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SOME TOPOLOGICAL PROPERTIES OF BANACH
SPACES AND RIEMANN INTEGRATION

CHONGHU WANG AND ZHENHUA YANG

ABSTRACT. In this paper we establish some new charac-
terizations of Schur property and H property of Banach spaces
by using Riemann integration.

R. Gordon, in [3], showed that l1 and the Tsirelson space have the
property of Lebesgue, that is, every Riemann integrable mapping from
the interval [0, 1] to the space is continuous almost everywhere, LP
in short, but many “familiar” Banach spaces such as any infinite-
dimensional, uniformly convex Banach spaces and almost all classical
Banach spaces except l1 do not have the property of Lebesgue. In
[5], Wang Chonghu introduced the weak property of Lebesgue of a
Banach space, that is, every Riemann integrable mapping from [0, 1]
to the space is weakly continuous almost everywhere, WLP in short,
and proved that any Banach space with separable dual has the weak
property of Lebesgue, and so do many of classical Banach spaces and
“familiar” Banach spaces. It is notable that the LP and the WLP
of Banach spaces are topologically isomorphically invariant, and there
are some relations between these two topological properties and some
geometrical properties of Banach spaces.

In this paper we will describe some other topological properties, the
H property and the Schur property, of Banach spaces using Riemann
integration. We establish some new characterizations of the Schur
property and the H property. These discussions are inspired by [2],
which showed that a Banach space X is a Schur space if and only if for
each weakly continuous mapping f from [0, 1] intoX, ‖f(·)‖ is Riemann
integrable.
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Throughout this paper let X be a real Banach space. We will use the
same terminology and notation for Riemann integration as in [3]. Our
definitions of the H property and the Schur property are a little more
general, since we use a general linear space topology that is weaker than
the norm topology in place of the weak topology on a Banach space.

Definition 1. Let τ be a locally convex linear space topology on
X that is weaker than norm topology on X. X is said to have the H
property with respect to τ if whenever {xn} is a sequence in X such
that xn → x ∈ X with respect to τ and ‖xn‖ → ‖x‖, it follows that
‖xn − x‖ → 0.

Definition 2. Let τ be as above. X is said to have Schur property
with respect to τ if whenever {xn} is a sequence in X such that
xn → x ∈ X with respect to τ , it follows that ‖xn − x‖ → 0.

Remark. If we put τ = weak topology on X, the above definitions
are reduced to the usual ones of H property and Schur property. When
X has Schur property or H property with respect to the weak topology
on X, we call X a Schur space or say that X has the H property,
respectively.

Now we start to describe the Schur property of Banach space.

Lemma 1. Let (X, τ ) be a real locally convex topological linear
space and f be a vector valued mapping from [0, 1] to X with f(t) =∑∞

n=1 fn(t)xn where xn ∈ X, fn(t) is a continuous function from [0, 1]
into (∞,∞), n = 1, 2, . . . , and the series

∑∞
n=1 fn(t)xn converges in

(X, τ ) for any t ∈ [0, 1]. If
∑∞

n=1 fn(t)xn converges uniformly on [0, 1],
that is, for any neighborhood U of 0 in (X, τ ), there exists N > 0 such
that whenever m ≥ N ,

∑∞
n=m fn(t)xn ∈ U for all t in [0, 1], then f(t)

is continuous from [0, 1] into (X, τ ).

The proof is easy. We omit the details.

Theorem 2. Let X be a Banach space and τ be a locally convex
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linear space topology on X which is weaker than the norm topology on
X. Then the following statements are equivalent:

(i) X has Schur property with respect to τ .

(ii) If f is a mapping from [0, 1] to (X, τ ) that is τ -continuous, it
follows that f is Darboux integrable.

(iii) If f is a mapping from [0, 1] to (X, τ ) that is τ -continuous, it
follows that f is Riemann integrable.

Proof. It is obvious that statement (i) implies statement (ii) and
statement (ii) implies statement (iii).

We now prove statement (iii) implies (i). Assume that statement (i)
is not true. We will prove that there exists a mapping f from [0, 1] to
(X, τ ) such that f is τ -continuous, but f is not Riemann integrable;
this leads to a contradiction to statement (iii).

If X does not have the Schur property with respect to τ , there must
be a sequence {xn} in X such that xn

τ→ 0, but ‖xn‖ ≥ 1.

Now we define a Cantor set H in [0, 1] having positive measure as
follows.

Let γ(1)
1 be the midpoint of the interval [0, 1]. Take subinterval A(1)

1

whose midpoint is γ(1)
1 and whose length d(A(1)

1 ) = (1/3). Write
A

(1)
1 = [a(1)1 , β

(1)
1 ], B(1)

1 = [0, 1]. Let B1
2 = [0, a(1)1 ], B(2)

2 = [β(1)
1 , 1],

the midpoint of B(1)
2 be γ(1)

2 , the midpoint of B(2)
2 be γ(2)

2 . Take
subintervals A(1)

2 and A(2)
2 such that their midpoints are γ(1)

2 and
γ

(2)
2 , and d(A(1)

2 ) = d(A(2)
2 ) = (1/2) · (1/32); clearly, A(1)

2 ⊂ B
(1)
2 ,

A
(2)
2 ⊂ B(2)

2 , . . . , and so on.

For any k = 1, 2, . . . , we have A(1)
k , A

(2)
k , . . . , A

(2k−1)
k , B(1)

k , B
(2)
k , . . . ,

B
(2k−1)
k such that, for any i = 1, 2, . . . , 2k−1, A(i)

k ⊂ B(i)
k , the midpoints

of A(i)
k and B(i)

k both are γ(i)
k , d(A(i)

k ) = (1/2k−1) · (1/3k), d(B(i)
k ) =

(1/2k−1)(1− ∑k−1
n=1(1/3

n)).

Put G = ∪∞
k=1 ∪2k−1

i=1 (a(i)k , β
(i)
k ), H = [0, 1]\G. Then it is easy to see

that H is a perfect, nowhere dense subset of [0, 1] with the measure
µ(H) = (1/2). Note that the open intervals (a(i)k , β

(i)
k ), k = 1, 2, . . . ,

i = 1, 2, . . . , 2k−1, are disjoint.
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For any k = 1, 2, . . . , i = 1, 2, . . . , 2k−1, put

ϕ
(i)
k (t) =




2

β
(i)
k − a(i)k

(t− a(i)k ) where t ∈
[
a
(i)
k , a

(i)
k +

β
(i)
k − a(i)k

2

]

2

β
(i)
k − a(i)k

(β(i)
k − t) where t ∈

[
a
(i)
k +

β
(i)
k − a(i)k

2
, β

(i)
k

]

0 elsewhere.

Set hk(t) =
∑2k−1

i=1 ϕ
(i)
k (t). Then

f(t) =
∞∑

k=1

hk(t)xk : [0, 1] −→ X

is desired.

First of all, we prove that f : [0, 1]→ (X, τ ) is τ -continuous by using
Lemma 1.

Since for any k, i = 1, 2, . . . , 2k−1, ϕ(i)
k (t) is continuous, hk(t) =∑2k−1

i=1 ϕ
(i)
k (t) is continuous. By assumption, xk

τ→ 0, k → ∞, then,
for any balanced τ -neighborhood U of 0 in (X, τ ), there exists K such
that, if k > K, we have xk ∈ U . Note that for any t ∈ [0, 1], if
t ∈ H ∪K

k=1 ∪2k−1

i=1 (α
(i)
k , β

(i)
k ),

∑∞
k=K+1 hk(t)xk = 0; otherwise, there

must be k0, k0 > K, such that
∑∞

k=K+1 hk(t)xk = hk0(t)xk0 . Since
0 ≤ hk(t) ≤ 1,

∑∞
k=K+1 hk(t)xk ∈ U for all t ∈ [0, 1], i.e., the series∑∞

k=1 hk(t)xk converges uniformly on [0, 1]. By Lemma 1, f is τ -
continuous.

To prove that f is not Riemann integrable, from Theorem 5 in [3], it
suffices to prove that for any δ > 0, there exist two tagged partitions
P1 and P2 with norms |P1| < δ, |P2| < δ such that

‖f(P1)− f(P2)‖ > 1
2
.

For any δ > 0, take an integer m such that (1/2m−1) < δ. Let
B

(i)
m = [u(i)

m , v
(i)
m ]. Since d(B(i)

m ) = v
(i)
m − u

(i)
m < (1/2m−1), we can

choose two tagged partitions

P1 = {(sj , [tj−1, tj ]) : 1 ≤ j ≤ nm}
P2 = {(s′j , [tj−1, tj ]) : 1 ≤ j ≤ nm}
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such that, for any j, 1 ≤ j ≤ nm, i = 1, 2, . . . , 2m−1

(1) tj − tj−1 < (1/2m−1)

(2) {tj : 0 ≤ j ≤ nm} ∩B(i)
m = {u(i)

m , v
(i)
m }

(3) sj , s′j ∈ [tj−1, tj ] for 1 ≤ j ≤ nm

(4) whenever [tj−1, tj ] = B
(i)
m , sj = γ

(i)
m = (u(i)

m + v(i)m )/2, s′j = a
(i)
m

(5) whenever [tj−1, tj ] �= B(i)
m , (sj = 1, 2, . . . , 2m−1), sj = s′j .

So whenever [tj−1, tj ] = B
(i)
m , we have f(sj) = hm(sj)xm, f(s′j) = 0;

whenever [tj−1, tj ] �= B(i)
m , i = 1, 2, . . . , 2m−1, f(sj) = f(s′j).

Therefore,

‖f(P1)− f(P2)‖ =
∥∥∥∥

nm∑
j=1

(f(sj)− f(s′j))(tj − tj−1)
∥∥∥∥

=
∥∥∥∥

2m−1∑
i=1

xmd(B(i)
m )

∥∥∥∥

= ‖xm‖ · 2m−1 1−
∑m−1

i=1 (1/3
i)

2m−1
>
1
2
.

Note |P1| < δ, |P2| < δ. Hence, f is not Riemann integrable by
Theorem 5 in [3].

The proof of Theorem 2 is completed.

Remark. From Theorem 2 we conclude that there exists a weakly
continuous map f : [0, 1] → X that is not Riemann integrable if and
only if X is not a Schur space. Previously, the existence of such maps
was known only in special cases, see, e.g., [1] and [6].

Some quick conclusions follow.

Corollary 3 [3, Theorem 34]. X is a Schur space and has LP if
and only if every scalarly Riemann integrable function f : [0, 1]→ X is
Darboux integrable.

Using Theorem 33 in [3] we have another necessary and sufficient
condition for a Schur space.
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Theorem 4. X is a Schur space if and only if every mapping from
[0, 1] to X which is scalarly Riemann integrable on [0, 1] is Riemann
integrable on [0, 1].

Next we describe the H property of Banach space by using Riemann
integration.

Lemma 5. Let X be a Banach space, {xn}∞n=1 ⊂ X such that
xn

w→ x ∈ X, ‖xn‖ = ‖x‖ = 1(n = 1, 2, . . . ). Then limn→∞ dn = 1
where dn = inf {‖axn + (1− a)x‖ : a ∈ [0, 1]}.

Proof. If limn→∞ dn = 1 does not hold, without loss of generality we
can assume that there exists δ > 0 such that dn < 1− δ(n = 1, 2, . . . ).
Hence, we can choose an, 0 ≤ an ≤ 1, n = 1, 2, . . . , such that

‖anxn + (1− an)x‖ < 1− δ.

Note that 0 ≤ an ≤ 1, anxn+ (1− an)x = an(xn − x) + x and xn
w→ x,

it is easy to see that

anxn + (1− an)x
w→ x.

Since, for each n, ‖anxn + (1− an)x‖ < 1− δ, by Theorem 3.12 in [4]
we have ‖x‖ ≤ 1− δ < 1, which contradicts ‖x‖ = 1.

Theorem 6. Let X be a Banach space. Then the following state-
ments are equivalent:

(a) X has H property.

(b) If g : [0, 1] → X is weakly continuous on [0, 1], and ‖g(·)‖ is
continuous on [0, 1], then g is Darboux integrable on [0, 1].

(c) If g : [0, 1] → X is weakly continuous on [0, 1] and ‖g(·)‖ is
continuous on [0, 1], then g is Riemann integrable on [0, 1].

Proof. Clearly we only need to prove (c) implies (a).

If (a) does not hold, we will construct a mapping g : [0, 1]→ X which
is weakly continuous on [0, 1], ‖g(·)‖ is continuous on [0, 1], but g is not
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Riemann integrable on [0, 1]. This leads to a contradiction to statement
(c).

If X does not have the H property, there exists ε0 > 0, {xn} ⊂ X

such that xn
w→ x ∈ X, ‖xn‖ = ‖x‖ = 1, ‖xn − x‖ ≥ ε0, n = 1, 2, . . . .

Put g(t) = x+
∑∞

n=1 hn(t)(xn − x) where hn(t), n = 1, 2, . . . , are as in
the proof of Theorem 2. It is easy to see that g is weakly continuous
on [0, 1] and g is not Riemann integrable on [0, 1]. So, to complete the
proof, we only need to show that ‖g(·)‖ is continuous on [0, 1]. We will
use the same notation as in the proof of Theorem 2.

If t0 ∈ G, then t0 ∈ (a(i0)k0
, β

(i0)
k0

) for some k0, i0. Hence

g(t0) = hk0(t0)(xk0 − x) + x
g(t) = hk0(t)(xk0 − x) + x for t ∈ (a(i0)k0

, β
(i0)
k0

)

since hk0(t) is continuous at t0, ‖g(·)‖ is continuous at t0. If t0 ∈ H,
t0 �= a(i)k , β

(i)
k , where k = 1, 2, . . . , i = 1, 2, . . . , 2k−1. From Lemma 5,

dn = inf {‖axn + (1 − a)x‖ : a ∈ [0, 1]} → 1, so, for each ε > 0, there
exists a positive integer N such that dn > 1− ε whenever n > N . Let
δ = min{ρ(t0, [a(i)n , β

(i)
n ]) : 1 ≤ n ≤ N, 1 ≤ i ≤ 2n−1}. Then δ > 0. For

any ∈ [0, 1], |t− t0| < δ, we have:
(i) if t ∈ H, then g(t) = x, ‖g(t)‖ = 1.

(ii) If t /∈ H, then t ∈ (a(i)n , β
(i)
n ) for some n > N , some i,

1 ≤ i ≤ 2n−1 and ‖g(t)‖ = ‖hn(t)(xn − x) + x‖ > 1− ε.
So ‖g(·)‖ is continuous at t0.
If t0 = a

(i0)
n0 , or β

(i0)
n0 , for some n0, i0, 1 ≤ i0 ≤ 2n0−1, we can show by

previous arguments that ‖g(·)‖ is left continuous and right continuous
at t0, i.e., ‖g(·)‖ is continuous at t0.
Therefore, ‖g(·)‖ is continuous on [0, 1].
The proof of Theorem 6 is completed.

Finally one can ask if Theorem 6 is true for H property with respect
to τ as in Definition 1?
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