TURÁN INEQUALITIES FOR SYMMETRIC ASKEY-WILSON POLYNOMIALS

L.D. ABREU AND J. BUSTOZ

1. Let $\left\{P_{n}(x): n=0,1, \ldots\right\}$ be a sequence of polynomials orthogonal on an interval $[a, b]$. The polynomials $\left\{P_{n}(x)\right\}$ are said to satisfy Turán's inequality if

$$
\begin{equation*}
P_{n}^{2}(x)-P_{n+1}(x) P_{n-1}(x) \geq 0, \quad a \leq x \leq b, \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

Turán first observed that (1.1) is satisfied by Legendre polynomials [9] and Szego [8] gave two beautiful proofs of that fact. Various authors have generalized (1.1) to the classical orthogonal polynomials of Jacobi, Hermite, and Laguerre [1], [5]. Szasz [7] also proved a Turán inequality for ultraspherical polynomials and Bessel functions.

Bustoz and Ismail [4] applied a procedure first used by Szász [7] to prove Turán inequalities for an important class of nonclassical orthogonal polynomials; the symmetric Pollaczek polynomials as well as for modified Lommel polynomials, and for q-Bessel functions. Also in [3] Bustoz and Ismail proved a Turán inequality for continuous q ultraspherical polynomials by using the Szász technique. In this paper we will apply the Szász technique to prove a Turán inequality for symmetric Askey-Wilson polynomials.
2. Askey-Wilson polynomials. The q-shifted factorial $(a ; q)_{n}$ is defined by

$$
(a ; q)_{n}= \begin{cases}1 & n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & n=1,2, \ldots\end{cases}
$$

and for $|q|<1$ we define

$$
(a ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{j}\right)
$$

[^0]For notational convenience we will write

$$
\left(a_{1}, a_{2}, \ldots, a_{p} ; q\right)_{n} \doteq\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{p} ; q\right)_{n}
$$

with a similar convention when $n=\infty$.
The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined by

$$
\begin{gathered}
{ }_{r} \phi_{s}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} ; q, z\right] \\
\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{n} ; q\right)_{n}}{\left(b_{1}, \ldots, b_{s} ; q\right)_{n}(q ; q)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{1+s-r} z^{n} .
\end{gathered}
$$

([6] is the fundamental reference on basic series.) The Askey-Wilson polynomials $[\mathbf{1}],[\mathbf{6}], P_{n}(x ; a, b, c, d \mid q)$ may be expressed as a ${ }_{4} \phi_{3}$ that terminates. This expression is, writing $x=\cos \theta$,

$$
\begin{align*}
& P_{n}(x ; a, b, c, d \mid q) \tag{2.1}\\
& \quad=(a b, a c, a d ; q)_{n} a^{-n}{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{-n}, a b c d q^{n-1}, a e^{i \theta}, a e^{-i \theta} \\
a b, a c, a d
\end{array} ; q, q\right] .
\end{align*}
$$

These polynomials are orthogonal for $-1 \leq x \leq 1$ and $\max (|a|,|b|,|c|,|d|)$ <1. They satisfy the recursion $2 x p_{n}(x)=A_{n} p_{n+1}(x)+B_{n} p_{n}(x)+$ $C_{n} p_{n-1}(x), n \geq 0$, with $p_{-1}(x)=0, p_{0}(x)=1$, where

$$
\begin{aligned}
A_{n}= & \frac{1-a b c d q^{n-1}}{\left(1-a b c d q^{2 n-1}\right)\left(1-a b c d q^{2 n}\right)} \\
C_{n}= & \frac{\left(1-q^{n}\right)\left(1-a b q^{n-1}\right)\left(1-a c q^{n-1}\right)\left(1-a d q^{n-1}\right)}{\left(1-a b c d q^{2 n-2}\right)\left(1-a b c d q^{2 n-1}\right)} \\
& \cdot\left(1-b c q^{n-1}\right)\left(1-b d q^{n-1}\right)\left(1-c d q^{n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B_{n}= & a+a^{-1}-A_{n} a^{-1}\left(1-a b q^{n}\right)\left(1-a c q^{n}\right)\left(1-a d q^{n}\right) \\
& -C_{n} a /\left(1-a b q^{n-1}\right)\left(1-a c q^{n-1}\right)\left(1-a d q^{n-1}\right)
\end{aligned}
$$

Write

$$
h(x ; a, b, c, d \mid q)=\left(a e^{i \theta}, a e^{-i \theta}, b e^{i \theta}, b e^{-i \theta}, c e^{i \theta}, c e^{-i \theta}, d e^{i \theta}, d e^{-i \theta} ; q\right)_{\infty}
$$

Then the weight function for the Askey-Wilson polynomials is

$$
w(x ; a, b, c, d \mid q)=\frac{\left(e^{2 i \theta}, e^{-2 i \theta} ; q\right)_{\infty}\left(1-x^{2}\right)^{-1 / 2}}{h(x ; a, b, c, d \mid q)}
$$

The Askey-Wilson polynomials can be evaluated when $x=\left(a+a^{-1}\right) / 2$ by using (2.1). This evaluation is needed in what follows. Writing $a=e^{i \theta}$ in (2.1) gives $x=\left(a+a^{-1}\right) / 2=\left(e^{i \theta}+e^{-i \theta}\right) / 2$ (naturally, θ here is not a real number), we get that

$$
\left(a e^{-i \theta} ; q\right)_{n}= \begin{cases}1 & n=0 \\ 0 & n=1,2, \ldots,\end{cases}
$$

Hence when $a=e^{i \theta}$ the ${ }_{4} \phi_{3}$ in (2.1) has only a single term and we get, after rewriting,

$$
\begin{equation*}
P_{n}\left(\frac{a+a^{-1}}{2} ; a, b, c, d \mid q\right)=a^{-n}\left(-a^{2} ; q\right)_{n}\left(a^{2} b^{2} ; q^{2}\right)_{n} \tag{2.3}
\end{equation*}
$$

When $c=-a$ and $d=-b$, the Askey-Wilson polynomials become symmetric, that is, $B_{n}=0$ in (2.2). We will write $S_{n}(x ; a, b \mid q) \doteq S_{n}(x)$ for the symmetric Askey-Wilson polynomials. From (2.3) we have

$$
\begin{equation*}
S_{n}\left(\frac{a+a^{-1}}{2}\right)=a^{-n}\left(-a^{2} ; q\right)_{n}\left(a^{2} b^{2} ; q^{2}\right)_{n} \tag{2.4}
\end{equation*}
$$

3. A Turán inequality for symmetric Askey-Wilson polyno-

 mials. Renormalize the symmetric Askey-Wilson polynomials by$$
V_{n}(x ; a, b \mid q)=S_{n}(x ; a, b \mid q) /\left(-a^{2} ; q\right)_{n}\left(a^{2} b^{2} ; q^{2}\right)_{n}
$$

Then $V_{n}^{2}(x)-V_{n+1}(x) V_{n-1}(x)=0$ when $x=\left(a+a^{-1}\right) / 2$. The $V_{n}(x)$ satisfy the recursion

$$
\begin{aligned}
& \left(1-a^{2} b^{2} q^{n-1}\right)\left(1+a^{2} q^{n}\right) V_{n+1}(x) \\
& \quad=2\left(1-a^{2} b^{2} q^{2 n-1}\right) x V_{n}(x)-\left(1-q^{n}\right)\left(1+b^{2} q^{n-1}\right) V_{n-1}(x), \quad n \geq 0
\end{aligned}
$$

Defining

$$
\begin{aligned}
D_{n}(x)= & \left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right) V_{n}^{2}(x) \\
& -\left(1-a^{2} b^{2} q^{2 n-3}\right)\left(1-a^{2} b^{2} q^{n-1}\right)\left(1+a^{2} q^{n}\right) V_{n+1}(x) V_{n-1}(x)
\end{aligned}
$$

we get the following recurrence relation:

$$
\begin{align*}
& D_{n}(x)=\frac{\left(1-q^{n-1}\right)\left(1+b^{2} q^{n-2}\right)\left(1-a^{2} b^{2} q^{2 n-1}\right)}{\left(1-a^{2} b^{2} q^{2 n-5}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right)} D_{n-1}(x) \tag{3.1}\\
& +\frac{\left(1-a^{2} b^{2} q^{2 n-3}\right)}{\left(1-a^{2} b^{2} q^{2 n-5}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right)} g_{n}(a, b, q) V_{n-1}^{2}(x) \\
& n \geq 2
\end{align*}
$$

where

$$
\begin{aligned}
& g_{n}(a, b, q) \\
& =\left(1-a^{2} b^{2} q^{2 n-5}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right)\left(1+b^{2} q^{n-1}\right)\left(1-q^{n}\right) \\
& -\left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{n-3}\right)\left(1+a^{2} q^{n-2}\right)\left(1+b^{2} q^{n-2}\right)\left(1-q^{n-1}\right), \\
& n \geq 2 .
\end{aligned}
$$

Defining

$$
\zeta_{n}(x)=\frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{2 n-3}\right)} D_{n}(x)
$$

we obtain, multiplying (3.1) by

$$
\frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{2 n-3}\right)}
$$

the recurrence relation for $\zeta_{n}(x)$ valid for $n \geq 2$.

$$
\begin{aligned}
\zeta_{n}(x)= & \zeta_{n-1}(x) \\
& +\frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-5}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right)} \\
& \cdot g_{n}(a, b, q) V_{n-1}^{2}(x)
\end{aligned}
$$

and, iterating,

$$
\begin{equation*}
\zeta_{n}(x)=\zeta_{1}(x)+\sum_{k=1}^{n-1} h_{n}(a, b, q) g_{n}(a, b, q) V_{n-1}^{2}(x) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{n}(a, b, q) \\
& \quad=\frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-5}\right)\left(1-a^{2} b^{2} q^{n-2}\right)\left(1+a^{2} q^{n-1}\right)}
\end{aligned}
$$

which is clearly positive.
The crucial step is now to determine the sign of $g_{n}(a, b, q)$ which will give monotonicity properties of the sequence $\left\{\zeta_{n}(x)\right\}$. The next result establishes sufficient conditions for negativity of $g_{n}(a, b, q)$.

Lemma 3.1. If $0<q \leq 1 / 2, a^{2}<q, b^{2}<q, n \geq 2$, then $g_{n}(a, b, q)<0$.

Proof. $g_{n}(a, b, q)$ can be expressed as

$$
g_{n}(a, b, q)=-(1-q)\left(\phi_{1}+\phi_{2}+\phi_{3}\right)
$$

where

$$
\begin{aligned}
\phi_{1}= & a^{4} b^{4} q^{5 n-q}\left(a^{2}-q\right)\left(b^{2}-q\right)+a^{4} b^{4} q^{4 n-8}(q+1)\left(a^{2}+b^{2}\right) \\
& +a^{2} b^{2} q^{4 n-b}(q+1)\left(a^{2}+b^{2}\right)+a^{2} b^{2} q^{2 n-5}\left(a^{2}+b^{2}\right), \\
\phi_{2}= & q^{n-3}\left(a^{2}-q\right)\left(b^{2}-q\right)+q^{2 n-3}(q+1)\left(a^{2}+b^{2}\right) \\
& -q^{2 n-5}(q+1)^{3} a^{2} b^{2}, \\
\phi_{3}= & 2 a^{2} b^{2}(q+1)^{2} q^{3 n-7}\left(a^{2}-q\right)\left(b^{2}-q\right)-a^{4} b^{4} q^{4 n-8}(q+1)^{3} .
\end{aligned}
$$

Obviously, $\phi_{1}>0$. For ϕ_{2} we have

$$
\phi_{2}=q^{n-3}\left[\left(a^{2}-q\right)\left(b^{2}-q\right)+\left(a^{2}+b^{2}\right)(q+1) q^{n}-a^{2} b^{2}(q+1)^{3} q^{n-2}\right] .
$$

In the above equality set $x=a^{2}-q, y=b^{2}-q$ to get $\phi_{2}=$ $q^{n-3} T_{n}(x, y, q)$, where

$$
\begin{aligned}
T_{n}(x, y, q)= & x y-q^{n-2}(q+1)^{3} x y+q^{n-1}(q+1)\left(q^{2}+q+1\right) x \\
& +q^{n-1}(q+1)\left(q^{2}+q+1\right) y-q^{n}(q+1)\left(q^{2}+1\right)
\end{aligned}
$$

Note that $q(1-q) \leq x, y \leq q . T_{n}(x, y, q)$ satisfies $T_{x x}=T_{y y}=0$. Hence $T_{n}(x, y, q)$ has no local extrema and thus the minimum of $T_{n}(x, y, q)$ occurs on the boundary of the rectangle $q(1-q) \leq x, y \leq q$. By symmetry of $T_{n}(x, y, q)$ we need only consider the line segments L_{1} and L_{2} :

$$
\begin{array}{ll}
L_{1}: & y=q(1-q), \quad q(1-q) \leq x \leq q \\
L_{2}: & x=q, \quad q(1-q) \leq y \leq q
\end{array}
$$

A simple calculation shows that
$\min \left\{T_{n}(x, y, q) \mid(x, y) \in L_{1}\right\}=q^{2}\left[(1-q)^{2}+q^{n}\left(1-q-3 q^{2}-q^{3}\right)\right]>0$
for $0<q \leq 1 / 2, n \geq 1$. On L_{2} we have

$$
T_{n}(x, y, q)=\left[q-(q+1) q^{n}\right] y+(q+1) q^{n+1}
$$

Since $q-(q+1) q^{n}>0$ for $0<q \leq 1 / 2$ if $n \geq 2$, we have that

$$
\min \left\{T_{n}(x, y, q) \mid(x, y) \in L_{2}, n \geq 2\right\}=q^{n+3}+q^{n+2}-q^{3}+q^{2}>0
$$

for $0<q \leq 1 / 2$. Thus $\phi_{2}>0$ for $0<q \leq 1 / 2, a<q, b<q, n \geq 2$. ϕ_{3} is dealt with in an identical manner and we find that $\phi_{3}>0$ for $0<q \leq 1 / 2, a<q, b<q, n \geq 1$. This then proves the lemma.

In [1], Askey and Wilson proved, using connection coefficients, that

$$
\left|p_{n}(x, a,-a, c,-c \mid q)\right| \leq\left|p_{n}(1, a,-a, c,-c \mid q)\right|
$$

if $c \leq q^{1 / 2}$. The Askey-Wilson polynomials are symmetric in a, b, c, d; so we can exchange $-a$ and c to get

$$
\left|p_{n}(x, a, c,-a,-c \mid q)\right| \leq\left|p_{n}(1, a, c,-a,-c \mid q)\right|
$$

and hence

$$
\left|S_{n}(x ; a, b \mid q)\right| \leq\left|S_{n}(1 ; a, b \mid q)\right|
$$

if $b \leq q^{1 / 2}$.
Now, all the roots of $s_{n}(x ; a, b \mid q)$ are contained in $[-1,1]$ and so are the roots of the derivative. This gives that $s_{n}(x ; a, b \mid q)$ is monotonic outside the interval $\left[-z_{n}, z_{n}\right]$ where z_{n} is the largest root of $S_{n}(x)$. From this we have

$$
\left|s_{n}(x ; a, b \mid q)\right| \leq\left|s_{n}\left(\frac{a+a^{-1}}{2} ; a, b \mid q\right)\right|
$$

if

$$
|x| \leq \frac{a+a^{-1}}{2} \quad \text { and } \quad b \leq q^{1 / 2}
$$

Now, applying this inequality together with Lemma 1 and (3.2), we get, under the conditions $a^{2}<q, b^{2}<q, 0<q \leq 1 / 2$, the inequality:

$$
\begin{equation*}
D_{n}(x) \geq D_{n}\left(\frac{a+a^{-1}}{2}\right) \tag{3.3}
\end{equation*}
$$

Now,

$$
\begin{aligned}
D_{n}(x)= & \left(1-a^{2} b^{2} q^{2 n-3}\right)\left(1-a^{2} b^{2} q^{n-1}\right)\left(1+a^{2} q^{n}\right)\left[V_{n}^{2}-V_{n+1} V_{n-1}\right] \\
& +a^{2} q^{n-2}(1-q)\left[b^{2} q^{n-1}\left(1-a^{2}\right)(q+1)\right. \\
& \left.+\left(q-b^{2}\right)\left(1+a^{2} b^{2} q^{2 n-2}\right)\right] V_{n}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{n}\left(\frac{a+a^{-1}}{2}\right)=a^{-2 n} a^{2} q^{n-2}(1-q) & {\left[b^{2} q^{n-1}\left(1-a^{2}\right)(q+1)\right.} \\
& \left.+\left(q-b^{2}\right)\left(1+a^{2} b^{2} q^{2 n-2}\right)\right]
\end{aligned}
$$

and inequality (3.3) can be rewritten as:

Theorem 3.2. If $a^{2}<q, b^{2}<q, 0<q \leq 1 / 2$, then, for $|x| \leq\left(a+a^{-1}\right) / 2$ we have the Turán-type inequality

$$
\begin{aligned}
& V_{n}^{2}(x)-V_{n+1}(x) V_{n-1}(x) \\
& \geq \frac{a^{-2 n+2} q^{n-2}(1-q)\left[b^{2} q^{n-1}\left(1-a^{2}\right)(q+1)+\left(q-b^{2}\right)\left(1+a^{2} b^{2} q^{2 n-2}\right)\right]}{\left(1-a^{2} b^{2} q^{2 n-3}\right)\left(1-a^{2} b^{2} q^{n-1}\right)\left(1+a^{2} q^{n}\right)} \\
& \quad \cdot\left(1-a^{2 n} V_{n}^{2}(x)\right) \geq 0
\end{aligned}
$$

Note that, under the conditions of Lemma 1, the sequence $\left\{\zeta_{n}\right\}$ is decreasing in n, so we have

$$
\zeta_{n}(x) \leq \zeta_{1}(x)
$$

Now,

$$
\begin{aligned}
\zeta_{n}(x)= & \frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{2 n-3}\right)} D_{n}(x) \\
= & \frac{\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}{(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-1}\right)\left(1-a^{2} b^{2} q^{2 n-3}\right)} \\
& \cdot\left\{(1 - a ^ { 2 } b ^ { 2 } q ^ { 2 n - 3 }) (1 - a ^ { 2 } b ^ { 2 } q ^ { n - 1 }) (1 + a ^ { 2 } q ^ { n }) \left[V_{n}^{2}(x)\right.\right. \\
& \left.\left.\quad-V_{n+1}(x) V_{n-1}(x)\right]+t_{n}(a, b, q) V_{n}^{2}(x)\right\}
\end{aligned}
$$

where
$t_{n}(a, b, q)=a^{2} q^{n-2}(1-q)\left[b^{2} q^{n-1}\left(1-a^{2}\right)(q+1)+\left(q-b^{2}\right)\left(1+a^{2} b^{2} q^{2 n-2}\right)\right.$.
Noticing that $t_{n}(a, b, q)$ is positive if $b^{2}<q$ we get the following upper bound for $V_{n}^{2}(x)-V_{n+1}(x) V_{n-1}(x)$, after evaluating

$$
\zeta_{1}(x)=\frac{(1-q)\left(1+a^{2}\right)\left(1+b^{2}\right)}{\left(1-a^{2} b^{2} q\right)}
$$

Theorem 3.3. If $a^{2}<q, b^{2}<q, 0 \leq q \leq 1 / 2$, then for $|x| \leq\left(a+a^{-1}\right) / 2$ we have the inequality:

$$
\begin{aligned}
V_{n}^{2}(x)- & V_{n+1}(x) V_{n-1}(x) \\
& \leq \frac{(1-q)\left(1+a^{2}\right)\left(1+b^{2}\right)(q ; q)_{n-1}\left(-b^{2} ; q\right)_{n-1}\left(1-a^{2} b^{2} q^{2 n-1}\right)}{\left(1+a^{2} q^{n}\right)\left(1-a^{2} b^{2} q^{n-1}\right)\left(1-a^{2} b^{2} q\right)\left(a^{2} b^{2} ; q\right)_{n-1}\left(-a^{2} ; q\right)_{n}}
\end{aligned}
$$

REFERENCES

1. R. Askey J. and Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985).
2. M.N. Bajaj, The Turan expressions, M.Sc. Thesis, University of Alberta, Edmonton, Canada, 1969.
3. J. Bustoz and M.E.H. Ismail, Turan inequalities for ultraspherical and continuous q-ultraspherical polynomials, SIAM J. Math. Anal. 14 (1983), 807-818.
4. -

, Turan inequalities for symmetric orthogonal polynomials, Internat. J.
Math. Math. Sci. 20 (1997), 1-8.
5. G. Gasper, On the extension of Turan's inequality to Jacobi polynomials, Duke Math. J. 38 (1971), 415-428.
6. G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics 35, Cambridge, 1990.
7. O. Szász, Inequalities concerning ultraspherical polynomials and Bessel functions, Proc. Amer. Math. Soc. 1 (1950), 256-267.
8. G. Szego, On an inequality of P. Turan concerning Legendre Polynomials, Bull. Amer. Math. Soc. 54 (1948), 401-405.
9. P. Turán, On the zeros of the polynomials of Legendre, Casopis pro Pestorani Matematik y a Fysiky 75 (1950), 113-122.

University of Coimbra, Coimbra, Portugal
E-mail address: daniel@mat.uc.pt
Arizona State University, Department of Mathematics, P.O. Box 871804, Tempe, AZ 85287-1804
E-mail address: bustoz@asu.edu

[^0]: Received by the editors on June 15, 1998, and in revised form on January 10, 1999.

