is in Rn and thus is adjacent only to
vertices in Rn ∪ Bn.

2. dn has degree 2n − 1, so dn /∈ In, but dn ∈ In−1.

3. For each vertex x in Rn, dn/x ∈ In−1 and for each vertex
x ∈ Rn ∪ Bn, xdn ∈ In.

Proof. Parts 1 and 2 are clear from the definitions.

For part 3 let x ∈ Rn and notice that when n = k + 1, dk+1/x is
the product of 2k adjacent vertices. If n > k + 1, then for some dn−1

we have dn = dn−1xixj where xi ∈ Rn−1 and xixj is an edge of G.
Since x ∈ Rn, then either x ∈ Rn−1 or x = xj . In the first case
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dn−1/x ∈ In−2 by induction, and in the second case dn−1 ∈ In−1, so
dn/x = dn−1xi ∈ In−1.

Now suppose x ∈ Rn∪Bn. Then there is an xb ∈ Rn that is adjacent
to x. Then xb divides dn and dn/xb ∈ In−1, so xdn = xxb(dn/xb) ∈ In.

Theorem 3.3. Let C be any fixed odd cycle of a graph G and let Rn

be in R(C)n with Bn and dn corresponding to Rn. If P = (Rn, Bn, V ),
where V is any minimal set of additional vertices needed to make P a
vertex cover of G, then P ∈ Ass (R/It) for t ≥ n.

Proof. Let {y1, . . . , yt} be the set of vertices in G \ P . Define

c = dn

t∏

i=1

yi.

We claim that P = (In : c). Let x ∈ P . If x ∈ Rn ∪ Bn, then by
Lemma 3.2, xdn ∈ In so xc ∈ In as well. If x ∈ V , then x is adjacent
to yj for some j, else V was not minimal. Then dn(xyj) divides xc and
since dn ∈ In−1, xc ∈ In. Thus P ⊆ (In : c).

Now suppose v /∈ P is a monomial. Then v is the product of a subset
of {y1, . . . , yt}. Since P is a vertex cover, yiyj is not an edge for all yj .
Also, if x divides dn, then x is not adjacent to yj for all i by Lemma 3.2,
so vc /∈ In. Thus P = (In : c) is an associated prime of In.

Now, let xixj be any edge of G with xi, xj ∈ Rn. If t ≥ n, let
ct = c(xixj)t−n. Then it is easy to show that P = (It : ct), so
P ∈ Ass (R/It) for all t ≥ n.

In the above theorem, one should notice that for each Rn there might
be several choices for V . Each choice will produce an associated prime.

Corollary 3.4. Let I be the edge ideal of a graph G and let m be
the unique homogeneous maximal ideal of R. Then m ∈ Ass (R/In) for
n � 0.

Proof. It suffices to notice that Rn ∪ Bn = m for n � 0 since G is
connected and contains an odd cycle.
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If a graph contains a single cycle, then we shall see in Theorem 5.6
that Theorem 3.3 is actually a description of all of the embedded
associated primes. If G has more than one cycle, the picture is more
complicated. We will see in Definition 3.5 how to combine the sets
produced from each cycle to form the remaining associated primes.

Suppose G is a graph containing a cycle C of length 2k + 1 for some
k ∈ N. Let Sn(C) be the set of all possible A = Rn ∪ Bn where
Rn ∈ R(C)n. Let d(A) be the monomial dn corresponding to Rn. Let
Sn = ∪Sn(C) where the union is over all odd cycles C of length at most
n. For each cycle C of a graph G, Sn(C) ⊆ Sn+1(C) and so Sn ⊆ Sn+1.
Notice that the primes in Theorem 3.3 are of the form (A, V ) where
A ∈ Sn.

Definition 3.5. Suppose G is a graph, let n ∈ N and let s ≥ 2.
Define Un to be the set of all possible A = A1∪· · ·∪As, such that Ai ∈
Sni

where n1, . . . , ns < n are such that n−1 = (n1−1)+ · · ·+(ns−1)
and in addition if x divides d(Ai) for some i, then x /∈ Aj for all i �= j.
Define d(A) = d(A1)d(A2) · · · d(As).

Lemma 3.6. Let A ∈ Un and d = d(A) for some n ∈ N. Then the
following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.

2. d /∈ In, but d ∈ In−1.

3. For each vertex x in A, xd ∈ In.

Proof. Since A ∈ Un, A = (A1, . . . , As) where s ≥ 2, Ai ∈ Sni
for

each i and n1, . . . , ns < n are such that n−1 = (n1−1)+ · · ·+(ns−1).
Let d(Ai) = di and d = d(A) = d1 · · · ds.

Part one follows from Lemma 3.2 since Ai ⊆ A and any vertex that
divides d must divide di for some i. Part three also follows from
Lemma 3.2. For part two, di ∈ Ini−1 for each i ∈ {1, 2, . . . , s}, so
d = d1 · · · ds ∈ In−1. If d ∈ In, there exists some edge xixj that
divides d but does not divide da for any a. Then xi divides da and xj

divides db for some a �= b. By Lemma 3.2, xi is adjacent only to vertices
in Aa, so xj ∈ Aa. But xj divides dj , so by Definition 3.5 xj /∈ Aa, a
contradiction. Thus d /∈ In.
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We now use the sets Un to build additional associated primes of In.

Theorem 3.7. Let G be a graph and let I be the edge ideal of G.
Let P = (A, V ) where A ∈ Un for some n ∈ N and where V is a
minimal set of vertices such that P is a vertex cover of G. Then P is
an associated prime of It for all t ≥ n.

Proof. The proof follows that of Theorem 3.3 using Lemma 3.6 in
place of Lemma 3.2.

4. The stable set. In this section we will show that the primes
described in Theorems 3.3 and 3.7 are the only embedded primes that
appear in the stable set of associated primes, that is, they are the only
embedded primes in Ass (R/In) for n � 0. For ease of notation we
define Pn to be the set of all primes P = (A, V ) where either A ∈ Un

or A ∈ Sn(C) for some odd cycle C and where V is a minimal set of
vertices needed for P to be a vertex cover of G. Notice that Pn ⊆ Pn+1

for all n.

Theorem 4.1. If P ∈ Ass (R/Is) for some s, then either P ∈
Min (R/I) or P ∈ Pn for some n ≥ s.

Proof. We will prove the theorem by induction on the number
of vertices of the graph. The theorem holds for a three-cycle by
Lemma 3.1.

Suppose P ∈ Ass (R/Is) for some s > 0. By Corollary 3.4, m ∈ Pn for
n � 0. Thus we may assume that P �= m. Then there is some vertex
x of G which is not contained in P . Localize at the prime ideal Q
generated by all of the vertices except for x. Then IQ = (I1, I2) where
I1 = (y1, . . . , yt) is the prime ideal generated by all vertices yi adjacent
to x, and I2 is the edge ideal of the graph G′ = G \ {x, y1, . . . , yt}.
By Corollary 2.3, PRQ = (I1, P2) where P2 is an associated prime of
I(G′). If G′ is bipartite, then P2 is a minimal vertex cover of G′ and
P is a minimal vertex cover of G and thus a minimal prime of I.

Suppose G′ is not bipartite. If G′ is connected, then P2 ∈ Pn(G′) for
some n by induction. So P2 = (A, V ) where V is a minimal set such
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that P2 is a vertex cover of G′ and either A ∈ Sn(C) for some cycle
C of G′ or A is the union of such sets. Now every cycle of G′ is also
a cycle of G so A ∈ Sn(C), where C is now viewed as a cycle of G or
A ∈ Un. As before, I1 is a minimal set such that (A, V, I1) = P is a
vertex cover of G, so P ∈ Pn.

Suppose G′ is not connected. Then by Corollary 2.2, P2 =
(P21 , P22 , . . . , P2s

) where P2i
∈ Ass (R/Ini

i ) where Ii is the edge ideal of
the connected component Gi ofG′ and (n1−1)+(n2−1)+· · ·+(ns−1) =
n − 1. Then by induction each P2i

is either a minimal vertex cover of
Gi, in which case define Ai = ∅ and Vi = P2i

, or P2i
is in Pli(Gi)

for some li ≥ ni, in which case P2i
= (Ai, Vi) where Ai and Vi are

as in the connected case. So P = (A1, . . . , As, V1, . . . , Vs, I1). Let
A = A1 ∪ · · · ∪As and let V = (V1 ∪ · · · ∪ Vs ∪ I1). Then by Definition
3.5, A ∈ Un and V is minimal such that (A, V ) is a vertex cover of G.
So P ∈ Pn.

Notice that we now have an upper bound on where the stable set
will occur. By working outward from the smallest odd cycle of G, we
can produce the longest possible chain of primes in the stable set. The
hypothesis d > 2k + 1 in the proposition below guarantees that the
graph is not a cycle. If G is a cycle, Lemma 3.1 applies.

Proposition 4.2. Suppose G is a connected, nonbipartite graph
with d vertices and suppose the smallest odd cycle which is a subgraph
of G has length 2k + 1. Assume d > 2k + 1. Then Ass (R/In) =
Ass (R/Id−k−1) for all n ≥ d − k − 1.

Proof. Let C be any odd cycle in G. If C has length 2s + 1,
then Rs+1 ∈ R(C)s+1 will contain 2s + 1 vertices. If d = 2s + 1,
then (Rs+1) will be the maximal ideal. Otherwise, by adding one
vertex at each step in the construction process, one can construct a
set R(s+1)+(d−(2s+1))−1 = Rd−s−1 which contains all but one vertex
of G. Since G is connected, this vertex must be in Bd−s−1, and so
P = (Rd−s−1, Bd−s−1) is the maximal ideal and thus the process must
stop. So St(C) = Sd−s−1(C) for all t ≥ d − s − 1 when d > 2s+ 1 and
St(C) = Sd−s(C) for all t ≥ d − s when d = 2s+ 1. Notice that s ≥ k,
so d−s−1 ≤ d−k−1, and if d = 2s+1 then s > k, so d−s ≤ d−k−1
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as well.

Suppose P ∈ Ass (R/In) for some n. Then either P ∈ Min (R/I) ⊂
Ass (R/Id−k−1), or by Theorem 4.1, P = (A, V ) where A ∈ Sl or
A ∈ Ul for some l. Choose l to be the least integer such that P ∈ Pl. If
A ∈ Sl then as above l ≤ d − k − 1. If A ∈ Ul, then A = A1 ∪ · · · ∪ Aq

where Ai ∈ Sli(Ci) where Ci is a cycle of length 2ki
+ 1 and q ≥ 2. By

definition, Ai = Ri∪Bi for some set Ri. Since l is the least integer such
that P ∈ Pl, we can assume that Ri ∩ Rj = ∅. Then li = ki + 1 +mi

where
q∑

i=1

mi ≤ d −
q∑

i=1

(2ki + 1).

Then

l−1 =
q∑

i=1

(li−1) =
q∑

i=1

(ki+mi) ≤
q∑

i=1

ki+d−2
q∑

i=1

ki−q = d−
q∑

i=1

ki−q,

and so l − 1 ≤ d − ∑
ki − q ≤ d − k − 2 and l ≤ d − k − 1.

Notice that in general the above bound is not strict. For instance,
suppose G is the suspension of a cycle of length 2k + 1; that is, G
consists of a cycle with vertices x1, . . . , x2k+1 together with vertices
y1, . . . , y2k+1 such that xiyi is an edge for each i and each yi is a
vertex of degree one (a cycle with “whiskers”). Then Ass (R/Ik+1) =
Ass (R/In) for all n ≥ k + 1. However, for a graph which is an odd
cycle together with a single path leading off of one vertex of the cycle
(a “kite”), the above bound is strict.

If a connected graph has vertices of degree one, we can strengthen
the bound given above.

Corollary 4.3. Suppose G is a connected, nonbipartite graph with
d vertices and suppose the smallest odd cycle which is a subgraph
of G has length 2k + 1. If G has s vertices of degree one, then
Ass (R/In) = Ass (R/Id−k−s) for all n ≥ d − k − s.

5. Graphs with only one cycle. In Theorem 4.1 it was shown that
if P is an embedded associated prime of Is for some s, then P ∈ Pn

for some n ≥ s. We would like to say that P ∈ Ps, however, if the
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graph contains several odd cycles, this need not be the case. A careful
examination of the proof of Theorem 4.1 shows that if for all graphs
G, m ∈ Pn for the least positive integer n such that m ∈ Ass (R/In),
then Pn ∪Min (R/I) = Ass (R/In) for all n. Unfortunately this need
not be true. However, if a graph G contains a unique cycle, then the
above holds as will be seen in Theorem 5.6.

Before proving Theorem 5.6 we will need a few technical lemmas.

Lemma 5.1. Suppose G is a graph, I is its edge ideal and n ∈ N.
Let c ∈ In be a monomial. Suppose x1 is a vertex of degree one
in G and x2 is the vertex adjacent to x1. If (x1x2)a divides c, then
c/(x1x2)a ∈ In−a.

Proof. Suppose x1x2 divides c. Since c ∈ In, we can write c =
e1e2 · · · en · b where ei is an edge of G and b is some monomial. If x1

divides ei for some i, then ei = x1x2. Similarly, if x1 and x2 both divide
b then we are done. If x1 divides b and x2 divides ei for some i, then
ei = x2y for some y adjacent to x2. Rewrite c as c = e1 · · · e′i · · · en · b′
where e′i = x1x2 and b′ = (by)/x1. The remainder of the proof follows
by induction.

Lemma 5.2. Let G be a graph, let I be the edge ideal of G, and let m
be the homogeneous maximal ideal of R. Suppose x is the vertex of G
of degree one. Let n be the least positive integer such that m = (In : c)
for some monomial c. Then x does not divide c.

Proof. Let x2 be the unique vertex adjacent to x. Let a be the largest
integer such that xa divides c. Now c /∈ In and xc ∈ In, so (xx2)ax2

divides c.

Suppose a �= 0 and let d = c/(xx2)a. Let xi ∈ m. Then xic ∈ In

and (xx2)a divides xic. By Lemma 5.1, xid = xic/(xx2)a ∈ In−a, so
m ⊆ (In−a : d). But (In−a : d) �= R since d /∈ In−a, so m = (In−a : d).
Thus m is an associated prime of In−a. This is a contradiction if a �= 0,
so x does not divide c.

Lemma 5.3. Let G be a graph with a unique cycle C. Suppose C
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has length 2k + 1 and A ∈ Sn(C) for some n ≥ k + 2. Let G′ = 〈A〉.
Let A′ ∈ Sn−1(C) and xj ∈ A′ be such that A = A′ ∪ N(xj). Let
G′′ = 〈A′〉. If x ∈ A \ A′, then x has degree one in G′.

Proof. Let x ∈ A \ A′. Then x ∈ N(xj). Assume that x ∈ N(y)
for some vertex y in G′ with y �= xj . If y ∈ N(xj), then xj , x and y
form a cycle in G′, a contradiction. If y /∈ N(xj), then y ∈ A′. Since
G′′ is connected, there is a path between y and xj that lies entirely in
G′′. Since xjx, xy ∈ G′ \ G′′, there is a cycle other than C in G′, a
contradiction. So x must have degree one in G′.

Lemma 5.4. Let G be a graph containing a cycle C of length
2k + 1 and no other cycles. Let I be the edge ideal of G. Suppose
P = (A, V ) ∈ Pk+1. Let G′ = 〈A〉 and I ′ = I(A). Then P ′ = (A) is
not an associated prime of (I ′)n for all n < k + 1.

Proof. Suppose n ≤ k. If P = ((I ′)n : c) for some monomial c, then
there is a vertex x ∈ C that does not divide c. Let G′′ = 〈G′′ \ x〉.
Note that G′′ is bipartite. Let I ′′ = I(G′′), and let P ′′ = (A \ x) be
the prime ideal generated by all the vertices of A except for x. Then
I ′′ is normally torsion-free. By Lemma 2.6, P ′′ is an associated prime
of (I ′′)n, a contradiction since P ′′ is not a minimal vertex cover of G′′.
So P ′ is not an associated prime of (I ′)n for any n < k + 1.

We are now ready to prove the main proposition of this section.

Proposition 5.5. Let G be a graph containing an odd cycle C of
length 2k + 1 and no other cycles. Let I be the edge ideal of G. Let N
be the least positive integer such that m ∈ PN . Then m /∈ Ass (R/In)
for all n ≤ N .

Proof. If m ∈ Sk+1(C), by Lemma 5.4, m is not an associated prime
of In for any n < N . So suppose N > k + 1. Since m ∈ SN (C),
there exist A ∈ SN−1(C) and xi, xj such that xi, xj ∈ A, xi and xj

are adjacent and m = A ∪ N(xj). Let G′ = 〈A〉, let I ′ = I(A) and let
P = (A). Notice that P is the maximal ideal of the ring corresponding
to the graph G′. Notice that m �= P and that N −1 is the least positive
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integer such that A ∈ SN−1(C).

Assume that there exists n < N such that m is an associated prime
of In. Also assume that n is the least such integer. Then m = (In : c)
for some monomial c /∈ In. Let x ∈ m \ A. By Lemma 5.3, x has
degree one in G. By Lemma 5.2, x does not divide c. Therefore, by
repeated use of Lemma 2.6, P = ((I ′)n : c). By induction n ≥ N − 1,
so n = N − 1. Then n is the least positive integer such that P is an
associated prime of (I ′)n.

Notice that xj /∈ C since otherwise N(xj) ⊆ A. Assume xj has
degree greater than one in G′. Then xj is adjacent to some vertex in
G′ besides xi, call it y. Since G′ is connected, there is a path from the
cycle to y. Similarly, there is a path from the cycle to xi. These two
paths, C, xix and xy form another cycle, a contradiction. So xj must
have degree one in G′. By Lemma 5.2, since P = ((I ′)n : c) and n is
minimal as seen above, xj does not divide c.

If x ∈ m \ A, then xc ∈ In, so there exists z such that xz ∈ I and z
divides c. As above, x has degree one in G, so z = xj , a contradiction
since xj does not divide c. So m is not an associated prime of In for
any n < N .

Notice that by combining Theorem 4.1 and Proposition 5.5, we have
shown that if a graph G has a unique cycle, then Ass (R/In) is precisely
described for all n. If the cycle is even, then Ass (R/In) = Min (R/I)
for all n, and if the cycle is odd, then every embedded associated prime
is produced by the construction in Section 3.

Theorem 5.6. If a graph G contains a unique cycle C, then
Ass (R/In) = Min (R/I) ∪ Pn.

Proof. First notice that if the cycle C has even length, then Pn = ∅

and the result holds. So we may assume C has odd length. Suppose
P ∈ Ass (R/In) but P /∈ Min (R/I). If P = m is the homogeneous
maximal ideal, then m ∈ Pk for k � 0 by Corollary 3.4. Let s be the
least positive integer such that m ∈ Ps. Then by Proposition 5.5 s ≤ n.
Since the sets Pi form an ascending chain, m ∈ Pn. If P �= m, the
proof now follows inductively from a careful examination of the proof
of Theorem 4.1.
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Corollary 5.7. If a graph G contains a unique cycle, then the sets
Ass (R/In) form an ascending chain.

6. Graphs with multiple cycles. We saw in Theorem 4.1 that
our construction does produce all of the embedded associated primes
of a graph. However, if the graph contains more than one cycle, the
inequality in Theorem 4.1 can be strict. For the remainder of the paper
we will see how to modify the definitions of Un and Pn so that some of
the embedded associated primes will now be in Pn for smaller values
of n.

Definition 6.1. Suppose G is a graph containing a cycle C of
length 2k + 1 for some k ∈ N. Let S̃n(C) be the set of all possible
A = (Rn, Bn), Rn ∈ R(C)n, such that 〈A〉 contains exactly one cycle.
Let d(A) be the monomial dn corresponding to Rn = R(A).

Notice that for each cycle C of a graph G, S̃n(C) ⊆ Sn(C). Also
S̃n(C) could be empty. We will use the sets S̃n(C) to build associated
primes.

Definition 6.2. Let G be a graph and let I be its edge ideal. If the
smallest odd cycle C of G has length 2k + 1 for some k ∈ N, define
Tk+1 = S̃k+1(C). For each n > k + 1, define Tn to be the collection of
all sets A such that either

1. A ∈ S̃n(C) for some cycle C of G, in which case d(A) and R(A)
are as in Definition 6.1, or

2. A = A1 ∪ A2 ∪ · · · ∪ As where Ai ∈ Tni
for some ni < n,

R(A) = ∪R(Ai) and for each i ∈ {1, . . . , s − 1}, there is an edge
xiyi with xi ∈ R(Ai) and yi ∈ R(Ai+1). In addition,

(a) if s = 2t + 1 for some t ∈ N and there is an edge xsys with
xs ∈ R(As) and ys ∈ R(A1), then n = n1 + · · · + ns − t. In this case
d(A) = d(A1)d(A2) · · · d(As).

(b) else n = n1 + · · · + ns and d(A) = (x1d(A1))(x2d(A2)) · · ·
(xs−1d(As−1))d(As).

We now prove the analogue of Lemmas 3.2 and 3.6.
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Lemma 6.3. Let G be a graph and let I be its edge ideal. Let n ∈ N,
A ∈ Tn and d = d(A). Then the following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.

2. d has degree 2n − 1, so d /∈ In, but d ∈ In−1.

3. For each vertex x in A, xd ∈ In and if x ∈ R(A), then x divides
d and d/x ∈ In−1.

Proof. By Lemma 3.2 the three properties hold for A ∈ Tk+1 where k
is such that the smallest odd cycle has length 2k + 1. Let N ∈ N and
suppose that the three properties hold for all n < N . Let A ∈ TN . If
A ∈ S̃N (C) for some cycle C, the three properties hold by Lemma 3.2.
So assume A = A1∪· · ·∪As for some s ≥ 2, n1, . . . , ns < N and ideals
A1 ∈ Tn1 , . . . , As ∈ Tns

as in Definition 6.2. Let xa be a vertex that
divides d. Then xa divides d(Ai) = di for some i, or xa divides xidi

where xi ∈ R(Ai); so by induction all vertices adjacent to xa are in
Ai ⊆ A.

To see parts 2 and 3, first consider the case where s = 2t+1 for some
t ∈ N and there is an edge xsys with xs ∈ R(As) and ys ∈ R(A1).
Then d = d1 · · · ds and N = n1 + · · · + ns − t. Each di has degree
2ni − 1, so d has degree 2(n1 + · · · + ns) − s = 2N − 1. Thus
d /∈ IN . For each i ∈ {1, 2, . . . , s}, yi divides di+1 since yi is in
R(Ai+1) and ni+1 < N . Since xi ∈ R(Ai) and yi is adjacent to xi,
yi ∈ Ai. By induction, di+1/yi ∈ Ini+1 and diyi ∈ Ini . Then didi+1 =
(diyi)(di+1/yi) ∈ Ini+ni+1−1. Since d = (d1d2) · · · (d2t−1d2t)(ds),
d ∈ I(n1+n2−1)+···+(n2t−1+n2t−1)+(ns−1) ⊆ IN−1.

Now let x be a vertex in R(A). Then x ∈ R(Aj) for some
j, so by induction x divides dj . Then x divides d and d/x =
(dj/x)(dj+1dj+2) · · · (dj−2dj−1). Since dj/x ∈ Inj−1 by hypothesis,
d/x ∈ IN−1.

Now consider the case where s is even or there is no edge xsys

with xs ∈ R(As) and ys ∈ R(A1). Then N = n1 + · · · + ns and
d = (d1x1) · · · (ds−1xs−1)(ds). Therefore, d has degree 2n1 + · · · +
2ns−1 + (2ns − 1) = 2N − 1. Thus d /∈ IN . For each i, xi ∈ Ai, so
dixi ∈ Ini . Since ds ∈ Ins−1, d ∈ In−1.

Let x be a vertex in R(A). Then x ∈ R(Aj) for some j. By the induc-
tive hypothesis, dj/x ∈ Inj−1. Then d/x = (d1x1) · · · (dj−1xj−1)(dj/x)
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(dj+1xj) · · · (dsxs−1). Then d/x ∈ IN−1.

So for either case d/x ∈ IN−1 for each vertex x in R(A). Let x be a
vertex in A. Since 〈A〉 is connected, x must be adjacent to some vertex
y in R(A). Then d/y ∈ IN−1 and xy ∈ I, so dx = (xy)(d/y) ∈ IN .

We now use the sets Tn to give a modified definition of Un, from
which we will again build the embedded associated primes.

Definition 6.4. Suppose G is a graph, let n ∈ N and let s ≥ 2.
Define Ũn to be the set of all possible A = A1 ∪ · · ·∪As such that Ai ∈
Tni

where n1, . . . , ns < n are such that n−1 = (n1−1)+ · · ·+(ns−1)
and in addition, if x divides d(Ai) for some i, then x /∈ Aj for all i �= j.
Define d(A) = d(A1)d(A2) · · · d(As).

Lemma 6.5. Let A ∈ Ũn and d = d(A) for some n ∈ N. Then the
following properties hold:

1. Every vertex that divides d is adjacent only to vertices in A.

2. d /∈ In, but d ∈ In−1.

3. For each vertex xa in A, xad ∈ In.

Proof. The proof follows from Lemma 6.3 and the proof of Lemma
3.6 with minor modifications.

Theorem 6.6. Let G be a graph and let I be the edge ideal of G.
Let n ∈ N. Let P = (A, V ) where A ∈ Ũn and V is a minimal set of
vertices such that P is a vertex cover of G. Then P is an associated
prime of Im for all m ≥ n.

Proof. The proof is similar to that of Theorem 3.7, using Lemma 6.5
in place of Lemma 3.6.

Define P̃n to be the set of all primes P = (A, V ) where A ∈ Ũn. Then
the above theorem shows that P̃n ⊆ Ass (R/In). Since Pn ⊆ P̃n the
analog of Theorem 4.1 also holds. The embedded primes may appear
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in P̃n for smaller values of n. Thus using Ũn we produce some of the
embedded primes at an earlier stage in the construction.
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