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A STRONG SIMILARITY PROPERTY
OF NUCLEAR C∗-ALGEBRAS

CHRISTIAN LE MERDY

1. Introduction and main result. The aim of this note is to
establish a new lifting property of the multiplication map on nuclear
C∗-algebras, Theorem 1.2 below, and to apply it to two natural ques-
tions arising from Pisier’s recent work on the similarity problem for
operator algebras [19]. Let A be a C∗-algebra, H a Hilbert space, and
let u : A → B(H) be a bounded homomorphism. An outstanding open
problem going back to Kadison asks whether u is necessarily similar to
a ∗-representation. By a result due to Paulsen [14], this is equivalent to
the question: Is u automatically completely bounded? We refer to [15,
17] for wide information on completely bounded maps and Kadison’s
similarity problem.

When A is a nuclear C∗-algebra, Kadison’s problem was solved
positively by Bunce [3] and Christensen [6]. Moreover, in this situation
we have the estimate ‖u‖cb ≤ ‖u‖2 for any bounded homomorphism u
from A into B(H) where ‖ · ‖cb denotes the completely bounded norm.
In [19], Pisier showed that this estimate is not far from characterizing
nuclear C∗-algebras. Firstly he proved that if A is a C∗-algebra for
which any bounded homomorphism u : A → B(H) is completely
bounded, there exists a number α ≥ 0 and a constant K > 0 such
that, for all u as above, ‖u‖cb ≤ K‖u‖α. Moreover, he showed that
the infimum of the numbers α ≥ 0 for which this holds is attained
and is an integer. This integer is denoted by d(A) and called the
similarity degree of A. With this terminology, we thus have d(A) ≤ 2
when A is a nuclear C∗-algebra. Secondly it is shown in [19] that if
A is a C∗ algebra with d(A) ≤ 2, then whenever a ∗-representation
π : A → B(H) generates a semi-finite von Neumann algebra, that
von Neumann algebra is injective.

Our first purpose is to show that the degree 2 property of nuclear
C∗-algebras actually holds in a strong sense, as follows. Let A be a
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C∗-algebra, and let u : A → B(H) be a bounded homomorphism. Let
[u(A)]′ denote the commutant of the range u(A) of u. We introduce a
new homomorphism û : A ⊗ [u(A)]′ → B(H) by letting

(1.1) û

( ∑
ai ⊗ xi

)
=

∑
u(ai)xi

for all finite families (ai)i in A and (xi)i in [u(A)]′. In general, û is not
bounded when the algebraic tensor product A⊗[u(A)]′ is equipped with
the minimal (= spatial) tensor norm ⊗min. Indeed, this follows from
the following elementary lemma which shows the relevance of nuclearity
when considering boundedness for û.

Lemma 1.1. A C∗-algebra A is nuclear if and only if for any ∗-
representation u : A → B(H) the homomorphism û defined by (1.1)
extends to a bounded map from A ⊗min [u(A)]′ into B(H).

Proof. Following standard terminology, we denote by ⊗max the
maximal tensor product of C∗-algebras. Assume that A is nuclear,
and let u : A → B(H) be a ∗-representation. Then B = [u(A)]′ is a
C∗-algebra and û extends to a ∗-representation from A ⊗max B into
B(H). However, A ⊗max B = A ⊗min B under our hypothesis, whence
‖û : A ⊗min B → B(H)‖ ≤ 1. Conversely, assume that û is bounded
for any ∗-representation u : A → B(H). By a direct sum argument,
we then obtain a constant C > 0 such that ‖û‖ ≤ C for any such u.
Now let B be any C∗-algebra, and let (ai)i ⊂ A and (bi)i ⊂ B be
two finite families. We give ourselves two commuting ∗-representations
u : A → B(H) and v : B → B(H). Then the v(bi)’s belong to [u(A)]′

and we have
∑

u(ai)v(bi) = û(
∑

ai ⊗ v(bi)). Consequently,∥∥∥∥ ∑
u(ai)v(bi)

∥∥∥∥ ≤ ‖û‖
∥∥∥∥ ∑

ai ⊗ v(bi)
∥∥∥∥

min

≤ C

∥∥∥∥∑
ai ⊗ bi

∥∥∥∥
min

.

Taking the supremum over all such pairs (u, v) yields ‖∑
ai⊗bi‖max ≤

C‖∑
ai ⊗ bi‖min. This shows that A ⊗min B = A ⊗max B for any B,

which means that A is nuclear.

Assume here that A is nuclear. Then it is not hard to deduce from
Paulsen’s theorem [14] and the Bunce-Christensen result quoted above
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that, for any bounded homomorphism u : A → B(H), the map û
extends to a completely bounded homomorphism on A ⊗min [u(A)]′

with ‖û‖cb ≤ ‖u‖4. We will show, see Theorem 4.1 below, that
we actually have the better estimate ‖û‖cb ≤ ‖u‖2. By Lemma 1.1
above, this strong degree 2 property characterizes nuclearity. That
result is optimal since, if α ≥ 0 and K > 0 are two numbers such
that ‖û‖cb ≤ K‖u‖α for any nuclear C∗-algebra A and any bounded
homomorphism u : A → B(H), then K ≥ 1 and α ≥ 2.

We will make extensive use of the theory of operator spaces (= closed
subspaces of B(H) equipped with matrix norms) and especially duality
and the Haagerup tensor product. We refer the reader to [1, 2, 7, 11,
16, 18] for the necessary background on operator spaces. We will use
the following standard notation and terminology. By ⊗min and ⊗h, we
will denote the minimal and the Haagerup tensor product, respectively.
Given two operator spaces X and Y , we denote by cb (X,Y ) the Banach
space of all completely bounded maps u : X → Y , equipped with
the completely bounded norm ‖u‖cb = supn≥1 ‖u ⊗ IMn

: Mn(X) →
Mn(Y )‖.

Let u : X → Y be any linear map. Then we say that u is a complete
isometry when u⊗IMn

is an isometry from Mn(X) into Mn(Y ) for any
integer n ≥ 1 and that u is completely contractive when ‖u‖cb ≤ 1.
The map u is said to be a metric surjection when ‖u‖ ≤ 1 and, for any
y ∈ Y with ‖y‖ < 1, there exists x ∈ X with ‖x‖ < 1 which satisfies
u(x) = y. Furthermore, we say that u is a complete metric surjection
if u ⊗ IMn

is a metric surjection for any n ≥ 1.

We recall that, given any Banach space E, there exists a greatest op-
erator space structure on E, called max(E) [1, 2]. This is characterized
by the following property. For any bounded linear map u : E → B(H),
then u is completely bounded on max(E) and

(1.2) ‖u : max(E) −→ B(H)‖cb = ‖u‖.

Theorem 1.2. Let A be a C∗-algebra. For any operator space X,
there is a unique completely contractive linear map

QX : max(A) ⊗h X ⊗h max(A) −→ A ⊗min X

satisfying QX(a ⊗ x ⊗ b) = ab ⊗ x for all x ∈ X and a, b ∈ A.
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Then QX is a complete metric surjection for all operator spaces X
if, and only if, A is nuclear.

This result will be proved in Section 3. Its proof will consist of a re-
duction to the finite dimensional case which will be settled in Section 2
below. In Section 4 the strong degree 2 property of nuclear C∗-algebras
will be deduced from Theorem 1.2. As a second application, see Corol-
lary 4.4, we will derive a precise factorization property for elements in
Mn(A), when A is a nuclear C∗-algebra, as suggested in [19, Remark
4.6].

2. The finite-dimensional case. Here we shall consider the case
when the C∗-algebra A is finite dimensional. In this situation the result
stated in Theorem 1.2 can be strengthened as follows.

Proposition 2.1. Let A be a finite-dimensional C∗-algebra, and let
X be any operator space. We denote by U the unitary group in A and
by dm the normalized Haar measure on U . We define a linear map

ϕ : A ⊗min X −→ max(A) ⊗h X ⊗h max(A)

by letting:

ϕ(a ⊗ x) =
∫
U

au ⊗ x ⊗ u∗ dm(u), a ∈ A, x ∈ X.

Then ϕ is a completely contractive map.

Proof. The finite dimensional C∗-algebra can be written, up to ∗-
isomorphism, as a direct sum A = ⊕N

k=1Mnk
of matrix spaces Mnk

.
For any 1 ≤ k ≤ N , we denote by (Ek

ij)1≤i,j≤nk
the canonical basis of

Mnk
. The coordinates of an element a ∈ A in the basis (Ek

ij)k,i,j will be
denoted by (ak

ij), that is, a =
∑

1≤k≤N

∑
1≤i,j≤nk

ak
ijE

k
ij . Concerning

the unitary group in A, we will need the following elementary fact, see,
e.g., [13, Section 27]:

(2.1)
∫
U

uk
iju

r
pq dm(u) =

1
nk

δk,rδi,pδj,q.
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Let H be a Hilbert space, and let σ1 : max(A) → B(H), σ : X → B(H)
and σ2 : max(A) → B(H) be three completely contractive maps. We
denote by

σ1 · σ · σ2 : max(A) ⊗h X ⊗h max(A) −→ B(H)

the completely contractive linear map defined by (σ1 ·σ ·σ2)(a⊗x⊗b) =
σ1(a)σ(x)σ2(b). We shall show that:

(2.2) (σ1 ·σ ·σ2)ϕ : A⊗minX −→ B(H) is completely contractive.

From this it is easy to derive the result. Indeed, it follows from the
Christensen-Sinclair factorization theorem [7] and its generalization
[16] that one can find σ1, σ, σ2 as above such that σ1 ·σ ·σ2 is a complete
isometry. In this situation ‖ϕ‖cb = ‖(σ1 · σ · σ2)ϕ‖cb, hence ‖ϕ‖cb ≤ 1.

For 1 ≤ k ≤ N and 1 ≤ i, j ≤ nk we define Sk
ij = σ1(Ek

ij) and
T k

ij = σ2(Ek
ij) in B(H). Given any a ∈ A and x ∈ X we have

((σ1 · σ · σ2)ϕ)(a ⊗ x) =
∫
U

σ1(au)σ(x)σ2(u∗) dm(u)

=
∫
U

( ∑
k,i,j

(au)k
ijS

k
ij

)
σ(x)

( ∑
r,p,q

(u∗)r
pqT

r
pq

)
dm(u)

=
∫
U

∑
k,i,l,j

∑
r,p,q

ak
iju

k
jlS

k
ilσ(x)ur

qpT
r
pq dm(u)

=
N∑

k=1

1
nk

∑
1≤i,l,j≤nk

ak
ijS

k
ilσ(x)T k

lj

by (2.1).

Let m ≥ 1 be an integer. In view of the completely isometric
identification Mm(A ⊗min X) = A ⊗min Mm(X), we will write a
generic element of Mm(A ⊗min X) as θ =

∑
1≤k≤N θk with, for each

k, θk =
∑

1≤i,j≤nk
Ek

ij ⊗ θk
ij , for some family (θk

ij)i,j in Mm(X). With
this notation it follows from the computation above that:

((σ1 · σ · σ2)ϕ ⊗ IMm
)(θ)

=
∑

k

1
nk

∑
i,l,j

(Sk
il ⊗ Ilm2

)[(σ ⊗ IMm
)(θk

ij)](T k
lj ⊗ Ilm2

).
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By a classical use of the Cauchy-Schwarz inequality we deduce

‖((σ1 · σ · σ2)ϕ ⊗ IMm
)(θ)‖ ≤

∥∥∥∥ ∑
k,i,l

Sk
il(S

k
il)

∗

nk

∥∥∥∥1/2

× sup
k

‖(σ ⊗ IMm
⊗ IMnk

)(θk)‖

×
∥∥∥∥ ∑

k,l,j

(T k
lj)∗T k

lj

nk

∥∥∥∥1/2

.

Since ‖θ‖ = supk ‖θk‖ and σ is completely contractive, we infer

(2.3) ‖(σ1 · σ · σ2)ϕ‖cb ≤
∥∥∥∥ ∑

k,i,l

Sk
il(S

k
il)

∗

nk

∥∥∥∥1/2∥∥∥∥ ∑
k,l,j

(T k
lj)∗T k

lj

nk

∥∥∥∥1/2

.

Now observe that, by (2.1),

∑
k,i,l

Sk
il(S

k
il)

∗

nk
=

∫
U

( ∑
k,i,l

Sk
ilu

k
il

)( ∑
k,i,l

Sk
ilu

k
il

)∗
dm(u)

=
∫
U

σ1(u)σ1(u)∗ dm(u).

Since ‖σ1‖ ≤ 1 we thus obtain ‖∑
k,i,l(S

k
il(S

k
il)

∗/nk)‖ ≤ 1. Similarly it
follows from the fact that σ2 is a contraction that ‖∑

k,l,j((T k
lj)∗T k

lj/nk)‖
≤ 1. Hence the desired property (2.2) follows from the inequality (2.3).
This completes the proof.

3. Proof of Theorem 1.2. In this section we give ourselves a C∗-
algebra A and an operator space X. We first define QX : A⊗X ⊗A →
A⊗X on the algebraic tensor product by letting QX(a⊗x⊗b) = ab⊗x
for any x ∈ X and a, b ∈ A. Let H be a Hilbert space that X ⊂ B(H)
completely isometrically, and let C = A ⊗min B(H). We denote by
p : C ⊗C → C the multiplication mapping on the C∗-algebra C. Then
p extends to a completely contractive map from C ⊗h C into C. Since
the Haagerup tensor norm dominates the minimal one, we obtain, using
the associativity of ⊗h, that

‖p : A ⊗h B(H) ⊗h A ⊗h B(H) −→ A ⊗min B(H)‖cb ≤ 1.
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Now let J : A⊗hB(H)⊗hA → A⊗hB(H)⊗hA⊗hB(H) be the complete
isometry defined by letting J(z) = z⊗ IH for any z ∈ A⊗h B(H)⊗h A.
We obtain from above that ‖pJ‖cb ≤ 1. Moreover, the restriction of pJ
to the algebraic tensor product A ⊗ X ⊗ A coincides with QX . Since
A ⊗min X ⊂ A ⊗min B(H) completely isometrically, we deduce that
QX extends to a completely contractive map from A ⊗h X ⊗h A into
A ⊗min X. A fortiori, QX extends to a completely contractive map
from max(A) ⊗h X ⊗h max(A) into A ⊗min X.

The “only if” part of Theorem 1.2 follows from Pisier’s work in [18,
Section 6.3] on the so-called delta norm. However, for the sake of
completeness, we provide a simple direct proof in Remark 4.3 below.

We now assume that A is nuclear and shall prove that QX is a
complete metric surjection. First note that it suffices to show that
QX is a metric surjection. Indeed, let us assume that this, a priori,
weaker result holds for all operator spaces. Then we obtain that, for
any n ≥ 1, QMn(X) is a metric surjection. Moreover, the identity map
from max(A)⊗hMn(X)⊗hmax(A) onto Mn(max(A)⊗hX⊗hmax(A)) is
a contraction. Since the identification A⊗min Mn(X) = Mn(A⊗min X)
is isometric, we deduce that

QX ⊗ IMn
: Mn(max(A) ⊗h X ⊗h max(A)) −→ Mn(A ⊗min X)

is a metric surjection. This yields the full result.

By definition, the algebraic tensor product A⊗X is dense in A⊗minX,
hence in the proof to come we may and do assume that X is finite
dimensional. Applying [5, Proposition 5], we can also assume that A
is separable.

To show that QX is a metric surjection we shall prove the equivalent
property that the biadjoint map Q∗∗

X is a metric surjection. We then
introduce the von Neumann algebra M = A∗∗. Note that, since A is
nuclear, it is locally reflexive, hence we have, see [9],

(A ⊗min X)∗∗ = M ⊗min X

isometrically. To go further, we need some information on the bidual of
a Haagerup tensor product. We shall here consider triples of operator
spaces although the results we present hold true as well for the tensor
product of an arbitrary number of operator spaces. Thus we let
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V1, V2, V3 be three operator spaces. Our aim is to describe a natural
embedding of V ∗∗

1 ⊗hV ∗∗
2 ⊗hV ∗∗

3 into the bidual of V1⊗hV2⊗h V3. This
description goes back to [12] where this bidual is identified with the
so-called normal Haagerup tensor product of the spaces V ∗∗

i , i = 1, 2, 3.

We denote by (V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 )∗σ the set of all elements in

(V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 )∗ for which the associated trilinear form on

V ∗∗
1 × V ∗∗

2 × V ∗∗
3 is separately w∗-continuous. Given any F in the

space (V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 )∗σ, we let F̃ ∈ (V1 ⊗h V2 ⊗h V3)∗ be the

restriction of F to V1 ⊗h V2 ⊗h V3. By definition, F �→ F̃ is completely
contractive. We claim that actually the map F �→ F̃ is a surjective
complete isometry, i.e.,

(3.1) (V1 ⊗h V2 ⊗h V3)∗ = (V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 )∗σ.

To check this, we let G ∈ Mn((V1 ⊗h V2 ⊗h V3)∗) = cb (V1 ⊗h V2 ⊗h

V3,Mn) with ‖G‖ ≤ 1. By the factorization theorem for multilinear
completely bounded maps [7, 16], there exist a Hilbert space H as well
as three completely contractive maps

σ1 : V1 −→ B(H, ln2 ), σ2 : V2 −→ B(H), σ3 : V3 −→ B(ln2 , H)

such that G = σ1 ·σ2 ·σ3, that is, G(x1⊗x2⊗x3) = σ1(x1)σ2(x2)σ3(x3)
for any xi ∈ Vi, i = 1, 2, 3. Let σ̂2 : V ∗∗

2 → B(H) be defined
by σ̂2 = J∗σ∗∗

2 , where J is the canonical embedding of B(H)∗ into
B(H)∗. Similarly, we set σ̂1 = σ∗∗

1 , σ̂3 = σ∗∗
3 . We can now define

F ∈ (V ∗∗
1 ⊗hV ∗∗

2 ⊗hV ∗∗
3 )∗ by letting F = σ̂1·σ̂2·σ̂3. For any i ∈ {1, 2, 3},

‖σ̂i‖cb = ‖σi‖cb ≤ 1, hence ‖F‖ ≤ 1. It is clear that F is separately
w∗-continuous and that F̃ = G. This shows that F �→ F̃ is a complete
metric surjection. Since F �→ F̃ is obviously one-to-one, we finally
obtain the surjective complete isometry (3.1).

Now let T be in V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 . We may define θ(T ) ∈

(V1 ⊗h V2 ⊗h V3)∗∗ as follows. For any F ∈ (V ∗∗
1 ⊗h V ∗∗

2 ⊗h V ∗∗
3 )∗σ,

we let F̃ ∈ (V1 ⊗h V2 ⊗h V3)∗ be given by (3.1) and we set

(3.2) 〈θ(T ), F̃ 〉 = 〈F, T 〉.

By construction, the linear map θ is a complete contraction. (It is easy
to check that it is actually a complete isometry, see [12].)
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We shall now use the construction above with

V1 = max(A), V2 = X, V3 = max(A).

Since max(M) = max(A)∗∗ completely isometrically, see [1], the for-
mula (3.2) defines a completely contractive map

θ : max(M) ⊗h X ⊗h max(M) −→ (max(A) ⊗h X ⊗h max(A))∗∗.

Let πX : max(M) ⊗h X ⊗h max(M) → M ⊗min X be the completely
contractive extension of the tensor product of the multiplication map
on M with the identity map on X. Then the following key relation
holds:

(3.3) Q∗∗
X θ = πX .

Indeed, take f ∈ M∗ = A∗ and ξ ∈ X∗, and let F = π∗
X(f ⊗ ξ). Then

we have

F (m1 ⊗ x ⊗ m2) = ξ(x)f(m1m2), x ∈ X; m1,m2 ∈ M.

Hence we see that F is separately w∗-continuous and that its restriction
F̃ belonging to (max(A)⊗h X⊗h max(A))∗ is given by F̃ = Q∗

X(f ⊗ξ).
Therefore, for any x ∈ X and any m1,m2 ∈ M , we have

〈Q∗∗
X θ(m1 ⊗ x ⊗ m2), f ⊗ ξ〉 = 〈θ(m1 ⊗ x ⊗ m2), F̃ 〉

= 〈F,m1 ⊗ x ⊗ m2〉 by (3.2)
= 〈πX(m1 ⊗ x ⊗ m2), f ⊗ ξ〉,

whence (3.3).

Since A is nuclear, the von Neumann algebra M is injective [10,
Theorem 6.4]. Furthermore, M is countably generated because we
assumed A separable. Consequently, M can be written as a direct
sum of injective von Neumann algebras with separable predual, see [4,
Section 3]. It therefore follows from Connes’s theorem [8] that M is
hyperfinite. Namely, there exists an upward directed net (Nλ)λ of finite
dimensional C∗-subalgebras of M such that

M =
⋃
λ

Nλ

w∗

, w∗ = σ(M,M∗).
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In fact, a more precise approximation property expressed by Lemma 3.1
below turns out to be true. Note that, in the next statement, X is finite
dimensional, hence the σ(M,M∗)-topology on M ⊗min X simply means
the (finite) product topology induced by the σ(M,M∗)-topology of M .

Lemma 3.1. The union over λ of the closed unit balls of the spaces
Nλ ⊗min X is σ(M,M∗)-dense in the closed unit ball of M ⊗min X.

Proof. In this proof we denote by (Z)1 the closed unit ball of any
Banach space Z. We let C be the norm closure of the union of the
C∗-algebras Nλ. Then it clearly suffices to show that (C ⊗min X)1
is σ(M,M∗)-dense in (M ⊗min X)1. We regard C as a subspace of
its bidual C∗∗, in the canonical way, and we let j : C → M be the
inclusion map. By the universal property of C∗∗, there exists a normal
∗-representation π : C∗∗ → M such that j = π/C . Since the kernel
of π is a direct summand of C∗∗, we find a completely isometric map
Γ : M → C∗∗ such that πΓ = IM .

Let z be in (M ⊗min X)1. Then y = (Γ ⊗ IX)(z) belongs to
(C∗∗ ⊗min X)1. By construction, C is a nuclear, hence locally reflexive
C∗-algebra [9]. Therefore, (C⊗minX)1 is σ(C∗∗, C∗)-dense in (C∗∗⊗min

X)1. Hence we can find a net (yα)α in (C ⊗min X)1 such that
yα → y in the σ(C∗∗, C∗)-topology. Since π is normal we deduce that
(π⊗ IX)(yα) → (π⊗ IX)(y) in the σ(M,M∗)-topology. We thus finally
obtain that (j ⊗ IX)(yα) → z in the σ(M,M∗)-topology, whence the
result.

We can now finish the proof of Theorem 1.2, “if part.” We wish to
show that Q∗∗

X is a metric surjection. Let λ be given, and let z be in
Nλ ⊗min X with ‖z‖ < 1. Since the embedding

max(Nλ) ⊗h X ⊗h max(Nλ) −→ max(M) ⊗h X ⊗h max(M)

is completely contractive, it readily follows from Proposition 2.1 that
we can find z′ in max(M) ⊗h X ⊗h max(M) such that ‖z′‖ < 1 and
πX(z′) = z. Then z′′ = θ(z′) satisfies ‖z′′‖ < 1 and Q∗∗

X (z′′) = z by
(3.3). The metric surjection property of Q∗∗

X now simply follows from
Lemma 3.1 above.
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4. Applications. In this last section we shall give two applications
of Theorem 1.2 to nuclear C∗-algebras. First we establish the strong
degree 2 property announced in Section 1 and deduce a joint similarity
property for commuting homomorphisms on nuclear C∗-algebras.

Theorem 4.1. Let A be a nuclear C∗-algebra, let H be a Hilbert
space, and let u : A → B(H) be a bounded homomorphism. Let
û : A ⊗min [u(A)]′ → B(H) be the homomorphism defined by (1.1).

(i) Then û is completely bounded and ‖u‖cb ≤ ‖û‖cb ≤ ‖u‖2.

(ii) There exists an isomorphism S ∈ B(H) such that ‖S‖ ‖S−1‖ ≤
‖u‖2 and the homomorphism w �→ S−1û(w)S is completely contractive
on A ⊗min [u(A)]′.

Proof. The assertion (ii) follows from (i) by Paulsen’s theorem [14]
so we only have to prove (i). Obviously, ‖u‖cb ≤ ‖û‖cb, hence we only
need to establish the inequality ‖û‖cb ≤ ‖u‖2. For this purpose we
apply Theorem 1.2 with the operator space X = [u(A)]′. We let ε > 0
and n ≥ 1 and we give ourselves τ ∈ Mn(max(A) ⊗h X ⊗h max(A)).
By the definition of the Haagerup tensor norm, we may write

τ =
∑

1≤i,j≤n
1≤k,l≤m

aik ⊗ xkl ⊗ blj ⊗ Eij

with m ≥ 1, aik, blj ∈ A, xkl ∈ X and

(4.1) ‖[aik]‖Mn,m(max(A))‖[xkl]‖Mm(X)‖[blj ]‖Mm,n(max(A)) ≤ ‖τ‖ + ε.

Then we have

(ûQX ⊗ IMn
)(τ ) = (û ⊗ IMn

)
( ∑

i,j,k,l

aikblj ⊗ xkl ⊗ Eij

)

=
∑

i,j,k,l

u(aikblj)xkl ⊗ Eij .

Since u is a homomorphism and the xkl’s commute with [u(A)], we
deduce

(ûQX ⊗ IMn
)(τ ) =

∑
i,j,k,l

u(aik)xklu(blj) ⊗ Eij .
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Consequently,

‖(ûQX ⊗ IMn
)(τ )‖ ≤ ‖[u(aik)]‖Mn,m(B(H))

× ‖[xkl]‖Mm(X)‖[u(blj)]‖Mm,n(B(H))

≤ ‖u‖2(‖τ‖ + ε)

by (4.1) and (1.2). This shows that ‖ûQX‖cb ≤ ‖u‖2, whence the result
by Theorem 1.2.

Corollary 4.2. Let A1, . . . , AN be nuclear C∗-algebras, let H be a
Hilbert space and, for any 1 ≤ j ≤ N , let uj : Aj → B(H) be a bounded
homomorphism. Assume that the ranges of the uj’s commute.

(i) Let u : A1 ⊗ · · · ⊗ AN → B(H) be the homomorphism defined by

u(a1 ⊗ · · · ⊗ aN ) = u1(a1) · · ·uN (aN ), aj ∈ Aj .

Then u extends to a completely bounded homomorphism from A1 ⊗min

· · · ⊗min AN into B(H) with ‖u‖cb ≤ ‖u1‖2 · · · ‖uN‖2.

(ii) There exists an isomorphism S ∈ B(H) such that ‖S‖ ‖S−1‖ ≤
‖u1‖2 · · · ‖uN‖2 and, for any 1 ≤ j ≤ N , the homomorphism a �→
S−1uj(a)S is completely contractive on Aj.

Proof. Once more (ii) follows from (i) by [14]. To prove (i), we
assume for simplicity that N = 2, the reader will easily check that the
general case follows by induction. By assumption u2(A2) ⊂ [u1(A1)]′

hence we may write
u = û1 ◦ (IA1 ⊗ u2).

Since ‖IA1 ⊗u2 : A1 ⊗min A2 → A1 ⊗min [u1(A1)]′‖ ≤ ‖u2‖cb we obtain
‖u‖cb ≤ ‖û1‖cb‖u2‖cb, whence the result by Theorem 4.1.

Remark 4.3. At this point it is easy to give a direct proof of the “only
if” part of Theorem 1.2. Indeed, let A be a C∗-algebra and assume that
the map QX defined in Theorem 1.2 is a complete metric surjection for
all operator spaces X. Then it follows from the proof of Theorem 4.1
that û is bounded on A ⊗min [u(A)]′ for any bounded homomorphism
u. It therefore follows from Lemma 1.1 that A is nuclear.
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We now come to our second application of Theorem 1.2, which is
a factorization result for A-valued matrices, when A is a nuclear C∗-
algebra. This result had been established by Pisier [19, Remark 4.6]
in the case when A is the space of compact operators on Hilbert space
and left open in the general case.

Corollary 4.4. Let A be a nuclear C∗-algebra. For any n ≥ 1 and
any a ∈ Mn(A) with ‖a‖ < 1 there exist, for some integer N ≥ 1,
three scalar valued matrices α0 ∈ Mn,N , α1 ∈ MN , α2 ∈ MN,n and two
A-valued diagonal matrices D1, D2 ∈ MN (A) such that

a = α0D1α1D2α2,

‖α0‖ ‖D1‖ ‖α1‖ ‖D2‖ ‖α2‖ < 1.

Proof. Applying Theorem 1.2 with X = C, we obtain that the
multiplication mapping on A induces a complete metric surjection from
max(A) ⊗h max(A) onto A. The result therefore follows from the
implication (v) ⇒ (vi) of [19, Theorem 4.2] and its proof.
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