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DUALITY OF THE BERGMAN SPACES ON
SOME WEAKLY PSEUDOCONVEX DOMAINS

KEVIN BURKE

1. Introduction and statement of results. Let D be a smoothly
bounded pseudoconvex domain of finite type in C2, i.e., every one-
dimensional complex submanifold of C2 which is tangent to the bound-
ary bD has finite order of contact with bD. There are many equivalent
formulations of finite type. For a more complete description the reader
is referred to the survey article by D’Angelo [6] and the references
therein.

For 1 ≤ p < ∞ and dV Lebesgue measure we consider the closed
subspace OLp(D) of Lp(D, dV ) consisting of holomorphic functions.
These spaces are commonly referred to as the Bergman spaces. OLp(D)
is a Banach space with norm ‖f‖p

p =
∫

D
|f(z)|p dV (z). As usual, if X is

a Banach space, we denote its dual by X∗. X∗ is also a Banach space
with norm ‖ · ‖∗. In this paper we prove the following

Theorem A. For 1 < p < ∞, the dual of OLp(D) can be identified
with OLq(D) where (1/p) + (1/q) = 1. More precisely,

(1) If g ∈ OLq(D), then g induces a bounded linear functional on
OLp(D) via the integral pairing

(1.1) Φ(f) =
∫

D

f(z)g(z) dV (z), f ∈ OLp(D).

(2) If Φ ∈ OLp(D)∗, then there is a g ∈ OLq(D) such that Φ is of
the form (1.1). Moreover, the norms ‖g‖p and ‖Φ‖∗ are equivalent.

Fix a defining function r(z) for D. We denote by ∇r the complex
normal derivative ∇r =

∑2
j=1(∂r/∂z̄j)(∂/∂zj). The Bloch space

B(D) is the set of functions holomorphic on D satisfying ‖f‖B =
sup{|r(z)∇rf(z)| : z ∈ D} < ∞. We also prove the following
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Theorem B. The dual of OL1(D) can be identified with B(D) in the
following way:

(1) If b ∈ B(D), then b induces a bounded linear functional on
OL1(D) via the integral pairing

(1.2) Φ(f) =
∫

D

f(z)b(z) dV (z), f ∈ OL1(D) ∩OL2(D)

and OL2(D) is dense in OL1(D).

(2) Every bounded linear functional Φ ∈ OL1(D)∗ is induced by a
function b ∈ B(D) via the integral pairing (1.2). Moreover, the norms
‖b‖B and ‖Φ‖∗ are equivalent.

Theorem B is known to be true for other domains in Cn. For strictly
pseudoconvex domains in Cn, Theorem B was proven by Ligocka [10],
Coupet [5] and by Krantz and Ma [9]. For convex domains of finite
type, Theorem B was proven by Krantz and Li [8]. The methods of [9]
and [8] are different than those contained in [10], [5] or this paper. For
bounded symmetric domains in Cn, Zhu [19] has shown that the dual
of OL1(D) can be identified with a space of bounded Hankel operators
and that this space is strictly larger than the space of Bloch functions
except in the case where D is biholomorphically equivalent to the open
unit ball. For proofs of Theorems A and B in the case of the open unit
disk and references to results in higher dimensions, we refer the reader
to [20].

This paper is organized as follows. In Section 2 we summarize
some known information concerning domains of finite type in C2,
prove some boundedness properties of the Bergman projection and
prove Theorem A. In Section 3 we prove Theorem B as well as give
a characterization of Bloch functions in terms of higher derivatives.

2. Domains of finite type and the Bergman projection.
We shall need the following information concerning the geometry of
domains of finite type, due to Catlin [3]. Let z0 be a point in bD.
After renumbering, we may assume that (∂r/∂z2)(z) 
= 0 for all z in a
neighborhood U of z0.

Theorem 1. For each z′ = (z′1, z
′
2) ∈ U there exist numbers dk(z′),
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k = 0, 1, 2, . . . ,m, depending smoothly upon z′ such that d0(z′) 
= 0 and
such that in the new coordinates (ζ1, ζ2) defined by

(z1, z2) = Φ′(ζ) = (Φ′
1(ζ),Φ′

2(ζ))

where Φ′
1(ζ) = z′1 + ζ1 and Φ′

2(ζ) = z′2 + d0(z′)ζ2 +
∑m

k=1 dk(z′)ζk
1 , the

function ρ(ζ) = r ◦ Φ′(ζ) satisfies

(2.1) ρ(ζ) = r(z′) + Re ζ2 +
∑

j+k≤m
j,k>0

ajk(z′)ζj
1 ζ̄

k
1 + O(|ζ1|m+1 + |ζ2||ζ|).

Moreover, if Φ(ζ) = (z′1 + ζ1, z
′
2 + e0ζ2 +

∑m
k=1 ekζ

k
1 ) has the property

that r ◦ Φ can be written expressed in the form (2.1) (with possibly
different numbers ajk(z′)), then Φ = Φ′.

We now define, for l = 2, 3, . . . ,m, functions Al(z′) by Al(z′) =
max{|ajk(z′)| : j + k = l}. If the type of z0 equals m, then it follows
from results in [1] that Am(z0) 
= 0.

Since OL2(D) is a closed subspace of the Hilbert space L2(D) there
is an orthogonal projection P : L2(D) → OL2(D). P is called the
Bergman projection and is given by integration against the Bergman
kernel KD(z, w), i.e.,

Pf(z) =
∫

D

f(w)KD(z, w) dV (w), f ∈ L2(D).

Regularity of the Bergman projection is an important ingredient in the
study of boundary behavior of biholomorphic maps. We recall that
D satisfies Condition R if for every φ ∈ C∞(D) we also have Pφ ∈
C∞(D). The fact that domains of finite type in C2 satisfy Condition R
is a consequence of the subellipticity of the ∂̄-Neumann problem in C2.
It is a well-known result of Kerzman [7] that if D satisfies Condition R
then for each fixed z ∈ D one has KD(z, w) ∈ C∞(D). We will need
the following theorem, due to McNeal [11], concerning the behavior of
the Bergman kernel for domains of finite type in C2. Similar results
have been obtained by Nagel, Rosay, Stein and Wainger [14]. In [13]
McNeal and Stein extended these results to convex domains of finite
type in Cn. We use the notation A � B if there is a constant c,
independent of A and B, such that A ≤ cB.
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Theorem 2. Let z0 be a point of finite type m in the boundary of a
smooth bounded pseudoconvex domain Ω in C2. For z1, z2 ∈ Ω near z0,
set ζi = Φ(zi), Ω̃ = Φ(Ω) and z′ = π(z1) where π is the projection onto
bΩ. Then there is a neighborhood U of z0 such that for all two-indices
α, β and z1, z2 ∈ U ,

|Dα
ζ1
Dβ

ζ2
KΩ̃(ζ1, ζ2)|

�
m∑

l=2

Al(z′)C1

[|r(ζ1)| + |r(ζ2)| + |ζ1
2 − ζ2

2 | +
∑m

k=2Ak(z′)|ζ1
1 − ζ2

1 |k]C2

where C1 = ((2 + α1 + β1)/l), C2 = 2 + α2 + β2 + ((2 + α1 + β1)/l),
(ζ1, ζ2) are the coordinates defined by Φ and r is a defining function for
Ω.

We are now in a position to prove the following. Let ∇j
r denote the

derivative ∇r ◦ ∇r ◦ · · · ◦ ∇r (j times).

Lemma 3. Let D ⊂ C2 be a smoothly bounded pseudoconvex domain
of finite type. Then

(1)
∫

D
|KD(z, w)||r(w)|−ε dV (w) � |r(z)|−ε, 0 < ε < 1

(2)
∫

D
|∇j

rKD(z, w)| dV (w) � |r(z)|−j , j = 1, 2, . . . .

We will prove the estimate (2). The proof of (1) is similar. Since bD is
compact, we may choose points p1, p2, . . . , pN ∈ bD and neighborhoods
Uk of pk, 1 ≤ k ≤ N , such that bD ⊂⊂ ∪N

k=1Uk and such that Theorems
1 and 2 hold on each Uk. It follows by standard arguments that we
need only show that∫

D∩Uk

|∇j
rKD(z, w)| dV (w) � |r(z)|−j

for z ∈ Uk. For ease of notation, we now drop the subscript. To prove
the estimate, assume that p is of type m, Φp is the biholomorphism from
Theorem 1 and Ω = Φp(D). If ζ1 = Φp(z) and ζ2 = Φp(w), then near
0 ∈ bΩ the complex normal derivative is (∂/∂ζ2). Since the Jacobian of
Φp is bounded from above and below on U , the transformation formula
for the Bergman kernel tells us we need only estimate∫

Ω∩W

∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2)
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for ζ1 ∈W , where W = Φp(U). By Theorem 2 we have∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣

�
m∑

l=2

Al(z′)2/l

[|ρ(ζ1)| + |ρ(ζ2)| + |ζ1
2 − ζ2

2 | +
∑m

k=1Ak(z1)|ζ1
1−ζ2

1 |k]2+j+(2/l)
.

We now introduce the following coordinate system from [16].

Lemma 4. There is a neighborhood W of 0 ∈ bΩ such that for ζ1 ∈
W there are real coordinates tζ1(ζ2) = (t1(ζ2), t2(ζ2), t3(ζ2), t4(ζ2))
such that

(i) t1(ζ2) = ρ(ζ2), t2(ζ2) = Im (ζ1
2−ζ2

2 ) and t3(ζ2)+it4(ζ2) = ζ1
1−ζ2

1

(ii) M−1 ≤ |JRt(ζ2)| ≤ M for some positive constantM (JR denotes
the real Jacobian).

(iii) |tj(ζ2)| < 1 for j = 1, 2, 3, 4.

Proof. The lemma will follow from the implicit function theorem once
we prove that dζ2ρ ∧ dζ2Im (ζ1

2 − ζ2
2 ) 
= 0 at 0. From equation (2.1),

dζ2ρ(ζ2) = dζ2(Re ζ2
2 +

∑
ajk(ζ2

1 )j(ζ̄2
1 )k + O(|ζ1|m+1 + |ζ2||ζ|).

Thus dζ2ρ ∧ dζ2Im (ζ1
2 − ζ2

2 ) = −dζ2Re ζ2
2 ∧ dζ2Im ζ2

2 
= 0 at 0.

We introduce this special coordinate system (we may, at this point,
have to shrink the original neighborhood U) and obtain∫

Ω∩W

∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2)

�
m∑

l=2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

Al(z′)2/l dt1 dt2 dt3 dt4
[|ρ(ζ1)| + t1 + t2 + Al(z′)|t3 + it4|l]−2+j+(2/l)

.

Integrating in t1 and then in t2 yields∫
Ω∩W

∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2)

�
m∑

l=2

∫ 1

0

∫ 1

0

Al(z′)2/l dt3 dt4
[|ρ(ζ1)| + Al(z′)|t3 + it4|l]j+2/l

.
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We now introduce polar coordinates t3 + it4 = xeiθ, and hence

∫
Ω∩W

∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2)

�
m∑

l=2

∫ 2π

0

∫ 1

0

Al(z′)2/lx dx dθ

[|ρ(ζ1)| + Al(z′)xl]j+(2/l)
.

Integrate in θ and make the change of variables x = |ρ(ζ1)|1/ly so that

∫
Ω∩W

∣∣∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2)

�
m∑

l=2

1
|ρ(ζ1)|j

∫ ∞

0

Al(z′)2/ly dy

[1 + Al(z′)yl]j+(2/l)
.

Finally, we make the change of variables u = Al(z′)(1/l)y and so

∫
Ω∩W

∣∣ ∂j

(∂ζ1
2 )j

KΩ(ζ1, ζ2)
∣∣∣∣ dV (ζ2) � 1

|ρ(ζ1)|j
m∑

l=2

∫ ∞

0

u du

[1 + ul]j+(2/l)
.

Each of the integrals in the sum is clearly convergent and so the lemma
is proven.

The estimate (1) was obtained, for strictly pseudoconvex domains in
Cn, by Phong and Stein [15]. In exactly the same way as in [15] we
obtain

Corollary 5. Let D ⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. Then the Bergman projection is bounded on
Lp(D) for 1 < p < ∞, i.e.,

‖Pφ‖p ≤ Cp‖φ‖p, φ ∈ Lp(D) ∩ L2(D).

For classes of domains of finite type in Cn, Corollary 5 was proven
by McNeal [12]. In Section 3 we will see that P is not bounded on
L1(D) nor on L∞(D). The estimate (1) also has another important
application. If (·, ·)D denotes the standard inner product on L2(D)
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then, since P is a bounded, self-adjoint operator, we have (Pf, g)D =
(f, Pg)D for all f, g ∈ L2(D). The proof that ‖Pf‖p ≤ Cp‖f‖p and
Hölder’s inequality actually show∫

D

{ ∫
D

|f(w)||KD(z, w)| dV (w)
}
|g(z)| dV (z) ≤ Cp‖f‖p‖g‖q

for f ∈ Lp(D) ∩ L2(D). The Fubini-Tonelli theorem allows us to
interchange the order of integration and conclude that (Pf, g)D =
(f, Pg)D for all f ∈ Lp(D) ∩ L2(D), g ∈ Lq(D). Since Lp(D) ∩ L2(D)
is dense in Lp(D), we conclude that (Pf, g)D = (f, Pg)D for all
f ∈ Lp(D), g ∈ Lq(D).

We may now proceed with the proof of Theorem A. It is clear, by
using Hölder’s inequality, that every g ∈ OLq(D) induces a bounded
linear functional on OLp(D) via (1.1). To prove that every bounded
linear functional is of this form, we consider first the case where
2 ≤ p < ∞. If Φ ∈ OLp(D)∗, then by the Hahn-Banach theorem there
is a Φ̂ ∈ Lp(D)∗ with ‖Φ‖∗ = ‖Φ̂‖∗ and Φ = Φ̂ on OLp(D). By the
Riesz representation theorem there is a φ ∈ Lq(D) with Φ̂(f) = (f, φ)D

and ‖φ‖q = ‖Φ̂‖∗. Since D is bounded, Lp(D) ⊂ L2(D) so that Pf = f
for f ∈ OLp(D). Thus, we have

Φ(f) = Φ(Pf) = Φ̂(Pf) = (Pf, φ)D = (f, Pφ)D.

By Corollary 5, g = Pφ ∈ OLq(D) and so Φ is of the form (1.1). To
prove the case where 1 < p < 2 we use the fact that a subspace of a
reflexive Banach space is reflexive, so that

OLp(D)∗ = (OLq(D)∗)∗ = OLq(D).

Corollary 6. Let D ⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. If 1 < p < 2 and p < r < q, then OLr(D) is
dense in OLp(D).

Proof. By the Hahn-Banach theorem it suffices to show that if
Φ ∈ OLp(D)∗ and Φ = 0 on OLr(D) then Φ ≡ 0. Suppose that
such a Φ exists. Then there is a g ∈ OLq(D) with Φ(f) = (f, g)D.
Since OLq(D) ⊂ OLr(D) we have g ∈ OLr(D) so that

0 = Φ(g) = (g, g)D =
∫

D

|g(z)|2 dV (z).
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Hence g ≡ 0 and so Φ ≡ 0.

Corollary 7. Let D ⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. If f ∈ OLp(D), 1 < p < ∞, then

f(z) = Pf(z) =
∫

D

f(w)KD(z, w) dV (w).

Proof. Since D is bounded, OLp(D) ⊂ OL2(D) for 2 ≤ p < ∞ so
the result is clearly true in this case. We consider the case 1 < p < 2.
If f ∈ OLp(D) and ε > 0 there is an h ∈ OL2(D) with ‖f − h‖p < ε.
Since Ph = h, we have∣∣∣∣f(z) −

∫
D

f(w)KD(z, w) dV (w)
∣∣∣∣

≤ |f(z) − h(z)| +
∣∣∣∣Ph(z) −

∫
D

f(w)KD(z, w) dV (w)
∣∣∣∣.

By the Cauchy estimates there is a constant Cz such that |f(z) −
h(z)| ≤ Cz‖f − h‖p. It is a well-known result of Kerzman [7] that
for each z ∈ D the function kz(w) := KD(z, w) satisfies kz(w) =
Pψz(w) where ψz ∈ C∞

0 (D). By Corollary 5, kz(w) ∈ Lq(D), in
fact, since D satisfies Condition R, kz(w) ∈ C∞(D), so by Hölder’s
inequality |Ph(z) − ∫

D
f(w)KD(z, w) dV (w) ≤ ‖h − f‖p‖kz‖q. Thus

|f(z) − ∫
D
f(w)KD(z, w) dV (w)| � ε and, since ε is arbitrary, we are

done.

An alternate way to prove density results is to use classical approx-
imation techniques due to Kerzman and Lieb. In order to use these
results we need Lp estimates for ∂̄. Our purposes require the following
theorem due to Bonami and Sibony [2].

Theorem 8. Let D ⊂⊂ C2 be a smooth, bounded pseudoconvex
domain of finite type. If f is a ∂̄-closed (0, 1) form with coefficients in
L1(D), then there is a u ∈ L1(D) that satisfies ∂̄u = f .

This result replaces an earlier (unpublished) result of Stein. Combin-
ing this result with the classical approximation techniques mentioned
above leads to
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Theorem 9. Let D ⊂⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. Then A∞(D) = C∞(D) ∩ O(D) is dense in
OL1(D).

We conclude this section by observing that Corollary 7 tells us that
integration against the Bergman kernel defines a bounded projection
from Lp(D) to OLp(D) for 1 < p < ∞. We recall that a closed subspace
M of a Banach space X is complemented in X if there is a closed
subspace N of X with X = M + N and M ∩ N = ∅. By taking
X = Lp(D), M = OLp(D) and N = kerP , we obtain

Theorem 10. Let D ⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. Then for 1 < p < ∞, OLp(D) is complemented
in Lp(D).

3. The Bloch space. We denote by B(D) the space of all Bloch
functions on D, those functions holomorphic on D that satisfy ‖f‖B =
sup{|∇rf(z)r(z)| : z ∈ D} < ∞ where ∇r =

∑2
j=1(∂r/∂z̄j)(∂/∂zj)

is the complex normal derivative. Bloch functions in several complex
variables have been studied in [17, 18, 9, 5, 19]. In some of these
papers Bloch functions have been defined in terms of the Bergman
and Kobayashi metrics rather than the Euclidean distance (recall that
for z close to the boundary of D, |r(z)| ∼ dist (z, bD)). In the case
of smoothly bounded strictly pseudoconvex domains and domains of
finite type in C2 these definitions are equivalent. The reader can easily
check that the above definition agrees with the classical definition for
Bloch functions on the open unit disk.

The main result of this section is Theorem B. In order to prove it we
need only verify the two conditions of the following theorem from [5].

Theorem 11. If D ⊂⊂ Cn has smooth boundary, then OL1(D)∗ =
B(D) if and only if the following two conditions are satisfied.

(1) OL2(D) is dense in OL1(D).

(2) PL∞(D) = {f = Pφ : φ ∈ L∞(D)} ⊆ B(D).

The proof of Theorem B follows directly from Theorem 11 by observ-
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ing that A∞(D) ⊆ OL2(D) so by Theorem 9 condition (1) is satisfied.
Condition (2) is satisfied by Lemma 3 (with j = 1) since if φ ∈ L∞(D),

|∇rPφ(z)| ≤
∫

D

|φ(w)||∇rK(z, w)| dV (w) � ‖φ‖∞|r(z)|−1.

Thus Pφ ∈ B(D) and ‖Pφ‖B � ‖φ‖∞.

We now give an equivalent formulation of the Bloch space. For
a ∈ D and r > 0 we let B(a, r) denote the Euclidean ball centered
at a with radius r and let |B(a, r)| denote the volume of B(a, r). For
B = B(a, r) we define fB by fB = |B|−1

∫
B
f(w) dV (w). We say that

f is of bounded mean oscillation (BMO) if

‖f‖BMO = sup
{

1
|B(a, r)|

∫
B(a,r)

|f − fB(a,r)| dV :

a ∈ D,B(a, r) ⊂⊂ D

}
< ∞.

The space of holomorphic functions of bounded mean oscillation is
denoted BMOA. In [4] it is shown that if D ⊂⊂ Cn has smooth
boundary then BMOA(D) = B(D). Combining this result with
Theorem B yields

Theorem 12. Let D ⊂⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. Then OL1(D)∗ = BMOA(D).

In the same way that we obtained Corollary 7 we obtain

Corollary 13. Let D ⊂⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. If f ∈ OL1(D), then

f(z) =
∫

D

f(w)K(z, w) dV (w).

It is important to observe that even though the Bergman kernel
reproduces holomorphic L1 functions, integration against the kernel
does not yield a bounded projection from L1(D) to OL1(D). To see
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this, assume, in order to reach a contradiction, that there is a constant
C > 0 such that ‖Pf‖1 ≤ C‖f‖1 for all f ∈ L2(D), which is dense
in L1(D). If h ∈ L∞(D), then the linear functional defined on L1(D)
by Φh(f) =

∫
D
Pfh̄ dV satisfies |Φh(f)| ≤ ‖h‖∞‖Pf‖1 ≤ C‖h‖∞‖f‖1.

Thus Φh defines a bounded linear functional on L1(D). But we also
have Φh(f) =

∫
D
fPh dV . By the Riesz representation theorem we

must have Ph ∈ L∞(D). We know that PL∞(D) = B(D) so in order
to reach a contradiction we need only construct an unbounded Bloch
function. Note that this will also show that P isn’t bounded on L∞(D).

To construct this function, choose a point p ∈ bD such that
|p| = sup{|z| : z ∈ D}. Then there is an R-linear function l(z) =∑n

j=1 αjzj +
∑n

j=1 βj z̄j such that l(p) = 0 and l(z) < 0 for z ∈ D.
Since l is real-valued, we must have βj = ᾱj for 1 ≤ j ≤ n. Thus
l(z) = Reh(z) where h(z) = 2

∑n
j=1 αjzj is C-linear. By multiplying

h by a suitably large constant we may assume that |h(z)| ≥ |r(z)|, and
a C-linear change of coordinates puts h(z) in the form h(z) = αzn.
We define f ∈ O(D) by f(z) = log h(z). Then f is unbounded and
|∂f/∂zn| � |r(z)|−1, i.e., f ∈ B(D).

We conclude with another formulation of the Bloch space, corre-
sponding to the characterization given in [21] for bounded symmetric
domains. For j = 1, 2, 3, . . . , let

‖f‖B,j = sup{|∇j
rf(z)||r(z)|j : z ∈ D}.

We define the spaces Bj(D) by Bj(D) = {f ∈ O(D) : ‖f‖B,j < ∞}.
Clearly B1(D) = B(D).

Theorem 14. Let D ⊂⊂ C2 be a smoothly bounded pseudoconvex
domain of finite type. Then, for j = 2, 3, . . . , the norms ‖ · ‖B,j and
‖ · ‖B are equivalent and hence Bj(D) = B(D).

Proof. It is easy to see that ‖f‖B,j � ‖f‖B,j+1 for j = 1, 2, 3, . . . .
Thus Bj(D) ⊆ B(D). To prove the reverse inclusion, let f ∈ B, then
f = Pφ for some φ ∈ L∞(D). BY Lemma 3,

|∇j
rf(z)| ≤

∫
D

|φ(w)||∇j
rK(z, w)| dV (w) � ‖φ‖∞|r(z)|−j .

Thus, ‖f‖B,j � ‖φ‖∞ � ‖f‖B.
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