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THE DE LA VALLÉE POUSSIN THEOREM
FOR VECTOR VALUED MEASURE SPACES

MARÍA J. RIVERA

ABSTRACT. The purpose of this paper is to extend the de
la Vallée Poussin theorem to cabv(µ, X), the space of measures
defined in Σ with values in the Banach space X which are
countably additive, of bounded variation and µ-continuous,
endowed with the variation norm.

1. Introduction. The celebrated theorem of de la Vallée Poussin,
VPT in brief, characterizes the Lebesgue uniform integrability in the
following way.

Let F be a family of scalar measurable functions on a finite measure
space (Ω,Σ, µ). Then the following are equivalents.

(i) supf∈F
∫
Ω
|f | dµ < ∞ and F is uniformly integrable, i.e., the set

{∫
E
|f | dµ, f ∈ F} converges uniformly to zero in A if µ(E)→ 0.

(ii) If Enf = {ω ∈ Ω : |f(ω)| > n}, then limn→∞
∫
Enf

|f | dµ = 0,
uniformly in F .
(iii) There is a Young function Φ with the property that Φ(x)/x is

an increasing function: limx→∞(Φ(x)/x) =∞, and there is a constant
0 < C < ∞ such that supf∈F

∫
Ω
Φ(|f |) dµ = C.

The theorem of Dunford states that the uniform integrability of a
subset K of L1(µ) is equivalent to the relative weak compactness of
K, and in [1, subsection 2.1] Alexopoulos gives more information on
the structure of K in the corresponding Orlicz space LΦ(µ). The
uniform integrability also is essential in the study of the relative weak
compactness in L1(µ,X), in fact every conditionally weakly compact
subset of L1(µ,X) is uniformly integrable, [3, Theorem IV]. The
purpose of this paper is to extend the VPT to cabv(µ,X). This result
allows us to characterize, in terms of the Orlicz theory, a condition in
cabv(µ,X) which plays the role of the uniform integrability in L1(µ,X).
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2. Definitions, notation and basic facts. The notation is
standard. We remit to [4] and [7] for details.

A Young function is a convex function Φ : R → R+ such that
Φ(−x) = Φ(x), Φ(0) = 0 and limx→∞ Φ(x) =∞. In this paper we are
interested in the class of Young functions Φ which appears in the VPT,
i.e., (Φ(x)/x) is increasing and limx→∞(Φ(x)/x) =∞. Basically there
are two types of Young functions in the VPT: a) If F is a bounded
subset of L∞, then we can take a Young function Φ that jumps to
infinity in some a > 0 and that Φ(x) = 0 if 0 ≤ x < a. b) Otherwise, Φ
can be taken continuous with Φ(x) = 0 if and only if x = 0. We denote
by YVP the class of Young functions Φ of a) or b).

From now on, (Ω,Σ, µ) will represent an atomless abstract finite
measure space, where Σ is a σ-algebra on which µ is a σ-additive and
nonnegative measure. Let F be a countably additive X-valued and
µ-continuous measure in (Ω,Σ, µ). The Φ-variation of F

IΦ(F ) := sup
π

{∑
n

Φ
(‖F (An)‖

µ(An)

)
µ(An)

}

where the supremum is taken over all partitions π = {An} of Ω in
Σ and the convention 0/0 = 0 is employed. If IΦ(F ) < ∞, F is
said to be of bounded Φ-variation. We denote by cabvΦ(µ,X) the
space of countably additive and µ-continuous X-valued measures F
such that there is a K > 0 with IΦ(F/K) ≤ 1 which is a Banach space
with the norm VΦ(F ) := inf {K > 0 : IΦ(F/K) ≤ 1}. In particular,
cabv∞(µ,X) = {F : Σ→ X : ∃K > 0, ∀A ∈ Σ, ‖F (A)‖ ≤ kµ(A)} with
V∞(F ) = inf {K > 0 : ∀A ∈ Σ, ‖F (A)‖ ≤ µ(A)}, and if Φ(x) = |x| we
will write cabv(µ,X) and | · |, the variation norm, to the corresponding
space and norm.

LΦ(µ,X) is an isometric subspace of cabvΦ(µ,X) under the map
f → F such that F (A) =

∫
A

f dµ. We denote by χ(µ,X) the subset of
the X-valued step functions defined in (Ω,Σ, µ) and by MΦ(µ,X) the
closed linear span of χ(µ,X) in LΦ(µ,X). Given F a set of functions
f : Ω → X such that ‖f(·)‖ ∈ L1(µ), we say that F is uniformly
integrable if and only if {‖f(·)‖, f ∈ F} is uniformly integrable in
L1(µ). In particular, from the VPT we know that if Φ ∈ YVP, then
the bounded sets of LΦ(µ,X) are uniformly integrable.

If F ∈ cabv (µ,X) and A ∈ Σ, F · A is the countably additive
and µ-continuous X-valued measure of bounded variation such that
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F ·A(E) = F (A∩E) for all E ∈ Σ. With this notation, the variational
measure of F is the countably additive and µ-continuous scalar measure
µF on Σ such that µF (A) = |F · A|.
In [8], Ülger gives a characterization of the bounded sets of L∞(µ,X)

which are relatively weakly compact in L1(µ,X) using the Talagrand’s
results [6]. In [2] Diestel, Ruess and Schachermayer remove the
L∞(µ,X)-boundedness condition giving, with an independent and eas-
ier proof, the best characterization of the relatively weakly compact
subsets of L1(µ,X). In this setting, the characterization of the rela-
tive weak compactness in L1(µ,X) of [2] can be reformulated in the
following way.

Theorem A. Let K be a bounded subset of L1(µ,X). Then the
following are equivalents.

(i) K is weakly relatively compact.

(ii) K is a bounded subset of LΦ(µ,X) for some Φ ∈ VPT, and
for every sequence (fn) ∈ K there exists a sequence (f̂n) with fn ∈
co {fm,m ≥ n} such that (f̂n(ω)) is norm convergent in X for almost
everywhere.

(iii) K is a bounded subset of LΦ(µ,X) for some Φ ∈ VPT, and
for every sequence (fn) ∈ K there exists a sequence (f̂n) with f̂n ∈
co {fm,m ≥ n} such that (f̂n(ω)) is weakly convergent in X for almost
everywhere.

The notion of complementary Young functions is essential in the
Orlicz theory, especially in the characterization of duals of Orlicz
spaces. Given a Young function Φ, we say that a Young function Ψ
is the complementary of Φ if Ψ(x) := sup{t|x| − Φ(t), t > 0}. We
recall that if Φ is a continuous Young function of YVP, Ψ has the
same properties. In general, if Φ is continuous with Φ(x) = 0 if and
only if x = 0, then (MΦ(µ,X))′ = cabvΨ(µ,X ′), see [5]. Therefore
a suitable adaptation of the proof of [2, Theorem 2.1] produces the
following extension of Corollary 3.4 of [2].

Theorem B. Let Φ be a continuous function of YVP, and let K be
a bounded subset of MΦ(µ,X). Then the following are equivalent:
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(i) K is relatively weakly compact in MΦ(µ,X).

(ii) For every sequence (fn) ∈ K there exists a sequence (f̂n) with
f̂n ∈ co {fm,m ≥ n} such that (f̂n(ω)) is norm convergent in X for
almost everywhere.

(iii) For every sequence (fn) ∈ K, there exists a sequence (f̂n) with
f̂n ∈ co {fm,m ≥ n} such that (f̂n(ω)) is weakly convergent in X for
almost everywhere.

In cabvΦ(µ,X) it is possible to also define the Orlicz norm ‖ · ‖Φ:

‖F‖Φ := sup
{
sup
π

∑
Ai∈π

‖F (Ai)‖‖H(Ai)‖
µ(Ai)

,

H ∈ cabvΨ(µ,X ′) : Vψ(H) ≤ 1
}

where Ψ is the complementary of Φ and π is a partition of Ω in Σ. This
norm is equivalent to VΦ(·) and VΦ(F ) ≤ ‖F‖Φ ≤ 2VΦ(F ) for every
F ∈ cabvΦ(µ,X), see [7, p. 29]. Moreover, if f ∈ LΦ(µ,X) and g ∈
LΨ(µ,X ′), then from [7, p. 33],

∫
Ω
‖f(ω)‖‖g(ω)‖ dµ ≤ 2VΦ(f)VΨ(g).

Inspired in the Orlicz norm, consider the functional V v
Φ (F ) defined for

F in cabvΦ(µ,X) by

V v
Φ (F ) := sup

{
sup
π

∑
Ai∈π

µF (Ai)‖H(Ai)‖
µ(Ai)

,

H ∈ cabvΨ(µ,X ′) : VΦ(H) ≤ 1
}

V v
Φ (F ) is unambiguously defined as a finite number or as +∞. If V v

Φ (F )
is finite, F is said to be of bounded Φv-variation. Then

Definition 2.1. cabvvΦ(µ,X) is the linear subspace of cabvφ(µ,X)
consisting of all measures of bounded Φv-variation, with the norm
V v

Φ (·).

It is evident that

Corollary 2.1. LΦ(µ,X) is an isometric subspace of cabvvΦ(µ,X).
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3. Main results. The aim of this paper is to prove the following
extension of the VPT.

Theorem 3.1. Let F be a subset of cabv (µ,X). Then the following
are equivalents:

(i) F is bounded in cabv (µ,X), and the set of measures {µF , F ∈ F}
is uniformly µ-continuous, i.e., limµ(A)→0 µF (A) = 0 uniformly in F .

(ii) F is a bounded subset of cabvvΦ(µ,X) for some Φ ∈ YVP.

IfX has the Radon-Nikodym property, this is exactly the de la Vallée-
Poussin theorem. If not, the nice thing is that every F ∈ cabv(µ,X ′′)
has a weak∗-derivative. For a good exposition of this space of weak∗-
derivative functions, with range in a Banach dual space Y ′, in this case
in X ′′, see Schlüchtermann [5]. We extend the definition [5, 1.2.6] to
our setting.

Definition 3.1. Given a Young function Φ and a Banach space Y ,
let Lω∗

Φ (µ, Y ′) be the space of functions f : Ω→ Y ′ such that

(a) f is weak∗-measurable, i.e., 〈f(·), y〉 is measurable for all y ∈ Y .

(b) There exists h ∈ L1(µ), and there exists H > 0 : Φ(H‖f(ω)‖) ≤
h(ω), ω ∈ Ω.
In Lω∗

Φ (µ, Y ′) we define the semi-norm

‖f‖Φ∗ := sup
{∫

Ω

|〈f(ω), g(ω)〉| dµ, g ∈ χ(µ, Y ) : ‖g‖LΨ ≤ 1
}

where Ψ is the complementary Young function of Φ.

The identification of functions f, g such that for all x ∈ Y , 〈x, f(ω)−
g(ω)〉 = 0 almost everywhere in ω ∈ Ω, produces the correspond-
ing Banach space Lω

∗
Φ (µ, Y ′). The relationship between Lω

∗
1 (µ, Y ′)

and cabv (µ, Y ′) is clearly exposed in [5, Lemma 1.2.7 and Theo-
rem 1.2.8]: For every f ∈ Lω

∗
1 (µ, Y ′), the measure Ff such that

Ff (A) is the Gelfand integral
∫
A

f(ω) dµ and Ff belongs to cabv (µ, Y ′)
with ‖f‖1∗ = |Ff |. Conversely, if F ∈ cabv (µ, Y ′) there is an
fF ∈ Lω

∗
1 (µ, Y ′) such that F (A) is the Gelfand integral

∫
A

fF dµ,
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‖fF (·)‖ ∈ L1(µ), ‖fF ‖1∗ =
∫
Ω
‖fF (ω)‖ dµ and ‖fF ‖1∗ = |F |. It is

clear that for every F ∈ cabv (µ, Y ′), µF (A) = ‖fF · χA‖1∗ .

We set

Definition 3.2. cabvsΦ(µ,X ′) := {F ∈ cabvΦ(µ,X ′) : ‖fF (·)‖ ∈
LΦ(µ)}, with the norm V s

Φ(F ) = VΦ(‖fF (·)‖).

It is straightforward that

Corollary 3.1. cabvsΦ(µ,X ′) is an isometric subspace of cabvvΦ(µ,X ′)
which contains to LΦ(µ,X).

Proof of Theorem 3.1. (i) → (ii). We identify isometrically every
F ∈ cabv (µ,X) with iF ∈ cabv (µ,X ′′) where i : X → X ′′ is the
natural isometry. It is clear that the set

G := {〈fiF (·), g(·)〉, F ∈ F , g ∈ χ(µ,X ′) : ‖g‖L∞ ≤ 1}

is bounded in L1(µ) and uniformly integrable, and then from VPT
there is a Young function Φ′ ∈ YVP and a C > 0 such that

sup
{ ∫

Ω

Φ′(|〈fiF (ω), g(ω)〉|) dµ, F ∈ F , g ∈ χ(µ,X ′) :

‖g‖L∞ ≤ 1
}

≤ C

and then

sup{VΦ(〈fiF (ω), g(ω)〉), F ∈ F , g ∈ χ(µ,X ′) : ‖g‖L∞ ≤ 1} ≤ 1

where Φ = Φ′/C. Let Ψ be the complementary Young function
of Φ. For every partition π = {Aj} of Ω in Σ, and for every
H ∈ cabvΨ(µ,X ′′′) with VΨ(H) ≤ 1, we construct the class of the
function hπ : Ω → X ′′′ such that hπ =

∑
Aj∈π(H(Aj)/µ(Aj))χAj ,

which belongs to the closed unit ball of LΨ(µ,X ′′′). Moreover, for
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every A ∈ Σ, µF (A) = ‖fiF · χA‖1∗ . Then, for every F ∈ F , and every
partition π

∑
Aj∈π

µF (Aj)‖H(Aj)‖
µ(Aj)

=
∑
Aj∈π

‖fiF · χAj
‖1∗‖H(Aj)‖

µ(Aj)

= sup
{∫

Ω

|〈fiF (ω), g(ω)〉|‖hπ(ω)‖ dµ,

F ∈ F , g ∈ χ(µ,X ′) : ‖g‖L∞ ≤ 1
}

≤ sup{2VΦ(〈fiF (·), g(·)〉)VΨ(hπ),
g ∈ χ(µ,X ′) : ‖g‖L∞ ≤ 1} ≤ 2.

Then F ⊂ cabvvΦ(µ,X) with V v
Φ (F ) ≤ 2 for every F ∈ F .

(ii)→ (i). If F is a bounded subset of cabvvΦ(µ,X) for some Φ ∈ YVP,
there is a C > 0 such that for all F ∈ F , V v

Φ (F ) ≤ C. Then for every
F ∈ F , for every g ∈ χ(µ,X ′) such that ‖g‖L∞ ≤ 1 and for every
H ∈ cabvΨ(µ,X ′) such that VΨ(H) ≤ 1, we have

∫
Ω

|〈fiF (ω), g(ω)〉|‖hπ(ω)‖ dµ ≤ C

and also for every h ∈ MΨ(µ) : VΨ(h) ≤ 1,

∫
Ω

∣∣∣∣
〈

fiF (ω)
C

, g(ω)
〉∣∣∣∣|h(ω)| dµ ≤ 1.

In consequence, VΦ(〈(fiF (·)/C), g(·)〉) ≤ ‖〈(fiF (·)/C), g(·)〉‖Φ ≤ 1.
Therefore,

sup
{ ∫

Ω

Φ
(∣∣∣∣

〈
fiF (ω)

C
, g(ω)

〉∣∣∣∣
)

dµ, F ∈ F , g ∈ χ(µ,X ′) :

‖g‖L∞ ≤ 1
}

≤ 1

and from the VPT the set

G := {〈fiF (·), g(·)〉, F ∈ F , g ∈ χ(µ,X ′) : ‖g‖L∞ ≤ 1}
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is uniformly integrable in L1(µ). The result follows easily.
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5. G. Schlüchtermann, Properties of operator-valued functions and applications
to Banach spaces and linear operators, Habilitationsschrift, Munich, 1994.

6. M. Talagrand, Weak Cauchy sequences in L1(E), American J. Math. 106
(1984), 703 724.

7. J.J. Uhl, Orlicz spaces of finitely additive set functions, Studia Math. 29
(1967), 19 58.
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