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TWO-POINT DISTORTION THEOREMS FOR
SPHERICALLY CONVEX FUNCTIONS

WILLIAM MA AND DAVID MINDA

ABSTRACT. One-parameter families of sharp two-point
distortion theorems are established for spherically convex
functions f , that is, meromorphic univalent functions f de-
fined on the unit disk D such that f(D) is a spherically con-
vex subset of the Riemann sphere P. These theorems pro-
vide for a, b ∈ D sharp lower bounds on dP(f(a), f(b)), the
spherical distance between f(a) and f(b), in terms of dD(a, b),
the hyperbolic distance between a and b, and the quantities
(1 − |a|2)f �(a), (1 − |b|2)f �(b), where f � = |f ′|/(1 + |f |2) is
the spherical derivative. The weakest lower bound obtained is
an invariant form of a known growth theorem for spherically
convex functions. Each of the two-point distortion theorems
is necessary and sufficient for spherical convexity. These two-
point distortion theorems are equivalent to sharp two-point
comparison theorems between hyperbolic and spherical geom-
etry on a spherically convex region Ω on P. Each of these
two-point comparison theorems characterize spherically con-
vex regions.

1. Introduction. We begin by surveying the relatively brief history
of two-point distortion theorems for univalent functions in order to set
the stage for our work. The classical theory of univalent functions
often deals with the family S of normalized (g(0) = 0, g′(0) = 1)
univalent functions g defined on the unit disk D = {z : |z| < 1}.
Sharp growth and distortion theorems for functions in S are well-
known; these results are necessary but not sufficient for univalence.
In 1978 Blatter [1] established a sharp two-point distortion theorem
for non-normalized univalent functions f defined on D which is also
sufficient for univalence. Blatter’s result gives a sharp lower bound on
the Euclidean distance |f(a)−f(b)| in terms of d

D
(a, b), the hyperbolic

distance between a and b relative to D, and the quantities (1 −
|a|2)|f ′(a)|, (1 − |b|2)|f ′(b)|. Later, Kim and Minda [4] extended the
method of Blatter and obtained a one-parameter family of sharp two-
point distortion theorems that were both necessary and sufficient for
univalence. An invariant version of the classical growth theorem for
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univalent functions is the weakest result in the one-parameter family.
These two-point distortion theorems yield sharp two-point comparison
theorems between Euclidean geometry and hyperbolic geometry on
simply connected regions. But the two-point comparison theorems do
not characterize simply connected regions.

There are two-point distortion theorems for some subclasses of uni-
valent functions. Kim and Minda [4] derived a one-parameter family
of sharp two-point distortion theorems for convex univalent functions
which characterize convex univalent functions. Interestingly, the as-
sociated two-point comparison theorems for Euclidean and hyperbolic
geometry on convex regions do characterize convex regions. The au-
thors [8] established sharp two-point distortion theorems which char-
acterize strongly close-to-convex functions of order α ∈ [0, 1]. That
paper provides both sharp upper and lower bounds on |f(a)− f(b)| in
terms of dD(a, b), (1− |a|2)|f ′(a)| and (1− |b|2)|f ′(b)|. The case α = 0
corresponds to convex univalent functions.

Sharp two-point distortion theorems were recently obtained for
bounded univalent functions [9]. In this context one considers uni-
valent functions f which map D into itself. Two-point distortion
theorems give upper and lower bounds on the hyperbolic distance
dD(f(a), f(b)) in terms of dD(a, b), (1 − |a|2)|f ′(a)|/(1 − |f(a)|2) and
(1− |b|2)|f ′(b)|/(1− |f(b)|2). Invariant versions of the classical growth
theorems for bounded univalent functions are contained as special in-
stances of the two-point distortion theorems. In this setting the two-
point distortion theorems yield two-point comparison theorems between
hyperbolic geometry on a simply connected region Ω ⊂ D and the re-
striction to Ω of the ambient hyperbolic geometry on D. These com-
parison theorems do not characterize simply connected subregions of
D.

Another natural context in which to consider two-point distortion
theorems is the family of meromorphic univalent functions f defined on
D. Here one seeks upper and lower bounds on the spherical distance
dP(f(a), f(b)) in terms of dD(a, b), (1− |a|2)f �(a) and (1− |b|2)f �(b),
where f � = |f ′|/(1 + |f |2) denotes the spherical derivative. Families
of two-point distortion theorems for meromorphic univalent functions
which would be analogous to those for univalent or bounded univalent
functions cannot be valid. The reason for this is that there do not
exist growth theorems for the class of normalized, g(0) = 0, g′(0) = 1,
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meromorphic univalent functions g on D. Precisely, nontrivial upper
or lower bounds do not exist on |g(z)|, 0 < |z| < 1, over the class of
normalized meromorphic univalent functions. In fact, for 0 < |p| < 1,
gp(z) = z/[(1 − z/p)(z − p)] is a normalized meromorphic univalent
function on D and gp(z)→0 as p→0 (when 0 < |z| < 1) and gp(z) = ∞
when z = p.

In spite of this, two-point distortion theorems might exist for some
subclasses of meromorphic univalent functions. For nonnormalized
spherically convex functions f defined on D we obtain a one-parameter
family of sharp two-point lower distortion theorems, that is, sharp lower
bounds on dP(f(a), f(b)) in terms of the quantities mentioned earlier.
Each of these two-point distortion theorems also characterizes spheri-
cally convex functions. The weakest one in the family is an invariant
version of the known growth theorem for spherically convex functions
[7]. These results are actually equivalent to two-point comparison the-
orems between hyperbolic geometry and the restriction of spherical
geometry to spherically convex regions. Interestingly, each of these
two-point comparison theorems do characterize spherically convex re-
gions.

2. Preliminaries. The hyperbolic metric on D is defined by
λD(z)|dz| = |dz|/(1 − |z|2). The induced hyperbolic distance between
a, b ∈ D is given by

dD(a, b) = inf
∫

δ

λD(z)|dz|,

where the infimum is taken over all rectifiable paths δ in D joining a
and b. A path γ connecting a and b is called a hyperbolic geodesic if

dD(a, b) =
∫

γ

λD(z)|dz|.

The unique hyperbolic geodesic between a and b is the arc of the circle
through a and b that is orthogonal to the unit circle ∂D. Explicitly,

dD(a, b) = tanh−1

∣∣∣∣ a− b

1− āb

∣∣∣∣ .
The hyperbolic metric and distance are both invariant under Aut (D),
the group of conformal automorphisms of D.
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A region Ω on the Riemann sphere P is called hyperbolic if P\Ω
contains at least three points. When Ω is hyperbolic, there is a
meromorphic universal covering projection f of D onto Ω. The set
of all such coverings of D onto Ω is given by f ◦T , where T ranges over
Aut(D). The hyperbolic metric λΩ(w)|dw| on Ω is determined from
f∗(λΩ(w)|dw|) = λD(z)|dz|, where

f∗(λΩ(w)|dw|) = λΩ(f(z))|f ′(z)||dz|

denotes the pull-back via f of λΩ(w)|dw|. This determines λΩ(w)|dw|
independent of the choice of the covering projection. The hyperbolic
distance function induced by this metric is

dΩ(A,B) = inf
∫

δ

λΩ(w)|dw|,

where the infimum is taken over all locally rectifiable paths δ in Ω
joining A and B. If Ω is simply connected, then a covering f : D→Ω
is a conformal mapping and dΩ(f(a), f(b)) = d

D
(a, b) for all a, b ∈ D.

When Ω is not simply connected, then dΩ(f(a), f(b)) ≤ dD(a, b) for
a, b ∈ D.

The spherical metric on P is the conformal metric λP(z)|dz| =
|dz|/(1 + |z|2). It is invariant under Rot (P), the group of rotations
of the sphere, which consists of R(z) = eiθ(z − a)/(1 + āz), where
a ∈ C and θ ∈ R, or R(z) = eiθ/z, where θ ∈ R. The invariance
property is R∗(λP(w)|dw|) = λP(z)|dz| for R ∈ Rot (P). The distance
function induced on P by the spherical metric is

dP(a, b) = inf
∫

δ

λP(z)|dz|,

where the infimum is taken over all locally rectifiable paths δ on P
connecting a and b. A path γ joining a and b is called a spherical
geodesic if

dP(a, b) =
∫

γ

λP(z)|dz|.

The points a and b are antipodal on P precisely when b = −1/ā.
For distinct a, b ∈ P spherical geodesics always exist. If a and b are
antipodal, then any of the infinitely many great circular arcs connecting
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a and b is a spherical geodesic. If a and b are not antipodal, then the
unique spherical geodesic is the shorter arc between a and b of the single
great circle determined by a and b. The explicit formula for spherical
distance is

dP(a, b) =




arctan
∣∣∣∣ a− b

1 + āb

∣∣∣∣ if a, b ∈ C,

arctan
1
|a| if a ∈ C, b = ∞.

Spherical distance is invariant under Rot (P) : dP(R(a), R(b)) =
dP(a, b) for all a, b ∈ P and R ∈ Rot (P). Note that dP(a, b) ≤ π/2
with equality if and only if a and b are antipodal points. For a region
Ω on P, Ω = P, and w ∈ Ω, let

εΩ(w) = min{dP(w, c) : c ∈ ∂Ω}

denote the spherical distance from w to ∂Ω. Note that 0 < εΩ(w) ≤
π/2. Sometimes it is more convenient to work with the quantity
EΩ(w) = tan εΩ(w).

For a hyperbolic region Ω on P it is natural to consider the spherical
density

µΩ(w) =
λΩ(w)|dw|
λP(w)|dw| = (1 + |w|2)λΩ(w)

of the hyperbolic metric. The function µΩ is a real-valued function on
Ω, even if ∞ ∈ Ω, and it is invariant under Rot (P) : µR(Ω)(R(z)) =
µΩ(z) for any R ∈ Rot (P). The spherical density was employed in [13]
and [15]. The fact that µΩ(w)→∞ whenever w→∂Ω was observed in
[15]. If f : D→Ω is a meromorphic universal covering, then

µΩ(f(z)) =
1 + |f(z)|2

(1− |z|2)|f ′(z)| =
1

(1− |z|2)f �(z)
.

A region Ω on P is called spherically convex if for each pair a, b of
points in Ω any spherical geodesic connecting a and b also lies in Ω.
Trivially, P itself is spherically convex. If Ω is spherically convex and
contains a pair of antipodal points, then Ω = P. Henceforth, whenever
we discuss spherically convex regions Ω, we always assume Ω = P. A
spherical disk DP(a, r) = {w ∈ P : dP(a,w) < r} is spherically convex
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provided 0 < r ≤ π/4. For r = π/4 the spherical disk DP(a, π/4) is
a hemisphere with spherical center a. Note that the unit disk D is a
hemisphere. Also, given any hemisphere Ω, there is a rotation R of P
with R(Ω) = D. The rotation R carries the spherical center of Ω to
the origin. For a spherically convex region Ω, εΩ(w) ≤ π/4 for w ∈ Ω
with equality if and only if Ω is a hemisphere with spherical center w.
Observe that µD(w) = (1 + |w|2)/(1 − |w|2) ≥ 1 so µΩ ≥ 1 for any
hemisphere since the spherical density is invariant under rotations. A
meromorphic univalent function f defined on D is called spherically
convex if the image f(D) is spherically convex.

We make use of several invariant differential operators for meromor-
phic functions f defined on D. Set

Ds1f(z) =
(1− |z|2)f ′(z)
1 + |f(z)|2 ,

Ds2f(z) =
(1− |z|2)2f ′′(z)

1 + |f(z)|2 − 2z̄(1− |z|2)f ′(z)
1 + |f(z)|2

− 2(1− |z|2)2f(z)f ′(z)2

(1 + |f(z)|2)2 ,

and

Ds3f(z) =
(1− |z|2)3f ′′′(z)

1 + |f(z)|2 − 6(1− |z|2)3f(z)f ′(z)f ′′(z)
1 + |f(z)|2

− 6z̄(1− |z|2)2f ′′(z)
1 + |f(z)|2 +

6z̄2(1− |z|2)f ′(z)
1 + |f(z)|2

+
12z̄(1− |z|2)2f(z)f ′(z)2

(1 + |f(z)|2)2 +
6(1− |z|2)3f(z)2f ′(z)3

(1 + |f(z)|2)3

at any point which is not a pole of f . For simplicity we write
Djf in place of Dsjf , j = 1, 2, 3. The reader should note that
Djf has a different meaning in [4], [8] and [9]. If f(0) = 0, then
Djf(0) = f (j)(0), j = 1, 2, 3. These operators are invariant in the sense
that |Dj(R ◦ f ◦ T )| = |Djf | ◦ T for all R ∈ Rot (P) and T ∈ Aut (D).
For a locally univalent meromorphic function f on D set

Qf (z) =
D2f(z)
D1f(z)

=
(1− |z|2)f ′′(z)

f ′(z)
− 2z̄ − 2(1− |z|2)f(z)f ′(z)

1 + |f(z)|2
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and note that

D3f(z)
D1f(z)

− 3
2

(
D2f(z)
D1f(z)

)2

= (1− |z|2)2Sf (z),

where

Sf =
f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

is the Schwarzian derivative of f . The quantities D1f(z), D2f(z) and
D3f(z) are not defined at a pole of f , but |Djf(z)|, Qf (z) and Sf (z)
are all defined and continuous at a simple pole. For more information
on these differential operators, see [7].

Here we gather together some basic properties of spherically convex
functions that we will use.

(i) If f is spherically convex, then for z ∈ D, |D1f(z)| ≤ 1. Equality
holds at z0 ∈ D if and only if f(D) is a hemisphere and f(z0) is the
spherical center [13, Corollary 1]. The inequality |D1f(z)| ≤ 1 means
geometrically that f is a contraction from D with hyperbolic geometry
to the image with spherical geometry.

(ii) If f is spherically convex, then for z ∈ D

|Qf (z)|2 ≤ 4(1− |D1f(z)|2).

If f(D) is a hemisphere, then equality holds at every point of D. If
equality holds at a single point of D, then f(D) is a hemisphere. This
inequality is in [7, Theorem 4]. The sharpness result is stated in [14,
Corollary 3] only when f(0) = 0. The general case is reduced to this
situation by considering R ◦ f ◦ T for appropriate R ∈ Rot (P) and
T ∈ Aut (D). Note that (ii) implies (i).

(iii) If f is spherically convex, then for z ∈ D

(1− |z|2)2|Sf (z)|+ 1
2
|Qf (z)|2 ≤ 2(1− |D1f(z)|2)

(see [16] or [7]). Observe that the inequality in (ii) follows from (iii).

3. Differential inequalities. We obtain integral inequalities from
second-order linear differential inequalities.
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Proposition 1. Suppose u, v ∈ C2[a, b], k, p > 0, v′′ ≤ k2p2v and
u′′ = k2p2u. If v(a) ≥ u(a) and v(b) ≥ u(b), then either v ≡ u or else
v > u on (a, b).

Proof. See [8].

Proposition 2. Suppose v ∈ C2[−L,L], 0 < v ≤ 1, k > 0, p ≥ 1,
|v′| ≤ kpv and v′′ ≤ k2p2v. Then

∫ L

−L

v(s)1/p

1 + v(s)2/p
ds

≥ 1
k
arctan

2 sinh(kL)((v(L) + v(−L))/(2 cosh(kpL)))1/p

1 + ((v(L) + v(−L))/(2 cosh(kpL)))2/p

and equality holds if and only if v(s) = Ae±kps, A > 0.

Proof. The general solution of u′′ = k2p2u which satisfies the
boundary conditions u(−L) = v(−L) and u(L) = v(L) is

u(s) = A[cosh(kps) + τ sinh(kps)],

where

A =
v(L) + v(−L)
2 cosh(kpL)

and

τ =
v(L)− v(−L)
v(L) + v(−L)

· cosh(kpL)
sinh(kpL)

∈ [−1, 1]

(see [9]). Since t �→ t/(1 + t2) is strictly increasing for t ∈ (0, 1],
Proposition 1 implies that

∫ L

−L

v(s)1/p

1 + v(s)2/p
ds ≥

∫ L

−L

u(s)1/p

1 + u(s)2/p
ds

=
∫ L

−L

A1/p[cosh(kps) + τ sinh(kps)]1/p

1 +A2/p[cosh(kps) + τ sinh(kps)]2/p
ds

= I(τ )
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with strict inequality unless v = u. Direct calculation shows that

I(1) = I(−1) =
1
k
arctan

(
2A1/p sinh(kL)

1 +A2/p

)

and

I ′′(τ )

=
A2

p2

∫ L

−L

sinh2(kps)u(s)(1/p)−2[1−p−6u(s)2/p + (1+p)u(s)4/p]
[1 + u(s)2/p]3

ds.

Because p ≥ 1 and 0 < u(s) ≤ v(s) ≤ 1, it follows that 1 − p −
6u(s)2/p + (1 + p)u(s)4/p < 0. Thus, I ′′(τ ) < 0 and so I(τ ) is strictly
concave down on [−1, 1] which implies that I(τ ) ≥ I(±1) with strict
inequality unless τ = ±1. This proves the desired inequality and shows
that strict inequality holds unless u(s) = Ae±kps.

4. A characterization of spherically convex regions. If Ω is an
Euclidean convex region in C, Ω = C, then λΩ(w) ≥ 1/(2δΩ(w)), for
w ∈ Ω, where δΩ(w) = dist (w, ∂Ω) is the Euclidean distance from w
to ∂Ω [12]. Conversely, if this inequality holds on a hyperbolic region
Ω, then Ω is convex. This result is due to Hilditch [2]; another proof
was given in [10]. We obtain a spherical analog of this result. This
spherical analog is needed in Section 5.

The next result makes precise the intuitive notion that a region which
is not spherically convex must possess a boundary point near which the
region is not spherically convex. Euclidean analogs of this result are
due to Keogh [3] and Hilditch [2].

Lemma 1. Suppose Ω is a proper subregion of P which is not
spherically convex. Then c ∈ ∂Ω, d ∈ P and 0 < r < R < π/4
exist such that dP(c, d) = R and DP(c, r)\DP(d,R) ⊂ Ω.

Proof. We begin by showing that there is a spherical geodesic arc γ
such that γ has spherical length strictly less than π/2, the endpoints
of γ lie in Ω, γ is contained in Ω, γ ∩ ∂Ω = φ and there is a circular
arc δ in Ω connecting the endpoints of γ so that γ∪ δ is a Jordan curve
whose interior is contained in Ω. Since Ω is not spherically convex,
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there exist a, b ∈ Ω and a spherical geodesic arc σ between them such
that σ is not entirely in Ω. Trivially, σ has spherical length at most
π/2. If σ has spherical length π/2 (equivalently, a and b are antipodal),
then we may move b slightly along σ towards a and still remain in Ω.
Thus, there is no harm in assuming σ has spherical length strictly less
than π/2. Also, we may suppose a = 0; if not, rotate the sphere to
achieve this. Because Ω is a region and 0, b ∈ Ω ∩C, the points 0 and
b can be joined by a polygonal arc in Ω ∩C. This means that a finite
sequence 0 = w0, w1, . . . , wn = b exists in Ω such that the straight line
segment [wj , wj+1] is contained in Ω for j = 0, 1, . . . , n−1. Recall that
straight line segments through the origin are spherical geodesics. Note
that [0, w1] ⊂ Ω but σ = [0, b] = [0, wn] is not entirely contained in
Ω. This implies that there exists an integer j, 1 ≤ j ≤ n − 1, such
that [0, wj ] ⊂ Ω while [0, wj+1] ⊂ Ω. Let w(t) = (1− t)wj + twj+1 for
0 ≤ t ≤ 1. Because Ω is open, [0, w(t)] ⊂ Ω for all t sufficiently small.
Set

T = sup{t ∈ [0, 1] : [0, w(s)] ⊂ Ω for 0 ≤ s ≤ t}.

Then 0 < T ≤ 1, γ = [0, w(T )] ⊂ Ω, 0 and w(T ) belong to Ω and γ
meets ∂Ω. Moreover, as 0 and w(T ) are not antipodal, γ has spherical
length strictly less than π/2. Note that the interior of the triangle with
vertices 0, wj and w(T ) is contained in Ω. Then we can find a circular
arc δ from 0 to w(T ) in Ω in the interior of this triangle, so −γ ∪ δ is
a Jordan curve whose interior lies in Ω.

Now we complete the proof by making use of γ and δ. By rotating
P if necessary, we may suppose that γ is an interval of the real axis R
centered at the origin, say γ = [−x, x], and δ lies in the closed upper
half-planeH, whereH = {w : Im (w) > 0}. Since γ has spherical length
strictly less than π/2, we conclude that 0 < x < 1. Because Ω is open,
we can determine η > 0 so that the vertical line segments [x, x−iη] and
[−x,−x− iη] lie in Ω. Note that the great circle {w : dP(−i, w) = π/4}
is R ∪ {∞}. By selecting ρ ∈ (0, 1) sufficiently close to 1, we see that
the spherical circle {w : dP(w,−iρ) = arctan(ρ) = dP(0,−iρ)}, which
is tangent toR at the origin, will meet both [x, x−iη] and [−x,−x−iη].
Let β be the arc of this circle which joins these segments and contains 0.
By making η smaller if necessary, we may assume that β joins −x− iη
to x − iη. Let K be the compact set that is bounded by the closed
curve [−x,−x − iη] ∪ β ∪ [x, x − iη] ∪ [−x, x]. Since γ meets ∂Ω, K
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intersects ∂Ω. Set

R = max{dP(−iρ, w) : w ∈ K ∩ (P\Ω)}.

Note that

R ≤ dP(−iρ,±x) = arctan

√
x2 + ρ2

1 + ρ2x2
< π/4

since
x2 + ρ2

1 + ρ2x2
< 1

follows from 0 < x < 1 and 0 < ρ < 1. Select c ∈ K ∩ (P\Ω)
with dP(c,−iρ) = R. Note that c is at a positive distance from both
segments [x, x − iη] and [−x,−x − iη]. We want to show c ∈ ∂Ω. If
c ∈ (−x, x), then c ∈ ∂Ω is certainly true. Suppose c ∈ K\[−x, x]
and c ∈ ∂Ω. But then c would be an interior point of P\Ω and this
would violate the definition of R and the choice of c. Thus, c ∈ ∂Ω.
Finally, we can select r ∈ (0, R) so that DP(c, r)\DP(−iρ, R) ⊂ Ω. If
c ∈ (−x, x), the existence of such an r makes use of the fact that the
interior of −γ ∪ δ is contained in Ω. For c ∈ K\[−x, x], the existence
of r follows from the definition of R and the choice of c.

Theorem 1. Suppose Ω is a hyperbolic region on P. Then Ω is
spherically convex if and only if

(1) µΩ(w) ≥ 1 + E2
Ω(w)

2EΩ(w)

for all w ∈ Ω.

Proof. The inequality (1) for spherically convex regions was estab-
lished in [13, Theorem 1] (see [11] for a generalization).

Next we prove that if Ω is not spherically convex, then (1) is not valid
for some w ∈ Ω. If Ω is not spherically convex, then the preceding
lemma applies. Since µΩ and EΩ are both invariant under Rot (P), we
can assume c = 0. More precisely, we may assume there is a complex
number b with Re {b} > 0, Im {b} < 0 and a crescent-shaped region
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∆ ⊂ Ω bounded below by the circular arc through −b̄, 0 and b and
above by a circular arc from −b̄ to b that meets H. Then

h(w) =
[
b(b̄+ w)
b̄(b− w)

]π/ϕ

,

where ϕ is the angle at each vertex of ∆, is a conformal map of ∆
onto H with h(0) = 1. The hyperbolic metric on H is λH(z)|dz| =
|dz|/(2Im {z}), so

λ∆(w) =
|h′(w)|

2Im {h(w)} .

Since

h′(w) =
2πRe {b}h(w)

ϕ(b̄+ w)(b− w)
,

we find that

λ∆(w) =
πRe {b}

ϕ|b̄+ w| |b− w| sin{(π/ϕ) arg(b(b̄+ w)/(b̄(b− w)))} .

For w = iε this becomes

λ∆(iε) =
πRe {b}

ϕ|b− iε|2 sin((2π/ϕ) arg(b(b̄+ iε)))

=
πRe {b}

ϕ|b− iε|2 sin((2π/ϕ) arctan(εRe {b}/(|b|2 − εIm {b}))) .

This gives

ελ∆(iε) =
1
2
+

εIm {b}
2|b|2 +O(ε2).

Because ∆ ⊂ Ω, λ∆(w) ≥ λΩ(w) for w ∈ ∆. For w = iε, ε > 0 small,
EΩ(iε) = ε. Thus, for ε > 0 sufficiently small

2EΩ(iε)
1 + E2

Ω(iε)
µΩ(iε) =

2ε
1 + ε2

(1 + ε2)λΩ(iε)

= 2ελΩ(iε) ≤ 2ελ∆(iε)

= 1 +
εIm {b}
|b|2 +O(ε2) < 1
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since Im {b} < 0. Thus, inequality (4) cannot hold for all w ∈ Ω.

5. Main results. We start by establishing certain differential
identities that are needed later. Suppose f is a locally univalent
meromorphic function defined on D. Let γ : z = z(s), −L ≤ s ≤ L, be
a smooth path in D parametrized by hyperbolic arclength. This means
that z′(s) = (1 − |z(s)|2)eiθ(s), where θ = arg z′(s) so eiθ(s) is a unit
tangent vector to γ at z(s), and 2L is the hyperbolic length of γ.

It is straightforward to show that

d

ds
|D1f(z(s))| = |D1f(z(s))|Re {Qf (z(s))eiθ(s)}

and

(2)
d

ds

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

= p

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p Re {Qf (z(s))eiθ(s)}√
1− |D1f(z(s))|2

.

Here and below we are assuming that |D1f(z(s))| < 1 for s ∈ [−L,L].
Since

d

ds

1√
1− |D1f(z(s))|2

=
|D1f(z(s))|2Re {Qf (z(s))eiθ(s)}

(1− |D1f(z(s))|2)3/2
,

we have

d2

ds2

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

= p

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p 1√
1− |D1f(z(s))|2

·
[
pRe 2{Qf (z(s))eiθ(s)}√

1− |D1f(z(s))|2

+
|D1f(z(s))|2Re 2{Qf (z(s))eiθ(s)}

1− |D1f(z(s))|2

+Re
{
eiθ(s) d

ds
Qf (z(s)) +Qf (z(s))

d

ds
eiθ(s)

}]
.
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In [9] we proved that

d

ds
eiθ(s) = iκh(z(s), γ)eiθ(s) + (z(s)− z̄(s)e2iθ(s)),

where κh(z(s), γ) denotes the hyperbolic curvature of γ at z(s). A
tedious calculation shows that

Re
{
eiθ(s) d

ds
Qf (z(s)) +Qf (z(s))

d

ds
eiθ(s)

}

= Re
{
1
2
e2iθ(s)Q2

f (z(s)) + e2iθ(s)(1− |z(s)|2)2Sf (z(s))

+ iκh(z(s), γ)eiθ(s)Qf (z(s))− 2|D1f(z(s))|2 − 2
}
.

This implies that√
1− |D1f(z(s))|2

p

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)−p

· d2

ds2

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

=
pRe 2{Qf (z(s))eiθ(s)}√

1− |D1f(z(s))|2
+

|D1f(z(s))|2Re 2{Qf (z(s))eiθ(s)}
1− |D1f(z(s))|2

+Re
{
1
2
e2iθ(s)Q2

f (z(s)) + e2iθ(s)(1− |z(s)|2)2Sf (z(s))

+ iκh(z(s), γ)eiθ(s)Qf (z(s))− 2|D1f(z(s))|2 − 2
}
.

The connection between the hyperbolic curvature of a path γ in D and
the spherical curvature of the image f ◦ γ under a locally univalent
meromorphic function f is [7]

κs(f(z(s)), f ◦ γ)|D1f(z(s))| = κh(z(s), γ) + Im {Qf (z(s))eiθ(s)}.

Hence, if f ◦ γ is a spherical geodesic, then κs(f(z(s)), f ◦ γ) = 0 and
so

κh(z(s), γ) = −Im {Qf (z(s))eiθ(s)}.
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If we make use of this identity, then we obtain

(3)

√
1− |D1f(z(s))|2

p

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)−p

· d2

ds2

( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

= |Qf (z(s))|2 − 2(1 + |D1f(z(s))|2)

+
p
√
1− |D1f(z(s))|2 + 2|D1f(z(s))|2 − 1

1− |D1f(z(s))|2 Re 2{Qf (z(s))eiθ(s)}

+ Re
{
1
2
e2iθ(s)Q2

f (z(s)) + e2iθ(s)(1− |z(s)|2)2Sf (z(s))
}
.

The results in the following example are needed in the proof of
Theorem 2.

Example. Suppose Ω is a hemisphere, A is the spherical center
of Ω, B ∈ Ω and Γ is the spherical geodesic from A to B. Note
that Γ is also a hyperbolic geodesic. Let f : D→Ω be a conformal
mapping, γ = f−1 ◦ Γ, a = f−1(A) and b = f−1(B). Assume
γ : z = z(s), −L ≤ s ≤ L, is a hyperbolic arclength parametrization
of γ. Since |D1f(a)| = 1, the preceding identities (2) and (3) do not
apply. Nevertheless, we prove that for p > 0 the function

v(s) =
( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

is of class C2 on [−L,L] and |v′| = 2pv, v′′ = 4p2v. By replacing f with
R ◦ f ◦ T for appropriate R ∈ Rot (P) and T ∈ Aut (D), we see that
there is no harm in assuming Ω = D, A = a = 0, B = b = r ∈ (0, 1)
and f(z) ≡ z. In this situation Γ = γ = [0, r] and z(s) = tanh(s + L),
where 2L = tanh−1(r). Then

D1f(z) =
1− |z|2
1 + |z|2

and so
D1f(z(s)) =

1
cosh(2(s+ L))

.
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This gives

v(s) =
(

1
cosh(2(s+ L)) + sinh(2(s+ L))

)p

= e−2p(s+L),

so v′ = −2pv and v′′ = 4p2v. The same type of result holds if B is the
spherical center.

We also wish to note that if −1 < A < 0 < B < 1 and γ = Γ = [A,B],
then v is not of class C2 on [−L,L]. For simplicity we assume B = r ∈
(0, 1) and A = −r. Then z(s) = tanh(s), s ∈ [−L,L] (L = tanh(r)), is
a hyperbolic arclength parametrization of γ = Γ and

v(s) =
(

1
cosh(s) + | sinh(s)|

)p

= e−p|s|

which is not differentiable at s = 0.

Theorem 2. Suppose Ω is a spherically convex hyperbolic region on
P. Then for any p ≥ 1 and all A,B ∈ Ω,

(4)

dP(A, B)

≥ arctan
2 sinh(dΩ(A, B))[

2 cosh(pdΩ(A, B))

Hp(µΩ(A)) + Hp(µΩ(B))

]1/p

+

[
Hp(µΩ(A)) + Hp(µΩ(B))

2 cosh(pdΩ(A, B))

]1/p
,

where H(t) = 1/(t +
√

t2 − 1). Equality holds for distinct A,B ∈ Ω
if and only if Ω is a hemisphere, the spherical geodesic Γ between A
and B is the arc of a great circle through the spherical center of Ω, but
the spherical center is not an interior point of Γ. Conversely, if Ω is a
hyperbolic region on P and (4) holds for some p ≥ 1 and all A,B ∈ Ω,
then Ω is spherically convex.

Proof. We first show that a hyperbolic region which satisfies the
inequality (4) for some p ≥ 1 must be spherically convex. The
assumption that the inequality holds implicitly means that µΩ ≥ 1.
Now, fix A ∈ Ω and choose α ∈ ∂Ω with dP(A,α) = εΩ(A). Then
let B ∈ Ω tend to α along the spherical geodesic arc between A and
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α. Then dΩ(A,B)→∞ since the hyperbolic metric is complete and
µΩ(B)→∞ [15], so the inequality yields

εΩ(A) ≥ arctanH(µΩ(A)).

This is equivalent to

µΩ(A) ≥ 1 + E2
Ω(A)

2EΩ(A)
.

Theorem 1 implies that Ω is spherically convex.

Next, we turn to the proof that inequality (4) holds for spherically
convex regions. Suppose Ω is spherically convex and f : D→Ω is a
conformal mapping. Fix A,B ∈ Ω. Since Ω is spherically convex,
the spherical geodesic Γ joining A to B lies in Ω. Then γ = f−1 ◦ Γ
is a smooth path in D from a = f−1(A) to b = f−1(B). Suppose
γ : z = z(s), −L ≤ s ≤ L, is a parametrization of γ by hyperbolic
arclength. Then 2L ≥ dD(a, b) = dΩ(A,B) with equality if and only if
γ is the hyperbolic geodesic from a to b. We assume |D1f(z)| < 1 for
z ∈ γ except possibly at a or b. This only rules out the possibility that
Ω is a hemisphere and the spherical center of Ω is on Γ strictly between
A and B. We refer to this as the exceptional case.

For p ≥ 1 define

v(s) =
( |D1f(z(s))|
1 +

√
1− |D1f(z(s))|2

)p

.

We will show that |v′| ≤ 2pv and v′′ ≤ 4p2v. Since the preceding
example proves that |v′| = 2pv and v′′ = 4p2v when |D1f(a)| = 1
or |D1f(b)| = 1, we need only consider the possibility that 0 <
|D1f(z(s))| < 1 for s ∈ [−L,L]. This inequality implies 0 < v(s) < 1
on [−L,L]. Then identity (2) gives

v′(s) = pv(s)
Re {Qf (z(s))eiθ(s)}√

1− |D1f(z))|2
.

Property (ii) of spherically convex functions yields

|v′(s)| ≤ 2pv(s).
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Because Γ = f ◦ γ is a spherical geodesic, formula (3) produces

v′′(s) =
pv(s)√

1− |D1f(z(s))|2
[
|Qf (z(s))|2 − 2(1 + |D1f(z(s))|2)

+
p
√
1− |D1f(z(s))|2 + 2|D1f(z(s))|2 − 1

1− |D1f(z(s))|2

· Re 2{Qf (z(s))eiθ(s)}

+Re
{
1
2
e2iθ(s)Q2

f (z(s)) + e2iθ(s)(1−|z(s)|2)2Sf (z(s))
}]

.

Because p ≥ 1 and 0 < |D1f(z(s))| < 1,

p
√
1− |D1f(z(s))|2 + 2|D1f(z(s))|2 − 1 ≥ 0

for s ∈ [−L,L]. Consequently,

v′′(s) ≤ pv(s)√
1− |D1f(z(s))|2

·
[(

3
2
+

p
√
1−|D1f(z(s))|2 + 2|D1f(z(s))|2−1

1− |D1f(z(s))|2
)
|Qf (z(s))|2

− 2(1 + |D1f(z(s))|2) + (1− |z(s)|2)2|Sf (z(s))|
]
.

By making use of property (iii) of spherically convex functions we
obtain

v′′(s) ≤ pv(s)√
1− |D1f(z(s))|2

·
[
p
√
1− |D1f(z(s))|2 + |D1f(z(s))|2

1− |D1f(z(s))|2 |Qf (z(s))|2

− 4|D1f(z(s))|2
]
.

Application of property (ii) of spherically convex functions results in

v′′(s) ≤ 4p2v(s)
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for s ∈ [−L,L]. This demonstrates that v(s) satisfies the hypotheses
of Proposition 2 for k = 2 and all p ≥ 1. Note that if v′′ = 4p2v(s),
then equality holds in property (ii) of spherically convex functions and
so Ω = f(D) is a hemisphere.

Now, we establish (4). Since Γ = f ◦ γ is a spherical geodesic,

dP(A,B) =
∫

Γ=f◦γ

λP(w)|dw| =
∫

γ

f �(z)|dz|

=
∫ L

−L

f �(z(s))|z′(s)| ds =
∫ L

−L

|D1f(z(s))| ds

= 2
∫ L

−L

v(s)1/p

1 + v(s)2/p
ds.

Because v(s) satisfies the hypotheses of Proposition 2, we conclude

dP(A,B) ≥ arctan
2 sinh(2L)((v(L) + v(−L))/(2 cosh(2pL)))1/p

1 + ((v(L) + v(−L))/(2 cosh(2pL)))2/p

and equality implies v′′(s) = 4p2v(s) so Ω is a hemisphere. For p ≥ 1
the function

g(t) =
2 sinh(t)(c/cosh(pt))1/p

1 + (c/cosh(pt))2/p

is a strictly increasing function of t. Therefore,

dP(A,B)

≥ arctan
2 sinh(dΩ(A,B))((v(L) + v(−L))/(2 cosh(pdΩ(A,B))))1/p

1 + ((v(L) + v(−L))/(2 cosh(pdΩ(A,B))))2/p

and equality implies both that Ω is a hemisphere and that Γ is a
hyperbolic geodesic joining A and B. The latter follows from equality
implying 2L = dΩ(A,B). As

v(−L) =
( |D1f(a)|
1 +

√
1− |D1f(z)|2

)p

= Hp(µΩ(A))

and

v(L) =
( |D1f(b)|
1 +

√
1− |D1f(b)|2

)p

= Hp(µΩ(B)),
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we have established inequality (4) except in the exceptional case.

Since |v′(s)| = 2pv(s) and v′′(s) = 4p2v(s) when Ω is a hemisphere
and either A or B is the spherical center of Ω, and Γ is also a hyperbolic
geodesic in this case, the preceding work shows that equality holds in
(4) in this situation.

The exceptional case follows easily from the nonexceptional case.
Suppose Ω is a hemisphere, A,B ∈ Ω and the spherical geodesic Γ
joining A to B contains the spherical center of Ω. Choose a sequence
{Bn}∞n=1 in Ω so that Bn→B and the spherical geodesic Γn from A to
Bn does not pass through the spherical center of Ω. Then (4) holds for
A and Bn. By letting n→∞ we obtain (4) for A and B.

Finally, we deal with the sharpness of inequality (4). Suppose equality
holds in (4) in the nonexceptional case. Then we know that Ω must be
a hemisphere and the spherical geodesic Γ must also be a hyperbolic
geodesic. By making use of the rotational invariance of the quantities
involved, we may assume that Ω = D. We show that Γ must lie on a
line through the origin. Since Γ is a hyperbolic geodesic, it is an arc of
a circle C which is orthogonal to ∂D. Let α be one of the two points
in which C meets ∂D. Since Γ is also a spherical geodesic, C must
be a great circle on P. This implies that for each point w ∈ C the
antipodal point −1/w̄ must be on C. Thus −1/ᾱ = −α ∈ C. Since
the diametrically opposite points α,−α of ∂D belong to C and C is
orthogonal to ∂D, C is the straight line through α,−α. In particular,
0 ∈ C. Thus, equality in (4) in a nonexceptional case implies that Ω is
a hemisphere and A,B are located as in the equality statement of the
theorem.

All that remains is to prove that strict inequality holds in the
exceptional case. We begin by noting that the righthand side of
inequality (4) is a decreasing function of p. We omit the details except
to indicate that one only needs to prove that

L(p) =
[
Hp(µΩ(A)) +Hp(µΩ(B))

2 cosh(pdΩ(A,B))

]−1/p

+
[
Hp(µΩ(A)) +Hp(µΩ(B))

2 cosh(pdΩ(A,B))

]1/p

is an increasing function of p. This is accomplished by showing
L′(p) > 0. Thus, if we can prove that strict inequality holds in (4)
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in the exceptional case when p = 1, then strict inequality also holds
for p ≥ 1. It suffices to consider the case in which Ω = D and
−1 < A < 0 < B < 1. We need to verify that

(5)

B −A

1 +AB

>
2 sinh(dD(A,B))

2 cosh(dD(A,B))
H(µD(A)) +H(µD(B))

+
H(µD(A)) +H(µD(B))

2 cosh(dD(A,B))

.

By making use of the identities

dD(A,B) =
1
2
log

(1−A)(1 +B)
(1 +A)(1−B)

,

H(µD(A)) =
1 +A

1−A

and

H(µD(B)) =
1−B

1 +B
,

we find that (5) becomes

(6)
B −A

1 + AB
>

(1 +AB)(1−AB)(B −A)
1− AB − 2AB2 + 2A2B +A2B2 − A3B3

.

Because −1 < A < 0 < B < 1, the denominator on the righthand side
is positive, so (6) is equivalent to

1−AB − 2AB2 + 2A2B +A2B2 −A3B3 > (1 +AB)2(1−AB),

or
−2AB(1−A)(1 +B) > 0.

Because −1 < A < 0 < B < 1, this is trivially valid. This demonstrates
that strict inequality holds in the exceptional case for all p ≥ 1, so the
proof is complete.

Corollary 1. Suppose f is spherically convex in D. Then for p ≥ 1
and a, b ∈ D
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(7)

dP(f(a), f(b))

≥arctan
2 sinh(dD(a, b))(

2 cosh(pdD(a, b))

Kp(|D1f(a)|)+Kp(|D1f(b)|)
)1/p

+

(
Kp(|D1f(a)|)+Kp(|D1f(b)|)

2 cosh(pdD(a, b))

)1/p

where K(t) = t/(1+
√
1− t2). Equality holds for distinct a, b ∈ D if and

only if f = R◦T , where R ∈ Rot (P), T ∈ Aut (D) and a, b ∈ T−1(0, 1).
Conversely, if a nonconstant meromorphic function f defined on D
satisfies (7) for some p ≥ 1 and all a, b ∈ D, then f is spherically
convex.

Proof. Suppose f is spherically convex. Then Theorem 2 applies to
the region Ω = f(D). If we apply Theorem 2 to the points A = f(a),
B = f(b) and use dD(a, b) = dΩ(f(a), f(b)), µΩ(f(z)) = 1/|D1f(z)|,
then we obtain inequality (7). If equality holds, then Ω must be
a hemisphere and so we can find R ∈ Rot (P) with R−1(Ω) = D
and R−1(A), R−1(B) ∈ (0, 1). Then T = R−1 ◦ f ∈ Aut (D) and
T (a), T (b) ∈ (0, 1). This proves that f = R ◦ T for some R ∈ Rot (P),
T ∈ Aut (D) and a, b ∈ T−1(0, 1). On the other hand, if f has this
form, then it is straightforward to show that equality holds for all
a, b ∈ T−1(0, 1).

Conversely, suppose a nonconstant holomorphic function f defined
on D satisfies (7) for some p ≥ 1 and all a, b ∈ D. As in the proof
of the invariant form of the Koebe distortion theorem for holomorphic
univalent functions in [4, p. 144], we can conclude that f is univalent
on D. Set Ω = f(D). Since f is a conformal map, dΩ(f(a), f(b)) =
dD(a, b) for all a, b ∈ D and µΩ(f(z)) = 1/|D1f(z)|. Thus, inequality
(7) for f implies inequality (4) for Ω. This implies that Ω is a spherically
convex region, so f is spherically convex.

As we noted in the proof of Theorem 2, the righthand side of
inequality (4) is a decreasing function of p. Similarly, the righthand side
of inequality (7) is a decreasing function of p. Thus, in both instances
the largest lower bound is obtained when p = 1 while the limiting
case p → ∞ produces the smallest lower bound. The limiting case of
inequality (7) is an invariant version of a known growth theorem for
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spherically convex functions as we now show. Suppose f is spherically
convex on D. If we let p → ∞ in inequality (7) we obtain

dP(f(a), f(b))

≥ arctan
dD(a, b)

exp(dD(a, b))

max{K(|D1f(a)|), K(|D1f(b)|)} +
max{K(|D1f(a)|), K(|D1f(b)|)}

exp(dD(a, b))

.

Since t �→ t+ (1/t) is decreasing on (0, 1), we get

dP(f(a), f(b))

≥ arctan
dD(a, b)

exp(dD(a, b))
K(|D1f(a)|) +

K(|D1f(a)|)
exp(dD(a, b))

.

If f is normalized by f(0) = 0, f ′(0) = α ∈ (0, 1] and we choose a = 0,
b = z, then the preceding inequality simplifies to

dP(0, f(z)) ≥ arctan
α|z|

1 +
√
1− α2|z| ,

or
|f(z)| ≥ α|z|

1 +
√
1− α2|z| .

This is the known sharp lower bound on |f(z)| for normalized spheri-
cally convex functions [6].

6. Concluding remarks. So far we have not been able to establish
sharp upper bounds in either the two-point distortion theorem for
spherically convex functions or the two-point comparison theorem for
spherically convex regions. This is curious since in [8] and [9] the
corresponding upper bounds were easier to obtain than the lower
bounds in the sense that the proofs of the upper bounds used weaker
coefficient bounds than the proofs of the lower bounds. On the other
hand, in dealing with other spherical situations sharp upper bounds
are sometimes harder to obtain. For example, the sharp upper bound
on |f ′(z)| for normalized meromorphic univalent functions on D has
not been given for |z| > p, where p is the simple pole of f in D, while
the sharp lower bound was completely determined in [5]. A similar
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situation holds for spherically convex functions. The sharp lower bound
on |f ′(z)| is known for all z ∈ D while the sharp upper bound on |f ′(z)|
has been established only for z near the origin; see [6] for the explicit
results.
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