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TURÁN INEQUALITIES FOR
SYMMETRIC ASKEY-WILSON POLYNOMIALS

L.D. ABREU AND J. BUSTOZ

1. Let {Pn(x) : n = 0, 1, . . . } be a sequence of polynomials
orthogonal on an interval [a, b]. The polynomials {Pn(x)} are said
to satisfy Turán’s inequality if

(1.1) P 2
n(x)− Pn+1(x)Pn−1(x) ≥ 0, a ≤ x ≤ b, n = 0, 1, . . . .

Turán first observed that (1.1) is satisfied by Legendre polynomials [9]
and Szego [8] gave two beautiful proofs of that fact. Various authors
have generalized (1.1) to the classical orthogonal polynomials of Jacobi,
Hermite, and Laguerre [1], [5]. Szasz [7] also proved a Turán inequality
for ultraspherical polynomials and Bessel functions.

Bustoz and Ismail [4] applied a procedure first used by Szász [7]
to prove Turán inequalities for an important class of nonclassical
orthogonal polynomials; the symmetric Pollaczek polynomials as well
as for modified Lommel polynomials, and for q-Bessel functions. Also
in [3] Bustoz and Ismail proved a Turán inequality for continuous q-
ultraspherical polynomials by using the Szász technique. In this paper
we will apply the Szász technique to prove a Turán inequality for
symmetric Askey-Wilson polynomials.

2. Askey-Wilson polynomials. The q-shifted factorial (a; q)n is
defined by

(a; q)n =
{
1 n = 0
(1− a)(1− aq) · · · (1− aqn−1) n = 1, 2, . . . ,

and for |q| < 1 we define

(a; q)∞ =
∞∏

j=0

(1− aqj).
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For notational convenience we will write

(a1, a2, . . . , ap; q)n
.= (a1; q)n(a2; q)n · · · (ap; q)n,

with a similar convention when n = ∞.

The basic hypergeometric series rφs is defined by

rφs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]

∞∑
n=0

(a1, . . . , an; q)n
(b1, . . . , bs; q)n(q; q)n

[
(−1)nq(n

2)
]1+s−r

zn.

([6] is the fundamental reference on basic series.) The Askey-Wilson
polynomials [1], [6], Pn(x; a, b, c, d|q) may be expressed as a 4φ3 that
terminates. This expression is, writing x = cos θ,

(2.1) Pn(x; a, b, c, d|q)
= (ab, ac, ad; q)na−n

4φ3

[
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

]
.

These polynomials are orthogonal for−1 ≤ x ≤ 1 and max(|a|, |b|, |c|, |d|)
< 1. They satisfy the recursion 2xpn(x) = Anpn+1(x) + Bnpn(x) +
Cnpn−1(x), n ≥ 0, with p−1(x) = 0, p0(x) = 1, where

An =
1− abcdqn−1

(1− abcdq2n−1)(1− abcdq2n)
,

Cn =
(1− qn)(1− abqn−1)(1− acqn−1)(1− adqn−1)

(1− abcdq2n−2)(1− abcdq2n−1)

· (1− bcqn−1)(1− bdqn−1)(1− cdqn−1),

and

Bn = a+ a−1 −Ana
−1(1− abqn)(1− acqn)(1− adqn)

− Cna/(1− abqn−1)(1− acqn−1)(1− adqn−1).

Write

h(x; a, b, c, d|q) = (aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞.
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Then the weight function for the Askey-Wilson polynomials is

w(x; a, b, c, d|q) = (e2iθ, e−2iθ; q)∞(1− x2)−1/2

h(x; a, b, c, d|q) .

The Askey-Wilson polynomials can be evaluated when x = (a+a−1)/2
by using (2.1). This evaluation is needed in what follows. Writing
a = eiθ in (2.1) gives x = (a + a−1)/2 = (eiθ + e−iθ)/2 (naturally, θ
here is not a real number), we get that

(ae−iθ; q)n =
{
1 n = 0,
0 n = 1, 2, . . . , .

Hence when a = eiθ the 4φ3 in (2.1) has only a single term and we get,
after rewriting,

(2.3) Pn

(
a+ a−1

2
; a, b, c, d|q

)
= a−n(−a2; q)n(a2b2; q2)n.

When c = −a and d = −b, the Askey-Wilson polynomials become
symmetric, that is, Bn = 0 in (2.2). We will write Sn(x; a, b|q) .= Sn(x)
for the symmetric Askey-Wilson polynomials. From (2.3) we have

(2.4) Sn

(
a+ a−1

2

)
= a−n(−a2; q)n(a2b2; q2)n.

3. A Turán inequality for symmetric Askey-Wilson polyno-
mials. Renormalize the symmetric Askey-Wilson polynomials by

Vn(x; a, b | q) = Sn(x; a, b | q)
/
(−a2; q)n(a2b2; q2)n.

Then V 2
n (x)− Vn+1(x)Vn−1(x) = 0 when x = (a+ a−1)/2. The Vn(x)

satisfy the recursion

(1−a2b2qn−1)(1+a2qn)Vn+1(x)

= 2(1−a2b2q2n−1)xVn(x)− (1−qn)(1 + b2qn−1)Vn−1(x), n ≥ 0.
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Defining

Dn(x) = (1− a2b2q2n−1)(1− a2b2qn−2)(1 + a2qn−1)V 2
n (x)

− (1− a2b2q2n−3)(1− a2b2qn−1)(1 + a2qn)Vn+1(x)Vn−1(x)

we get the following recurrence relation:
(3.1)

Dn(x) =
(1−qn−1)(1+b2qn−2)(1−a2b2q2n−1)

(1−a2b2q2n−5)(1−a2b2qn−2)(1+a2qn−1)
Dn−1(x)

+
(1−a2b2q2n−3)

(1−a2b2q2n−5)(1−a2b2qn−2)(1+a2qn−1)
gn(a, b, q)V 2

n−1(x),

n ≥ 2

where

gn(a, b, q)

= (1−a2b2q2n−5)(1−a2b2qn−2)(1+a2qn−1)(1+b2qn−1)(1−qn)

− (1−a2b2q2n−1)(1−a2b2qn−3)(1+a2qn−2)(1+b2qn−2)(1−qn−1),

n ≥ 2.

Defining

ζn(x) =
(a2b2; q)n−1(−a2; q)n

(q; q)n−1(−b2; q)n−1(1− a2b2q2n−1)(1− a2b2q2n−3)
Dn(x)

we obtain, multiplying (3.1) by

(a2b2; q)n−1(−a2; q)n
(q; q)n−1(−b2; q)n−1(1− a2b2q2n−1)(1− a2b2q2n−3)

the recurrence relation for ζn(x) valid for n ≥ 2.

ζn(x) = ζn−1(x)

+
(a2b2; q)n−1(−a2; q)n

(q; q)n−1(−b2; q)n−1(1−a2b2q2n−5)(1−a2b2qn−2)(1+a2qn−1)

· gn(a, b, q)V 2
n−1(x)
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and, iterating,

(3.2) ζn(x) = ζ1(x) +
n−1∑
k=1

hn(a, b, q)gn(a, b, q)V 2
n−1(x)

where

hn(a, b, q)

=
(a2b2; q)n−1(−a2; q)n

(q; q)n−1(−b2; q)n−1(1−a2b2q2n−5)(1−a2b2qn−2)(1+a2qn−1)

which is clearly positive.

The crucial step is now to determine the sign of gn(a, b, q) which will
give monotonicity properties of the sequence {ζn(x)}. The next result
establishes sufficient conditions for negativity of gn(a, b, q).

Lemma 3.1. If 0 < q ≤ 1/2, a2 < q, b2 < q, n ≥ 2, then
gn(a, b, q) < 0.

Proof. gn(a, b, q) can be expressed as

gn(a, b, q) = −(1− q)(φ1 + φ2 + φ3),

where

φ1 = a4b4q5n−q(a2 − q)(b2 − q) + a4b4q4n−8(q + 1)(a2 + b2)
+ a2b2q4n−b(q + 1)(a2 + b2) + a2b2q2n−5(a2 + b2),

φ2 = qn−3(a2 − q)(b2 − q) + q2n−3(q + 1)(a2 + b2)
− q2n−5(q + 1)3a2b2,

φ3 = 2a2b2(q + 1)2q3n−7(a2 − q)(b2 − q)− a4b4q4n−8(q + 1)3.

Obviously, φ1 > 0. For φ2 we have

φ2 = qn−3[(a2 − q)(b2 − q) + (a2 + b2)(q + 1)qn − a2b2(q + 1)3qn−2].

In the above equality set x = a2 − q, y = b2 − q to get φ2 =
qn−3Tn(x, y, q), where

Tn(x, y, q) = xy − qn−2(q + 1)3xy + qn−1(q + 1)(q2 + q + 1)x
+ qn−1(q + 1)(q2 + q + 1)y − qn(q + 1)(q2 + 1).
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Note that q(1−q) ≤ x, y ≤ q. Tn(x, y, q) satisfies Txx = Tyy = 0. Hence
Tn(x, y, q) has no local extrema and thus the minimum of Tn(x, y, q)
occurs on the boundary of the rectangle q(1 − q) ≤ x, y ≤ q. By
symmetry of Tn(x, y, q) we need only consider the line segments L1

and L2:
L1 : y = q(1− q), q(1− q) ≤ x ≤ q,

L2 : x = q, q(1− q) ≤ y ≤ q.

A simple calculation shows that

min{Tn(x, y, q) | (x, y) ∈ L1} = q2[(1− q)2 + qn(1− q − 3q2 − q3)] > 0

for 0 < q ≤ 1/2, n ≥ 1. On L2 we have

Tn(x, y, q) = [q − (q + 1)qn]y + (q + 1)qn+1.

Since q − (q + 1)qn > 0 for 0 < q ≤ 1/2 if n ≥ 2, we have that

min{Tn(x, y, q) | (x, y) ∈ L2, n ≥ 2} = qn+3 + qn+2 − q3 + q2 > 0

for 0 < q ≤ 1/2. Thus φ2 > 0 for 0 < q ≤ 1/2, a < q, b < q, n ≥ 2.
φ3 is dealt with in an identical manner and we find that φ3 > 0 for
0 < q ≤ 1/2, a < q, b < q, n ≥ 1. This then proves the lemma.

In [1], Askey and Wilson proved, using connection coefficients, that

|pn(x, a,−a, c,−c | q)| ≤ |pn(1, a,−a, c,−c|q)|
if c ≤ q1/2. The Askey-Wilson polynomials are symmetric in a, b, c, d;
so we can exchange −a and c to get

|pn(x, a, c,−a,−c | q)| ≤ |pn(1, a, c,−a,−c | q)|
and hence

|Sn(x; a, b | q)| ≤ |Sn(1; a, b | q)|
if b ≤ q1/2.

Now, all the roots of sn(x; a, b | q) are contained in [−1, 1] and so are
the roots of the derivative. This gives that sn(x; a, b | q) is monotonic
outside the interval [−zn, zn] where zn is the largest root of Sn(x).
From this we have

|sn(x; a, b | q)| ≤
∣∣∣∣sn

(
a+ a−1

2
; a, b | q

)∣∣∣∣,
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if

|x| ≤ a+ a−1

2
and b ≤ q1/2.

Now, applying this inequality together with Lemma 1 and (3.2), we
get, under the conditions a2 < q, b2 < q, 0 < q ≤ 1/2, the inequality:

(3.3) Dn(x) ≥ Dn

(
a+ a−1

2

)
.

Now,

Dn(x) = (1− a2b2q2n−3)(1− a2b2qn−1)(1 + a2qn)[V 2
n − Vn+1Vn−1]

+ a2qn−2(1− q)[b2qn−1(1− a2)(q + 1)
+ (q − b2)(1 + a2b2q2n−2)]V 2

n

and

Dn

(
a+ a−1

2

)
= a−2na2qn−2(1− q)[b2qn−1(1− a2)(q + 1)

+ (q − b2)(1 + a2b2q2n−2)]

and inequality (3.3) can be rewritten as:

Theorem 3.2. If a2 < q, b2 < q, 0 < q ≤ 1/2, then, for
|x| ≤ (a+ a−1)/2 we have the Turán-type inequality

V 2
n (x)− Vn+1(x)Vn−1(x)

≥ a−2n+2qn−2(1− q)[b2qn−1(1−a2)(q+1) + (q−b2)(1+a2b2q2n−2)]
(1−a2b2q2n−3)(1−a2b2qn−1)(1+a2qn)

· (1−a2nV 2
n (x)) ≥ 0.

Note that, under the conditions of Lemma 1, the sequence {ζn} is
decreasing in n, so we have

ζn(x) ≤ ζ1(x).
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Now,

ζn(x) =
(a2b2; q)n−1(−a2; q)n

(q; q)n−1(−b2; q)n−1(1− a2b2q2n−1)(1− a2b2q2n−3)
Dn(x)

=
(a2b2; q)n−1(−a2; q)n

(q; q)n−1(−b2; q)n−1(1− a2b2q2n−1)(1− a2b2q2n−3)

· {(1− a2b2q2n−3)(1− a2b2qn−1)(1 + a2qn)[V 2
n (x)

− Vn+1(x)Vn−1(x)] + tn(a, b, q)V 2
n (x)}

where

tn(a, b, q) = a2qn−2(1−q)[b2qn−1(1−a2)(q+1) + (q−b2)(1+a2b2q2n−2).

Noticing that tn(a, b, q) is positive if b2 < q we get the following upper
bound for V 2

n (x)− Vn+1(x)Vn−1(x), after evaluating

ζ1(x) =
(1− q)(1 + a2)(1 + b2)

(1− a2b2q)
.

Theorem 3.3. If a2 < q, b2 < q, 0 ≤ q ≤ 1/2, then for
|x| ≤ (a+ a−1)/2 we have the inequality:

V 2
n (x)−Vn+1(x)Vn−1(x)

≤ (1−q)(1+a2)(1+b2)(q; q)n−1(−b2; q)n−1(1−a2b2q2n−1)
(1+a2qn)(1−a2b2qn−1)(1−a2b2q)(a2b2; q)n−1(−a2; q)n

.
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