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THE SPECTRAL GEOMETRY OF RIEMANNIAN
SUBMERSIONS FOR MANIFOLDS WITH BOUNDARY

JEONG HYEONG PARK

ABSTRACT. We study the spectral geometry of a Rieman-
nian submersion π : Z → Y where Z and Y are compact
Riemannian manifolds with smooth boundaries and where
π : ∂Z → ∂Y is also a Riemannian submersion. We impose
suitable boundary conditions and give necessary and sufficient
conditions that π∗ preserve all the eigenforms of the Lapla-
cian. We also study when a single eigenvalue can change.

0. Introduction. All manifolds in this note are assumed to be
compact, connected, orientable, smooth Riemannian manifolds with
smooth boundaries. Let ∆p

M := δMdM + dMδM be the Laplace
Beltrami operator on the space of smooth p forms C∞ΛpM on such
a manifold M . We must impose suitable boundary conditions B if
∂M is nonempty. Section 1 is devoted to a brief review of Dirichlet,
Neumann, absolute and relative boundary conditions; these are the
boundary conditions that we will consider. Let ∆p

M,B be the Laplacian
on M with domain defined by the boundary condition B. Denote the
corresponding eigenspaces by

E(λ,∆p
M,B) := {Φ ∈ C∞(ΛpM) : ∆p

MΦ = λΦ and BΦ = 0}.

In Lemma 1.2 we show ∆p
M,B is self-adjoint. If B denotes Dirichlet,

relative, or absolute boundary conditions, ∆p
M,B is a nonnegative op-

erator. By contrast, if B denotes Neumann boundary conditions, then
∆p

M,B can have negative spectrum as we shall show in Theorem 4.4.
The material of Section 1 is fairly well known; we have organized it for
the convenience of the reader in later sections.
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Let π : Z → Y be a Riemannian submersion. We assume that Z
and Y are compact manifolds with smooth boundaries and that the
restriction of π from ∂Z to ∂Y is also a Riemannian submersion. Pull-
back π∗ : C∞ΛpY → C∞ΛpZ. In Section 2 we discuss the relationship
between pull-back and the boundary conditions we are considering. In
Theorem 2.4 we show that π∗ always preserves Dirichlet and absolute
boundary conditions, and we give necessary and sufficient conditions
that π∗ preserves Neumann and relative boundary conditions.

In Section 3, in Theorems 3.1 and 3.2, we recall previously known
results relating to the eigenspaces for closed manifolds. In Section 4
we study when a single eigenvalue can change. In Theorem 4.1 we
show that eigenvalues cannot change if p = 0. In Theorem 4.2 we
show that eigenvalues cannot decrease for the boundary conditions
B = BDBA or BR and, in Theorem 4.3, we construct examples where
eigenvalues increase for these boundary conditions if 2 ≤ p < dim (M).
In Theorem 4.4 we show that eigenvalues can decrease and even become
negative if 1 ≤ p < dim (Y ) with Neumann boundary conditions.
In Section 5 we give necessary and sufficient conditions that all the
eigenvalues are preserved.

1. Boundary conditions. Let NM and N∗
M be the inward unit

normal vector and covector fields on the boundary ∂M . If ξ ∈ T ∗M ,
let ext(ξ) denote exterior multiplication and let int (ξ) denote the dual,
interior multiplication. The following assertions are well known; see,
for example, Gilkey [1].

Lemma 1.1 (Green’s formula).

(1) (dMΦ,Ψ)L2(M) = (Φ, δMΨ)L2(M) − (extM (N∗
M )Φ,Ψ)L2(∂M).

(2) (∆p
MΦ,Ψ)L2(M) = (dMΦ, dMΨ)L2(M) + (δMΦ, δMΨ)L2(M) +

(intM (N∗
M )dMΦ,Ψ)L2(∂M) − (extM (N∗

M )δMΦ,Ψ)L2(∂M).

Let Φ ∈ C∞ΛpM . We say Φ satisfies Dirichlet boundary conditions
if Φ|∂M = 0. Let ∇ be the Levi-Civita connection. We say Φ satisfies
Neumann boundary conditions if∇NM

Φ|∂M = 0. Let iM : ∂M → M be
the inclusion of the boundary ∂M intoM . Let i∗M be the pull back from
ΛpM to Λp∂M . We say that Φ satisfies absolute boundary conditions
BA if i∗intM (N∗

M )Φ = 0 and if i∗intM (N∗
M )dMΦ = 0. Equivalently, let
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y = (y1, . . . , ym−1) be a system of local coordinates on the boundary
of M , and let x = (y, r) where r is the geodesic distance to the bound-
ary. Let dyI := dyi1 ∧ · · · ∧ dyiq where 1 ≤ i1 < · · · < iq ≤ m − 1.
Expand Φ = ΣΦIdy

I + Φ̃Jdr ∧ dyJ . Then Φ satisfies absolute bound-
ary conditions if Φ̃J |∂M = 0 and if ∂rΦI |∂M = 0. Let � be the Hodge
operator. We say that Φ satisfies relative boundary conditions BR if �Φ
satisfies absolute boundary conditions or equivalently if i∗MΦ = 0 and
i∗MδMΦ = 0, see Lemma 2.3 for details. Note that if p = 0,then absolute
boundary conditions correspond to Neumann boundary conditions and
relative boundary conditions correspond to Dirichlet boundary condi-
tions. If p = m, the situation is reversed; absolute boundary conditions
correspond to Dirichlet boundary conditions and relative boundary con-
ditions correspond to Neumann boundary conditions. Let

E(λ,∆p
M,B) := {Φ ∈ C∞ΛpM : BΦ = 0 and ∆p

MΦ = λΦ}

be the associated eigenspaces. We may use the Hodge-de Rham
theorem to identify the absolute and relative cohomology groups with
the spaces of harmonic forms which satisfy the associated boundary
conditions

E(0,∆p
M,BA

) = Hp(M ;R) and E(0,∆p
M,BR

) = Hp(M,∂M ;R).

If M is oriented, the Hodge � operator intertwines ∆p
M,BA

and ∆m−p
M,BR

and induces the Poincare duality isomorphism

Hp(M ;R) = E(0,∆p
M,BA

) ≈ E(0,∆m−p
M,BR

) = Hm−p(M,∂M ;R).

Relative and absolute boundary conditions are important in index
theory; the Euler-Poincare characteristics are given analytically by

χ(M) = Σp(−1)pdimE(0,∆p
M,BA

),

and
χ(M,∂M) = Σp(−1)pdimE(0,∆p

M,BR
).

We summarize the spectral theory of these operators as follows.

Lemma 1.2. Let B = BD,BN ,BA or BR.
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(1) ∆p
M,B is self-adjoint.

(2) If B = BN , ∆p
M,B is nonnegative.

(3) All the eigenspaces E(λ,∆p
M,B) are finite dimensional. They

are nontrivial only for a countable set of eigenvalues λν with λν →
∞. The operator ∆p

M,B has a discrete spectral resolution L2ΛpM =
⊕λE(λ,∆

p
M,B).

Proof. We use Lemma 1.1 to see

(1.1) (∆p
MΦ,Ψ)L2(M) − (Φ,∆p

MΨ)L2(M)

= (intM (N∗
M )dMΦ,Ψ)L2(∂M) − (extM (N∗

M )δMΦ,Ψ)L2(∂M)

− (Φ, intM (N∗
M )dMΨ)L2(∂M) + (Φ, extM (N∗

M )δMΨ)L2(∂M).

To establish assertion (1) of Lemma 1.2, we must show that if Φ and
Ψ satisfy the boundary conditions B, then
(1.2) (∆pΦ,Ψ)L2(M) = (Φ,∆pΨ)L2(M).

We must also show that if we are given Ψ so that equation (1.2) holds
for all Φ with BΦ = 0, then BΨ = 0.

Dirichlet boundary conditions. If Φ and Ψ satisfy Dirichlet boundary
conditions, then the boundary terms in Lemma 1.1 (2) vanish and we
have

(1.3) (∆p
MΦ,Ψ)L2(M) = (dMΦ, dMΨ)L2(M) + (δMΦ, δMΨ)L2(M).

Equation (1.3) is symmetric in Φ and Ψ; we interchange the roles of Φ
and Ψ to see that Lemma 1.2 (2) holds. Conversely, suppose that Ψ is
given so that Lemma 1.2 (2) holds for all Φ with Φ|∂M = 0. We use
equation (1.1) to see that

(1.4) (intM (N∗
M )dMΦ,Ψ)L2(∂M) − (extM (N∗

M )δMΦ,Ψ)L2(∂M) = 0

for all Φ with Φ|∂M = 0. Decompose Ψ = Ψ1 + N∗
M ∧ Ψ2 and

Φ = Φ1 +N∗
M ∧ Φ2 near the boundary. We assume Φi|∂M = 0. Then

equation (1.4) yields

(∂mΦ1,Ψ1)L2(∂M) + (∂mΦ2,Ψ2)L2(∂M) = 0.
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Since we can specify the normal derivatives of Φi arbitrarily, this
implies BDΨ = 0 as desired. By taking Φ = Ψ in equation (1.3),
we see (∆p

MΦ,Φ) ≥ 0 which establishes assertion (2) of Lemma 1.2 for
Dirichlet boundary conditions.

Absolute boundary conditions. Note that

(extM (N∗
M )δMΦ,Ψ) = (δMΦ, intM (N∗

M )Ψ).

If Φ and Ψ satisfy absolute boundary conditions, then intM (N∗
M )dMΦ

and intM (N∗
M )Ψ vanish on the boundary. Thus the boundary terms

in Lemma 1.1 (2) vanish and equation (1.3) holds. As for Dirichlet
boundary conditions, this implies equation (1.2) holds and shows that
assertion (2) of Lemma 1.2 holds. Conversely, suppose that Ψ is given
so that Lemma 1.2 (2) holds for all Φ with BAΦ = 0. We use equation
(1.1) to see that

(1.5) (δMΦ, intM (N∗
M )Ψ)L2(∂M) + (Φ, intM (N∗

M )dMΨ)L2(∂M) = 0.

Take adapted coordinate systems x = (y, r) so dr = N∗
M and so

that ∂r = NM ; r is the geodesic distance to the boundary. Let
Φ = Φ1

I(y) dy
I + rΦ2

J(y)N
∗
M ∧ dyJ near the boundary of M . Then

rΦ2
J |∂M = 0 and ∂rΦ1

I |∂M = 0 so Φ satisfies absolute boundary
conditions. Note that δMΦ|∂M = −Φ2

J(y) dy
J+Q(Φ1

I) for some suitably
chosen operator Q. Define Φ by the equations

Φ1
Idy

I := intM (N∗
M )dMΨ|∂M

and
−Φ2

Jdy
J := intM (N∗

M )Ψ|∂M −Q(Φ1
I).

We use equation (1.5) to show that BAΨ = 0 by computing

0 = (−Φ2
Jdy

J +Q(Φ1
I), intM (N∗

M )Ψ)L2(∂M)

+ (Φ1
Idy

I , intM (N∗
M )dMΨ)L2(∂M)

= ‖intM (N∗
M )Ψ‖2

L2(∂M) + ‖intM (N∗
M )dMΨ‖2

L2(∂M).

Relative boundary conditions. This case follows from absolute bound-
ary conditions using the Hodge � operator.
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Neumann boundary conditions. Let ‘ ; ’ denote multiple covariant
differentiation with respect to a local orthonormal frame field. We
adopt the Einstein convention and sum over repeated indices. We use
the Weitzenböch formulas to express

∆p
MΦ = −Φ;ii +RΦ

where R is a self-adjoint endomorphism of the exterior algebra given
by the curvature tensor; see, for example, Gilkey [1, Lemma 4.1.2]. For
example, if p = 0, then R = 0; if p = 1, then R is the Ricci tensor. We
compute

(Φ;ii,Ψ)L2(M) =(Φ;i,Ψ;i)L2(M)−(Φ;m,Ψ)L2(∂M),

(∆p
MΦ,Ψ)L2(M)−(Φ,∆p

MΨ)L2(M) =(−Φ;ii,Ψ)L2(M)+(Φ,Ψ;ii)L2(M)

=−(Φ;m,Ψ)L2(∂M)+(Φ,Ψ;m)L2(∂M).

The boundary correction terms vanish in the final equation if both
Φ and Ψ satisfy Neumann boundary conditions; conversely, if these
boundary correction terms vanish for all Φ satisfying Neumann bound-
ary conditions, then Ψ satisfies Neumann boundary conditions.

The final assertion of the lemma now follows by standard elliptic
theory from the previous assertions.

2. The geometry of Riemannian submersions. We say that
π : Z → Y is a Riemannian submersion if

(1) π is a smooth surjective map from Z to Y .

(2) For all z ∈ Z, π∗ : TzZ → TπzY is surjective.

(3) Let V := ker(π∗) and H := V⊥. Then π∗ : Hz → TπzY is an
isometry.

If the boundaries of Z and Y are nonempty, we also assume that
π−1∂Y = ∂Z and that the restriction of π defines a Riemannian
submersion from ∂Z to ∂Y .

Let π : Z → Y be a Riemannian submersion. We introduce the
following notational conventions. Let indices i, j and k index local
orthonormal frames {ei} and {ei} for the vertical distributions and
co-distributions V and V∗ of π. Let indices a, b, and c index local
orthonormal frames {fa} and {fa} for the horizontal distributions and
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co-distributions H and H∗ of π, and local orthonormal frames Fa and
F a for the tangent and cotangent bundles TY and T ∗Y of Y . We use
capital letters for fields on Y and lower case letters for their horizontal
lifts to Z. Let

(2.1) θ := −gZ([ei, fa], ei)fa and ωabi :=
1
2
gZ(ei, [fa, fb]).

Then θ is the nonnormalized mean curvature co-vector of the fibers of
π and ω is the curvature of the horizontal distribution. The fibers of π
are minimal if and only if θ = 0 or equivalently if π is a harmonic map.
The horizontal distribution H is integrable if and only if ω = 0.

Pull back π∗ is a linear map from C∞ΛpY to C∞ΛpZ which com-
mutes with the exterior derivative, i.e., π∗dY = dZπ

∗. However, π∗

does not in general commute with the coderivative. We refer to [4] for
the proof of the following result.

Lemma 2.1. Let π : Z → Y be a Riemannian submersion. Define
Ξ := intZ(θ) + E where E := ωabiextZ(ei)intZ(fa)intZ(f b). Then we
have δZπ

∗ − π∗δY = Ξπ∗ and ∆Zπ
∗ − π∗∆Y = (dZΞ + ΞdZ)π∗.

Let πi : Wi → Y be Riemannian submersions. Let

W = W (W1,W2) := {w = (w1, w2) ∈ W1 ×W2 : π1(w1) = π2(w2)}

be the fiber product. Let Hi and Vi be the horizontal and vertical
distributions of πi. We may identify the tangent bundle of the product
T (W1 ×W2) with the direct sum T (W1) ⊕ T (W2) to embed T (W ) in
T (W1)⊕ T (W2). Let

πW (w) := π1(w1) = π2(w2) : W → Y,

VW (w) := V1(w1)⊕ V2(w2),
HW (w) := {(ξ, η) ∈ H1(w1)⊕H2(w2) : (π1)∗ξ = (π2)∗η}.

We define a metric on W by requiring that HW , V1 and V2 are
orthogonal, that the metrics on V1 and V2 are induced from the metrics
on W1 and on W2, and that (πW (w))∗ is an isometry from HW (w) to
TY (π(w)). The metric on HW differs from the subspace metric by a
factor of 1/

√
2; the diagonal in a right equilateral triangle has length
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√
2. Let σ1(w1, w2) = w1 and σ2(w1, w2) = w2. Then σi : W → Wi

and πW : W → Y are Riemannian submersions. We can express θW
and EW in terms of the corresponding tensors onW1 andW2 as follows.
We refer to [3] for the proof of the following lemma.

Lemma 2.2. We have θW = σ∗
1θW1+σ∗

2θW2 and EWπ∗ = σ∗
1EW1π

∗
1+

σ∗
2EW2π

∗
2 .

We now study the geometry near the boundary. Let Fm be the inward
unit normal on the boundary of Y , and let Fa for 1 ≤ a ≤ m− 1 be a
local orthonormal frame field for the tangent bundle of the boundary.
Let L be the second fundamental form on Y ; Lab = L(Fa, Fb) :=
gY (∇Fa

Fb, Fm); the second fundamental form on Z is defined similarly.
Let iY and iZ be the inclusions of ∂Y and ∂Z in Y and Z. We have
π ◦ iZ = iY ◦ π. Let F ∈ T ∗Y . Since π is a Riemannian submersion,

π∗ ◦ intY (F ) = intZ(π∗F ) ◦ π∗

and
π∗ ◦ extY (F ) = extZ(π∗F ) ◦ π∗.

The following lemma summarizes some technical results that we shall
need. Let Γ be the Christoffel symbols of the Levi-Civita connection.

Lemma 2.3. Let π : Z → Y be a Riemannian submersion.

(1) LY
ab = LZ

ab and ΓZ
mai = −2ωami − Lai.

(2) i∗Y intY (N
∗
Y )�Y = ε(m, p) �∂Y i∗Y on C∞ΛpY for ε(m, p) = ±1.

(3) BRΦ = 0 ⇔ BA �Y Φ = 0 ⇔ i∗Y Φ = 0 and i∗Y δY Φ = 0.

(4) We have i∗Z(δZπ
∗ − π∗δY ) = 0 if and only if

(a) If p = 0 there is no condition on θ. If 1 ≤ p < m, then θ = 0. If
1 ≤ p = m, then θm = 0.

(b) If p = 0 or if p = 1, there is no condition on ω. If 1 < p < m,
then ω = 0. If 2 ≤ p = m, then ωamj = 0 for all a, j.

Proof. We prove the first assertion by computing

LY
ab = ΓY

abm = ΓZ
abm = LZ

ab,
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and

ΓZ
mai = ΓZ

mai − ΓZ
ami − ΓZ

aim = 2ωmai − ΓZ
aim = −2ωami − Lai.

Assertion (2) is an easy calculation once the orientations involved are
taken into account. We use assertion (2) to prove assertion (3) by
computing

BRΦ = 0 ⇐⇒ BA �Y Φ = 0
⇐⇒ i∗Y intY (N

∗
Y )�Y Φ = 0 and i∗Y intY (N

∗
Y )d�Y Φ = 0

⇐⇒ �∂Y i
∗
Y Φ = 0 and �∂Y i∗Y δY Φ = 0

⇐⇒ i∗Y Φ = 0 and i∗Y δY Φ = 0.

By Lemma 2.1,

i∗Z(δZπ
∗ − π∗δY ) = i∗Z(intZ(θ) + ωabiextZ(ei)intZ(fa)intZ(f b))π∗.

The condition i∗Z(δZπ
∗ − π∗δY ) = 0 decouples; it is satisfied if

and only if we have the pair of equations i∗Z intZ(θ)π
∗ = 0 and

i∗ZωabiintZ(fa)intZ(f b))π∗ = 0 for all i. If p = 0, θ and ω play no
role. If p = 1, ω plays no role. If p < m, both the normal and tan-
gential components of ω and θ play a role; if p = m, only the normal
component plays a role.

Let BY and BZ denote the appropriate boundary conditions on Y
and on Z.

Theorem 2.4. Let π : Z → Y be a Riemannian submersion. Then

(1) If BY
DΦ = 0, then BZ

Dπ
∗Φ = 0.

(2) If BY
AΦ = 0, then BZ

Aπ
∗Φ = 0.

(3) Assume that i∗Z(δZπ
∗−π∗δY ) = 0. If BY

RΦ = 0, then BZ
Rπ

∗Φ = 0.

(4) If p = 0, Neumann boundary conditions are preserved. If p > 0,
Neumann boundary conditions are preserved if and only if ΓZ

mai = 0
for all i, a.
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Proof. Assertion (1) is immediate. Suppose that Φ satisfies absolute
boundary conditions. Then

i∗Y intY (N
∗
Y )Φ = 0 and i∗Y intY (N

∗
Y )dY Φ = 0,

=⇒ π∗i∗Y intY (N
∗
Y )Φ = 0, and π∗i∗Y intY (N

∗
Y )dY Φ = 0,

=⇒ i∗Zπ
∗intY (N∗

Y )Φ = 0, and i∗Zπ
∗intY (N∗

Y )dY Φ = 0,
=⇒ i∗Z intZ(N

∗
Z)π

∗Φ = 0 and i∗Z intZ(N
∗
Z)dZπ

∗Φ = 0,
=⇒ π∗ satisfies absolute boundary conditions on Z.

This proves assertion (2). If we assume δZπ
∗ = π∗δY , the proof of

assertion (3) is the same. We note that

∇NZ
π∗Φ− π∗∇NY

Φ = extZ(ei)intZ(fa)ΓZ
maiπ

∗Φ.

If p = 0, this vanishes automatically. If p > 0, this vanishes if and only
if Γmai vanishes on the boundary of Z.

3. Relating the eigenspaces for closed manifolds. If Y and
Z are closed manifolds, we can give necessary and sufficient conditions
that all the eigenspaces are preserved; eigenvalues cannot change in
this situation. We refer to [4] for the proof of the following result; this
extends previous work of Goldberg and Ishihara [5] and Watson [8].

Theorem 3.1. Fix p with 0 ≤ p ≤ dimRY . The following conditions
are equivalent:

(1) ∆p
Zπ

∗ = π∗∆P
Y .

(2) For all λ ≥ 0, there exists µ(λ) ≥ 0 so π∗E(λ,∆p
Y ) ⊂

E(µ(λ),∆p
Z).

(3) The fibers of π are minimal and

(a) if p = 0, there is no further condition.

(b) if p > 0, the horizontal distribution is integrable.

Theorem 3.1 shows that if all the eigenspaces are preserved, then
eigenvalues cannot change. We refer to [2] for the proof of the following
result.
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Theorem 3.2.

(1) Let π : Z → Y be a Riemannian submersion of closed Riemannian
manifolds. If 0 = Φ ∈ E(λ,∆p

Y ) and if π∗Φ ∈ E(µ,∆p
Z), then λ ≤ µ.

If p = 0, then λ = µ.

(2) Let p ≥ 2, and let 0 ≤ λ < µ < ∞ be given. There exists
a Riemannian submersion π : Z → Y of closed manifolds and there
exists 0 = Φ ∈ E(λ,∆p

Y ) so that π∗Φ ∈ E(µ,∆p
Z).

The proof of assertion (2) of Theorem 3.2 uses results of Muto [6,
7]; the proof of assertion (1) of Theorem 3.2 uses the fiber products
described in Lemma 2.2. The case p = 1 is left open in Theorem 3.2;
we do not know if eigenvalues can change if p = 1 for closed manifolds.
We shall see in the next section that eigenvalues can change if p = 1 if
∂Y = 0 with Neumann boundary conditions.

4. When can eigenvalues change. Absolute and relative bound-
ary conditions are Neumann and Dirichlet boundary conditions if p = 0;
eigenvalues cannot change in this setting.

Theorem 4.1. Let π : Z → Y be a Riemannian submersion. Let
B = BD or B = BN and let p = 0. If 0 = Φ ∈ E(λ,∆0

Y,B) and if
π∗Φ ∈ E(µ,∆0

Z,B), then λ = µ.

Proof. Suppose that 0 = Φ ∈ E(λ,∆0
Y,B) and that π∗Φ ∈ E(λ +

ε,∆0
Z,B). We use Lemma 2.1 to see that

(4.1) επ∗Φ = ∆0
Zπ

∗Φ− π∗∆0
Y = intZ(θ)dZπ∗Φ.

By replacing Φ by −Φ if necessary, we can assume the maximal value
of Φ is positive; let this maximal value be attained at y0 ∈ Y . If y0 is
in the interior of Y , then dY Φ(y0) = 0. Choose z0 so π(z0) = y0. Then
dZπ

∗Φ(z0) = π∗dY Φ(y0) = 0 so equation (4.1) implies επ∗Φ(z0) = 0
and hence ε = 0. If B = BD, then Φ cannot attain its maximum on the
boundary ∂Y and the theorem follows. Let B = BN . Since y0 ∈ ∂Y ,
d∂Y Φ(y0) = 0. Since NY (Φ)(y0) = 0, dY Φ(y0) = 0 and ε = 0.

Next we study the case p > 0.
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Theorem 4.2. Let π : Z → Y be a Riemannian submersion. Let
B = BD,BA or BR. If 0 = Φ ∈ E(λ,∆p

Y,B) and if π∗Φ ∈ E(µ,∆p
Z,B),

then λ ≤ µ.

Proof. We ignore the boundary conditions for the moment. Let
Z0 := Z. For n ≥ 1, let Zn := W (Zn−1, Zn−1) be the fiber product
discussed in Section 2. Let πn : Zn → Y be the associated Riemannian
submersion. We use Lemmas 2.1 and 2.2 to see that π∗

n−1Φ ∈ E(λ +
εn−1,∆

p
Zn
) implies π∗

nΦ ∈ E(λ + εn,∆
p
Zn
) where εn = 2εn−1. Thus

if ε = µ − λ, we have π∗
nΦ ∈ E(λ + 2nε,∆p

Zn
). If B = BD or

B = BA, then the boundary conditions are preserved automatically
and π∗

nΦ ∈ E(λ + 2nε,∆p
Zn,B). Since this operator is nonnegative by

Lemma 1.2 we see λ + 2nε ≥ 0 for all n and thus ε ≥ 0 so λ ≤ µ as
desired.

If B = BR, then by assumption BRΦ = 0 and BRπ
∗Φ = 0. Thus

i∗Z(δZπ
∗ − π∗δY )Φ = 0

so we have i∗Z intZ(θ)π
∗Φ = 0 and i∗ZEπ∗Φ = 0. Lemma 2.2 then shows

inductively i∗Zn
intZn

(θ)π∗
nΦ = 0 and i∗Zn

Eπ∗
nΦ = 0 from which it follows

that BRπ
∗
nΦ = 0 so π∗

nΦ satisfies the given boundary conditions. The
remainder of the argument is the same as that given above for B = BD

or B = BA.

We show that Theorem 4.2 is sharp in certain cases:

Theorem 4.3. Let B ∈ {BD,BN ,BA,BR}, let 2 ≤ p, and let 0 < λ <
µ < ∞ be given. There exists a Riemannian submersion π : Z → Y
and there exists 0 = Φ ∈ E(λ,∆p

Y,B) so that π∗Φ ∈ E(µ,∆p
Z,B).

Proof. Let W := [0, ε]. For suitably chosen ε, we may find 0 = Ψ ∈
E(λ,∆p

W,B). By Theorem 3.2, we may find a Riemannian submersion
π̄ : Z̄ → Ȳ of closed manifolds and Φ̄ ∈ E(0,∆p

Ȳ
) so that π̄∗Φ̄ ∈

E(µ−λ,∆p

Z̄
). Let Z = Z̄ ×W , Y = Ȳ ×W , and let π(z̄, w) = (π̄z̄, w).

Let Φ = ΨΦ̄. Then 0 = Φ ∈ E(λ,∆p
Y ) and π∗Φ ∈ E(µ,∆p

Z).
Furthermore, we check directly that BWΨ = 0 implies that BY Φ = 0
and that BZπ∗Φ = 0.
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Theorem 4.2 fails with Neumann boundary conditions; eigenvalues
can decrease. The following result shows the eigenvalues of the Neu-
mann Laplacian can be negative. It also shows that eigenvalues can
change if p = 1.

Theorem 4.4. Let 0 < p, and let λ, µ ∈ R be given. There exists a
compact Riemannian manifold Y with smooth boundary, there exists
a Riemannian submersion π : Z → Y and there exists 0 = Φ ∈
E(λ,∆p

Y,BN
) so that π∗Φ ∈ E(µ,∆p

Z,BN
).

Proof. We suppose p = 1, λ = 0 and m = 2; the general case
can be dealt with by taking Riemannian products. Let Y := [0, 1]
with parameter y, and let Φ := dy; Φ satisfies Neumann boundary
conditions and ∆1

Y Φ = 0. Let Z := [0, 1] × S1, and let t be the usual
periodic parameter on the circle. We consider a metric of the form
ds2 := dy2 + e2f(y) dt2 where f(y) := −(µ/2)y2. By [3, Lemma 4.2],
we have that θ = −df = µy dy. Since dim (Y ) = 1, the horizontal
distribution H is integrable and ω = 0. Since ∆Y Φ = 0, Lemma 2.1
shows that

∆1
Zπ

∗Φ = d intZ(θ)π∗Φ = µπ∗ dy = µπ∗Φ.

Consequently, π∗Φ ∈ E(µ,∆1
Z,BN

). For fixed t, the curves y → (y, t)
are unit speed geodesics which are normal to the boundary. We check
dy satisfies Neumann boundary conditions by computing

∇∂y∂y = 0, ∇∂y∂t =
1
2
∂f

∂y
∂t, ∇∂y dy = 0.

5. When all eigenfunctions are preserved. If π∗ intertwines the
operators ∆p

Y and ∆p
Z and intertwines the boundary conditions defined

by B on Y with those on Z, we say that ∆p
Z,Bπ

∗ = π∗∆p
Y,B.

Theorem 5.1. Let 0 ≤ p ≤ dimRY . Let B = BD,BR or BA. Let
π : Z → Y be a Riemannian submersion. The following conditions are
equivalent:

(1) ∆p
Z,Bπ

∗ = π∗∆p
Y,B.
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(2) For all λ ≥ 0, there exists µ(λ) ≥ 0 so π∗E(λ,∆p
Y,B) ⊂

E(µ(λ),∆p
Z,B).

(3) The fibers of π are minimal and

(a) If p = 0, there is no further condition.

(b) Suppose p > 0. Then the horizontal distribution is integrable.

Proof. Suppose that condition (3) holds. This means that θ = 0 and
that if p > 0 that ω = 0. We use Lemma 2.1 to see that ∆p

Zπ
∗ = π∗∆p

Y ;
ω plays not role if p = 0. We use assertion (1) of Theorem 2.4 to see
that Dirichlet boundary conditions are preserved and assertion (2) of
Theorem 2.4 to see that absolute boundary conditions are preserved.
We use Lemma 2.1 to see that δZπ∗−π∗δY = 0 and hence assertion (3)
of Theorem 2.4 shows that relative boundary conditions are preserved.
This shows that assertion (3) implies assertion (1). It is immediate that
assertion (1) implies assertion (2).

Assume that assertion (2) holds. Let 0 = Φ ∈ E(λ,∆0
Y,B), and let

φ := π∗Φ. We use Lemma 2.1 to see that

(5.1) (µ− λ)φ = {dZ(intZ(θ) + E) + (intZ(θ) + E)dZ}π∗Φ.

Suppose first that p = 0. By Theorem 4.1 we have µ = λ, and this
equation yields intZ(θ)π∗dY Φ = 0. Let Ψ ∈ C∞

0 (Y ) be a smooth
function on Y with compact support. We can uniformly approximate
Ψ in the C∞ topology by finite sums of eigenfunctions. Thus we have
intZ(θ)π∗dYΨ = 0 on C∞

0 (Y ). Since θ is a horizontal co-vector, this
implies θ = 0 on the interior of Z. Continuity then yields θ = 0 on the
boundary as well. This completes the proof of the theorem if p = 0.

Let ρH be an orthogonal projection from ΛpZ to ΛpH. Let Φ ∈
E(λ,∆p

Z,B). We apply (1− ρH) to equation (5.1) to see

(5.2) 0 = (1− ρH){dZ(intZ(θ) + E) + (intZ(θ) + E)dZ}π∗Φ.

Since the span of the eigenspaces is dense in the space C∞
0 (ΛpY ) of

differential forms which are compactly supported in the interior, this
identity extends to C∞

0 ΛpY by continuity. Fix a point z0 ∈ Z and let
y0 = πz0. Choose F ∈ C∞Y so that F (y0) = 0. Let ξ := dF (y0).
Since intZ(θ) + E is a 0th order operator, we apply equation (5.2) to
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FΦ and evaluate at z0 to see

0 = (1− ρH){extZ(π∗ξ)(intZ(θ) + E)
+ (intZ(θ) + E)extZ(π∗ξ)}π∗{Φ(y0)}.

Since 0 = (1− ρH){extZ(π∗ξ)intZ(θ)+ intZ(θ)extZ(π∗ξ)}π∗, and since
E always introduces a vertical covector, we conclude

0 = {extZ(π∗ξ)E + EextZ(π∗ξ)}π∗.

We set π∗ξ = fc. We set e(i) := extZ(ei), e(a) := extZ(fa) and
i(a) := intZ(fa) in the following computation in the interests of brevity

0 = ωabi{e(c)e(i)i(a)i(b) + e(i)i(a)i(b)e(c)}
= ωabie(i){−e(c)i(a)i(b) + i(a)i(b)e(c)}
= ωabie(i){i(a)e(c)i(b) + i(a)i(b)e(c)− δaci(b)}
= ωabie(i){−i(a)i(b)e(c) + i(a)i(b)e(c)− δaci(b) + δbci(a)}
= −2ωcbie(i)i(b).

Since p ≥ 1, this implies ω = 0 on the interior of Y ; continuity then
implies ω = 0 on the boundary as well. This shows thatH is integrable.

We now recall a bit of the geometry of Riemannian submersions with
integrable horizontal distributions. We refer to [3] for the proof of the
following result:

Lemma 5.2. Let X be the fiber of a Riemannian submersion
π : Z → Y . Assume the horizontal distribution of π is integrable.
Then we can find local coordinates z = (x, y) on Z so π(x, y) = y and
so ds2

Z = gij(x, y)dxi◦dxj+hab(y)dya◦dyb. If we set gX := det (gij)1/2,
then θ = −dY ln(gX).

Let dX denote exterior differentiation along the fiber. We set E = 0
and use equation (5.2) to see

(5.3) 0 = dX intZ(θ)π∗ on C∞
0 ΛpY.

This implies θ is constant on the fibers so θ = π∗Θ is the pull back
of a globally defined 1-form on the base. Since H is integrable, we
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use Lemma 5.2 to give a local decomposition of Z so that we have
θ = π∗Θ = −dY ln(gX). Let ψ(y) be the volume of the fibers. Let dνex
be the Euclidean measure. Then

dY ψ(y) = dY

∫
X

gX(x, y)dνex =
∫
X

(gXg−1
X dY gX)(x, y)dνex

= −
∫
X

gX(x, y)θ(x, y)dνex = −Θ(y)
∫
X

gX(x, y)dνex

= −Θ(y)ψ(y).

Thus θ = −π∗dY lnψ where ψ ∈ C∞(Y ) is globally defined.

Let g(t)Z = ψ2tds2
V + ds2

H define a conformal variation of the met-
ric on the vertical distribution and leave the metric on the horizontal
distribution unchanged. Then π : Z(t) → Y is a Riemannian submer-
sion with integrable horizontal distribution. We use Lemma 5.2 to see
θ(t) = (1 + t dim (X))θ and thus

(5.4)
∆p

Z(t)π
∗ − π∗∆p

Y = (1 + t dim (X))(dZ intZ(θ) + intZ(θ)dZ)π∗

= (1 + t dim (X))(∆p
Zπ

∗ − π∗∆p
Y ).

Dirichlet or absolute boundary conditions are preserved by π∗. There-
fore, if B = BD or if B = BA, equation (4.5) implies that

(5.5) π∗E(λ,∆p
Y,B) ⊂ E

(
λ+ (1 + t dim (X))ε(λ),∆p

Z(t),B
)
.

By Lemma 1.2, ∆p
Z(t),B is a nonnegative operator. Thus λ + (1 +

t dim (X))ε(λ) ≥ 0. Since t is arbitrary, ε(λ) = 0. Thus

(5.6) (dZ intZ(θ) + intZ(θ)dZ)π∗ = 0

on E(λ,∆p
Y,B). Since these eigenspaces are dense in C∞

0 ΛpY , equation
(5.6) continues to be valid on C∞

0 ΛpY . Choose Ψ ∈ C∞
0 ΛpY . Let

f ∈ H(z0) where z0 is in the interior of Z. Let y0 := π(z0) and
Φ ∈ C∞

0 ΛpY so that Φ(y0) = 0 and π∗dΦ(y0) = f . We apply equation
(5.6) to ΦΨ and evaluate at y0 to see

(extZ(f)intZ(θ) + intZ(θ)extZ(f))π∗{Ψ(y0)} = 0.

Since extZ(f)intZ(θ) + intZ(θ)extZ(f) = gZ(f, θ), this implies
gZ(f, θ)(z0) = 0. Since θ is horizontal, we conclude θ vanishes on the
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interior of Z and hence, by continuity, we have θ = 0. This completes
the proof of Theorem 5.1 if B denotes Dirichlet or absolute boundary
conditions.

Suppose B = BR denotes relative boundary conditions. We suppose
BRΦ = 0. Since i∗Zπ

∗ = π∗i∗Y , we have i∗Zπ
∗Φ = 0. Since E = 0, we

then have

BRπ
∗Φ = 0 ⇐⇒ i∗ZδZπ

∗Φ = 0 ⇐⇒ i∗Z intZ(θ)π
∗Φ = 0.

Since θ(t) = (1+tdim (X))θ, this condition is preserved. Thus equation
(4.6) holds and the argument given above completes the proof.

Remark 5.3. If p > 0, we conjecture that an analogue of Theorem 5.1
holds for Neumann boundary conditions. However, the proof that we
have given uses in an essential fashion the positivity of the operator
involved and therefore does not extend directly.
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