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LOCAL COHOMOLOGY FOR
COMMUTATIVE BANACH ALGEBRAS

M.S. MOSLEHIAN AND A. NIKNAM

ABSTRACT. The purpose of this paper is to introduce a
local cohomology theory in the unital commutative Banach
algebras context and to describe a connection between the
local cohomology functor and direct limit of hom functors.

1. Introduction. The local cohomology theory in the context of
commutative ring theory was introduced by Grothendieck [3] and de-
veloped by Brodmann, Mcdonald and Sharp and some other mathe-
maticians [2]. In this paper we introduce a version of local cohomology
for unital commutative Banach algebras and Banach modules. After
introduction, we specialize in Section 2 to local cohomology functor,
torsion and torsion-free modules with respect to a given ideal and also
some related examples. Section 3 provides the connected right sequence
of local cohomology functors. In the last section the local cohomology
functor is described as a direct limit of some hom functors.

Throughout the paper, A is a fixed unital commutative Banach
algebra with unit e, ‖e‖ = 1, and I is a fixed closed ideal of A. We follow
the notation and terminology of [5] or [6], but with some exceptions as
the following:

Definition 1.1. A Banach A-module is a Banach space with an
algebraic unital symmetric A-bimodule structure satisfying

(♦) ‖ax‖ ≤ ‖a‖ · ‖x‖; a ∈ A, x ∈ X

ex = x;x ∈ X
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A module morphism between Banach A-modules X and Y is a linear
mapping f : X → Y such that

f(ax) = af(x); x ∈ X, a ∈ A.

Notation 1.2. We denote the category of all Banach A-modules
and module morphisms between them by C, the corresponding positive
(cochain) complexes by C, and the category of algebraic A-modules
with underlying complete semi-normed spaces satisfying (♦) and their
module morphisms by 〈C〉.
Let S be a subset of A and X ∈ C; then the set of all x ∈ X such that

Sx = 0 is a Banach A-submodule of X which is denoted by (0 :X S).

2. Local cohomology functor with respect to an ideal.

Definition 2.1. Let X ∈ C; then the local cohomology of
X with respect to I, denoted by ΓI(X), is the closure of {x ∈
X; Inx = 0 for some n ∈ N}, where In is the closed ideal generated by
a1a2 · · · an, 1 ≤ i ≤ n, ai ∈ I. ΓI(X) is a Banach A-submodule of X
and so it belongs to C. It follows therefore that

ΓI(X) = ∪∞
n=1(0 :X In).

An A-module X is said to be I-torsion, respectively, I-torsion-free,
whenever ΓI(X) = X, respectively ΓI(X) = 0.

Examples 2.2. (i) If I has a bounded approximate identity, then
clearly In = I. Hence ΓI(X) = (0 :X I) for each Banach A-module X;
in particular, ΓI(A) = Ann (I), where Ann (I) is the annihilator of I.
Moreover, if I has a bounded approximate identity for X, i.e., there is
a net {eλ}λ∈Λ with eλ ∈ I such that limλ eλx = x for all x ∈ X and
sup{‖eλ‖;λ ∈ Λ} < ∞, e.g., X = I, then ΓI(X) = 0. Thus, in this
case, X is I-torsion-free.

(ii) If X is a Banach A-module and Γ̃I(X) = ∪∞
n=1(0 :X In), then

ΓI(X) = Γ̃I(X) = Γ̃I(Γ̃I(X)) ⊆ Γ̃I(ΓI(X)) = ΓI(ΓI(X)) ⊆ ΓI(X).
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Hence, ΓI(ΓI(X)) = ΓI(X). Thus ΓI(X) is I-torsion.

(iii) Let A be an abelian von Neumann algebra and I a weak-operator
closed ideal of A. Then A � C(Ω) for some extremely disconnected
compact Hausdorff space Ω [7, Theorem 5.2.1] and I is of the form Ac
for a projection c ∈ A [8, Theorem 6.8.8]. Since I has the identity c,
Example 2.2 (i) shows that ΓI(X) = {x ∈ X; cx = 0}. If X = A and I
is nontrivial, A is clearly neither I-torsion nor I-torsion-free.

If f : X → Y is a module morphism in C and x is annihilated by In

for some n, then for each a ∈ In, af(x) = f(ax) = 0, so In annihilates
f(x). Hence, f(ΓI(X)) ⊆ ΓI(Y ), by the continuity of f . Let ΓI(f) be
the restriction and corestriction of f to ΓI(X) and ΓI(Y ), respectively.
Then it can be checked that ΓI(·) is a functor from C to C. We call
this the local cohomology functor with respect to I. It is additive, C-
linear and A-linear, i.e., for objects X and Y in C, module morphisms
f : X → Y and g : X → Y λ ∈ C and a ∈ A:

ΓI(f + g) = ΓI(f) + ΓI(g),ΓI(λf) = λΓI(f) and ΓI(af) = aΓI(f).

3. The ith local cohomology functors with respect to an
ideal, i ≥ 0. We recall that if E is a Banach space, then B(A,E) is a
Banach A-module together with the following action:

(aφ)(b) = φ(ba);φ ∈ B(A,E), a, b ∈ A.

It is an injective Banach A-module [6, Chapter III, Section 1.4].

Consider the normalized injective resolution for X ∈ C [6, Chapter
III, Section 2]:

0 −→ J0(X) d0−→ J1(X) −→ · · · −→ J i(X) di−→ J i(X) −→ · · · (J (X)).

This complex has the property that the following complex is admissible:

0 −→ X
π̃−→ J0(X) d0−→ J1(X) −→· · ·−→ J i(X) di

−→ J i+1(X) −→· · · .

In the latter complex, π̃X : X → B(A,X) is given by (π̃(x))(a) =
ax; also if C(X) = B(A,X)/Im π̃X , C

−1(X) = X and Ci(X) =
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C(Ci−1(X)), i ≥ 0, then for each i ≥ 0, J i(X) = B(A,Ci−1(X))

and di is the composition of J i(X) nat.−→ Ci(X)
π̃Ci(X)−→ J i+1(X). In fact

J is a functor from C to C.

Definition 3.1. The nth injective derived functor of ΓI(·), i.e.,
Hi ◦ ΓI ◦ J = Hi

I is called the ith local cohomology functor with
respect to I, [6, Chapter III, Section 3]. Hi

I(X) is called the ith local
cohomology module of X with respect to I. The functors Hi

I , i ≥ 0,
are additive, C-linear, A-linear and covariant functors from C to 〈C〉.
Hi
I(X) is independent of the choice of injective resolution for X up to

an isomorphism in 〈C〉 [6, Theorem 3.3.10].

Remark 3.2. If Q is an injective Banach A-module, then Hi
I(Q) = 0

for all i > 0. In fact, the exact complex 0 → Q
1Q→ Q → 0 → · · · shows

that 0 → Q → 0 → · · · (Q) is an injective resolution for Q so, for all
i > 0, Hi

I(Q) = Hi(ΓI(Q)) = 0.

Definition 3.3. A sequence (T i)i≥0 of covariant functors from C
to 〈C〉 is called a connected right sequence of covariant functors if the
following conditions are satisfied:

(i) If 0 → X → Y → Z → 0 is an admissible short complex in C,
there are defined continuous connecting morphisms Tn(Z) → Tn+1(X),
n ≥ 0, in 〈C〉 such that 0 → T 0(X) → T 0(Y ) → T 0(Z) → T 1(X) → · · ·
is a complex.

(ii) Whenever

0 w X

u

w Y

u

w Z

u

w 0

0 w X ′
w Y ′

w Z ′
w 0

is a commutative diagram in C with admissible rows, there is defined a
morphism between the corresponding complexes:
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0 w T
0
(X)

u

w T
0
(Y )

u

w T
0
(Z)

u

w T
1
(X)

u

w · · ·

0 w T
0
(X

′
) w T

0
(Y

′
) w T

0
(Z

′
) w T

1
(X

′
) w · · ·

[9, Section 6.5].

Theorem 3.4. Let 0 → X → Y → Z → 0 (S) be an admissible
short complex in C. Then there exists a long exact complex in 〈C〉 as

0 −→ H0
I (X) −→ H0

I (Y ) −→ H0
I (Z)

ζ0−→ H1
I (X) −→ · · ·

with continuous connecting morphisms ζn : Hn
I (Z) → Hn+1

I (X).
Moreover, (Hi

I)i≥0 is a connected right sequence of covariant functors.

Proof. Suppose that 0 → X
φ→ Y

ψ→ Z → 0 (S) is an admissible
short complex in C so that there exist continuous operators ρ : Y → X
and σ : Z → Y such that ρ ◦ φ = 1X , ψ ◦ σ = 1Z , φ ◦ ρ + σ ◦ ψ = 1Y
[6, Proposition 3.1.8]. Then the following short sequence of complexes
is admissible:

0 −→ C(X) −→ C(Y ) −→ C(Z) −→ 0.

Applying Proposition III.1.5 and Theorem III.1.9 of [6] to the functor
B(A, ?), we conclude that, for any i ≥ 0, J i(S) splits. Thus 0 →
ΓI(J (X)) → ΓI(J (Y )) → ΓI(J (Z)) → 0 is exact. Now we may use
the fundamental lemma of homological algebra [6, Theorem 0.5.7] in
order to get

o −→ H0
I (X) −→ H0

I (Y ) −→ H0
I (Z)

ζ0−→ H1
I (X) −→ · · ·

with continuous connecting morphisms ζn : Hn
I (Z) → Hn+1

I (X). The
rest is a well-known technique in homological algebra, [9, Section 6.3]
and [6, Chapter 0, Section 5].

4. Direct limit and local cohomology functors. Let {Xα}α∈K
be a family of Banach A-modules. Recall that the topological direct
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sum of {Xα}α∈K is defined as the completion of algebraic direct sum
⊕α∈KXα with respect to the norm ‖(xα)α∈K‖ =

∑
α∈K ‖xα‖ which

will also be denoted by ⊕α∈KXα. This is in C and consists of all
elements (xα)α∈K of the algebraic direct product

∏
α∈K Xα such that∑

α∈K ‖xα‖ < ∞, see [10, Section 2.1] and [1, Section 9].

Definition 4.1. (i) Let (D,≤) be a directed set. A direct system
over D in C consists of families {Xα}α∈D of Banach A-modules and
{πβα}(α,β)∈D×D,α≤β of module morphisms such that for all α, β, γ ∈
D, παα = 1Xα

and πγβ ◦ πβα = πγα whenever α ≤ β ≤ γ and
supα≤β ‖πβα‖ < ∞. It is denoted by (X,π,D).

(ii) Let (X,π,D) and (Y, η,D) be direct systems. A map φ from
(X,π,D) to (Y, η,D) is a family {φα}α∈D of module morphisms φα :
Xα → Yα such that it is uniformly bounded, i.e., supα∈D ‖φα‖ < ∞,
and for α ≤ β the following diagram commutes:

Xα w

φα

u

πβα

Yα

u

ηβα

Xβ w
φβ

Yβ

(iii) A direct limit of a direct system (X,π,D) is a Banach A-
module X∞ together with a family {πα}α∈D of module morphisms
πα : Xα → X∞ such that supα∈D ‖πα‖ < ∞ and for all α, β ∈ D if
α ≤ β then the diagram

Xα

u

πα

w

πβα
Xβ

�
�
�
��

πβ

X∞

commutes. In addition, it has the following “universal property”:

For each Banach A-module X and each family {ρα}α∈D of module
morphisms ρα : Xα → X such that supα∈D ‖ρα‖ < ∞ and for α ≤ β,
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the diagram
Xα4

4
4
46ρα

w

πβα
Xβ

u

ρβ

X

commutes, we have a unique module morphism ω : X∞ → X such that,
for all α ∈ D we have the following commutative diagram:

Xα

u
πα

4
4
4
46

ρα

X∞ wω X

It is obvious that X∞ and {πα}α∈D are unique up to a module isomor-
phism in C. We denote the direct limit of (X,π,D) by (X∞, {πα}α∈D)
or lim−→

α

Xα.

Proposition 4.2. Any direct system in C has a direct limit.

Proof. Suppose that (X,π,D) is a direct system in C. Let iα : Xα →
⊕α∈DXα be the natural injection and R the Banach A-submodule
of ⊕α∈DXα generated by iβ(πβα(xα)) − iα(xα), (α, β) ∈ D, α ≤ β,
xα ∈ Xα. Set X∞ = (⊕α∈DXα)/R and suppose that, for each
α ∈ D, πα is the composition Xα

iα→ ⊕α∈DXα
nat→ X∞. Obviously

supα∈D ‖πα‖ ≤ 1. We shall show that (X∞, {πα}α∈D) is the direct
limit of (X,π,D).

Let X ∈ C, ρα : Xα → X, α ∈ D be module morphisms such that for
each α ≤ β the diagram

Xα4
4
4
46ρα

w

πβα
Xβ

u

ρβ

X

commutes and M = supα∈D ‖ρα‖ < ∞. Suppose (xα)α∈D is an
element of the algebraic direct sum of {Xα}α∈D. Then xα = 0 for
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all except finitely many α. If Θ((xα)α∈D) =
∑
α∈D ρα(xα), then

‖Θ((xα)α∈D)‖ ≤ ∑
α∈D ‖ρα(xα)‖ ≤ M

∑
α∈D ‖xα‖ = M‖(xα)α∈D‖.

So we can extend Θ by the continuity to ⊕α∈DXα, denoted by the same
Θ. For (α, β) ∈ D, α ≤ β and xα ∈ Xα, Θ(iβ(πβα(xα)) − iα(xα)) =
ρβ(πβα(xα))− ρα(xα) = ρα(xα)− ρα(xα) = 0. Hence R ⊆ kerΘ. Thus
we have module morphism ω : X∞ → X defined by ω(u+ R) = Θ(u),
u ∈ ⊕α∈DXα. We next have (ω ◦ πα)(xα) = ω(iα(xα) + R) =
Θ(iα(xα)) = ρα(xα), xα ∈ Xα; hence, ω ◦ πα = ρα.

If {φα}α∈D is a mapping from (X,π,D) to (Y, η,D), then it is easy
to verify that there exists a unique, in a certain meaning, module
morphism φ∞ : X∞ → Y∞. Moreover, it is possible to consider “direct
limit” as a functor [4].

Example 4.3. Suppose that D is a directed set, {Xα}a∈D a family
of Banach A-submodules of a given X ∈ C and whenever α ≤ β,
Xα ⊆ Xβ and πβα : Xα → Xβ is the inclusion map, then it is clear that
lim−→
α

Xα = ∪α∈DXα and πα : Xα → lim−→
α

Xα is also the inclusion map.

Now let, for X ∈ C and n ∈ N, Xn = Ah((A/In), X); for m ≤ n,
πnm : Xm → Xn given by πnm(α) = α ◦ δnm where δnm : A/In →
A/Im is defined naturally by δnm(a + In) = a + Im (note that
In ⊆ Im whenever m ≤ n). It follows that {Xn}n∈N together with
{πnm}(m,n)∈N×N,m≤n is a direct system. Also if f : X → Y is a
module morphism and φn : Xn → Yn is given by φn(α) = f ◦ α, then
supn ‖φn‖ ≤ ‖f‖ and the commutativity of

Xm

u
Ah(δnm,X)

w

φm Ym

u
Ah(δnm,Y )

Xn w
φn

Yn

shows that {φn}n∈N is a mapping between corresponding direct sys-
tems. So there exists a module morphism φ∞ : lim−→

n

Ah((A/In), X) →
lim−→
n

Ah((A/In), Y ). Moreover we can consider lim−→
n

Ah((A/In), ·) as a

functor from C to C.
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The next theorem is the Banach theory version of an important purely
algebraic theorem, [2, Theorem 1.2.11].

Theorem 4.4. The functors ΓI(·) and lim−→
n

Ah((A/In), ·) are natu-

rally equivalent.

Proof. For each n, ψn : Ah((A/In), X) → (0 :X In) given by ψn(f) =
f(e + In) is obviously a module isomorphism and supn ‖ψn‖ ≤ 1. In
addition the following diagram commutes:

Ah((A/Im), X) �

u
Ah(δnm,X)

w

φm (0 :X Im)

u
inc

Ah((A/In), X) � w
φn

(0;X In)

For the direct limit is a functor, we have a module isomorphism
ψ(X) : lim−→

n

Ah((A/In), X) �→ lim−→
n

(0 :X In).

By Example 4.3 and (0 :X In) ⊆ (0 :X In+1), lim−→
n

(0 :X In) = ΓI(X)

and so lim−→
n

Ah((A/In), X) � ΓI(X). Also it is easy to check that if

f : X → Y is a morphism in C, the following diagram is well-defined
and commutative.

lim−→
n

Ah((A/In), X) �

u

lim−→
n

Ah(1A/In ,f)

w ΓI(X)

u

ΓI(f)

lim−→
n

Ah((A/In), Y ) � w ΓI(Y )

Thus lim−→
n

Ah((A/In), ·) is naturally equivalent to ΓI(·).
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