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CHARACTERISTIC PAIRS ALONG
THE RESOLUTION SEQUENCE

KENT M. NEUERBURG

ABSTRACT. Suppose that f is irreducible in a power series
ring in two variables over an algebraically closed field k of
characteristic 0. The characteristic pairs of f can be defined
from a fractional power series expansion of a solution of f .
The singularity of f can be resolved by a finite number of
blow ups of points. This subject, which can be traced back
to Newton, has been studied extensively. A few references
are Abhyankar [1], Brieskorn and Knörrer [2], Campillo [3],
Enriques and Chisini [4] and Zariski [7].

In Sections 1 and 2 we give an exposition of the basic results
in the theory of Puiseux series. In Section 3 we give a formula
for the characteristic pairs of the transform of f along the
sequence of blow ups of points resolving the singularity. As
a corollary, we obtain the classical theorem of Enriques and
Chisini relating the multiplicity sequence of a resolution and
the characteristic pairs of f , and we recover the classical result
that the characteristic pairs are an invariant of f . We use an
inversion formula of Abhyankar to obtain the results of this
paper.

1. The Puiseux series. Let R be a power series ring in two
variables over an algebraically closed field k. Then we have the
following well-known theorem (see [2, pp. 405 406], [7, p. 7]).

Theorem 1.1. Suppose that f ∈ R is irreducible and (x, y) are
regular parameters for R such that the multiplicity ν(f) = ν(f(0, y)).
Then a fractional power series exists (called a Puiseux series) of y in
terms of x. The expansion has the form

y =
l1∑

i=1

α1,i x
i + b1 xn1/m1
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+
l2∑

i=1

α2,i x
((n1+i)/m1) + b2 x(n2/(m1m2))

+ · · ·(1)

+
lg∑

i=1

αg,i x
((ng−1+i)/(m1···mg−1)) + bg x(ng/(m1···mg))

+
∞∑

i=1

ci x
((ng+i)/(m1···mg)),

where

(2)

1 <
n1

m1
<

n2

m1m2
< · · · < ng

m1 · · ·mg
,

mj > 1, 1 ≤ j ≤ g,

(nj ,mj) = 1, 1 ≤ j ≤ g,

bj �= 0, 1 ≤ j ≤ g,

lj =
[
nj − nj−1mj

mj

]
, 1 ≤ j ≤ g, n0 = 0

m = m1m2 · · ·mg = ν(f),

where [t] represents the greatest integer function. Note that the αj,i and
ci can be 0. We define the characteristic pairs to be (mi, ni), 1 ≤ i ≤ g.

We note that if the power series p(x1/m) is the Puiseux series (1), it
can be shown that a unit ϕ ∈ R exists such that

(3) f = ϕ
m∏

i=1

(y − p(ωix(1/m)))

where ω is a primitive mth root of unity.

2. An inversion theorem. Suppose that h ∈ R is irreducible and
(x, y) are regular parameters for R. Abhyankar [1] writes a fractional
power series for y in terms of x in the form

(4)

x = tm̄

y =
ḡ−1∑
j=1

sj∑
i=0

āj,i t
(n̄j+i)(m̄j+1 · · · m̄ḡ) +

∞∑
i=1

āḡ,i t
n̄ḡ+i
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where

(5)

ḡ, n̄1, . . . , n̄ḡ, m̄1, . . . , m̄ḡ ∈ N

(m̄j , n̄j) = 1, 1 ≤ j ≤ ḡ

n̄j−1

m̄1 · · · m̄j−1
<

n̄j

m̄1 · · · m̄j
, 1 < j ≤ ḡ

sj =
[
n̄j+1

m̄j+1
− n̄j

]
, 1 ≤ j < ḡ

āj,0 �= 0, 1 ≤ j ≤ ḡ

m̄j > 1, 1 < j ≤ ḡ

m̄ = m̄1 · · · m̄ḡ

Substituting t = x1/m̄ in the expression for y, we get

(6) y =
ḡ−1∑
j=1

sj∑
i=0

āj,i x
((n̄j+i)/(m̄1···m̄j)) +

∞∑
i=1

āḡ,i x
((n̄ḡ+i)/(m̄1···m̄ḡ)).

When (n̄1/m̄1) ≥ 1, it is possible to compare (6) with the expression
(1) for the series. We obtain the following

Lemma 2.1. If m̄1 = 1, then

m = m̄ = m̄2 · · · m̄ḡ

g = ḡ − 1
mj = m̄j+1, 1 ≤ j ≤ g

nj = n̄j+1, 1 ≤ j ≤ g

⇒ (mj , nj) = (m̄j+1, n̄j+1), 1 ≤ j ≤ g

lj = sj , 1 ≤ j ≤ g

bj = aj+1,0, 1 ≤ j ≤ g.

If m̄1 > 1, then

m = m̄ = m̄1 · · · m̄ḡ

g = ḡ

mj = m̄j , 1 ≤ j ≤ g
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nj = n̄j , 1 ≤ j ≤ g

⇒ (mj , nj) = (m̄j , n̄j), 1 ≤ j ≤ g

lj+1 = sj , 1 ≤ j < g, l1 = 0
bj = aj,0, 1 ≤ j ≤ g.

Proof. Case 1. If m̄1 = 1, then Abhyankar’s series (6) is

ḡ−1∑
j=1

sj∑
i=0

āj,i x
((n̄j+i)/(m̄1···m̄j)) +

∞∑
i=0

āḡ,i x
((n̄ḡ+i)/(m̄1···m̄ḡ))

=
s1∑

i=0

ā1,i x
((n̄1+i)/m̄1)) + ā2,0 x

(n̄2/(m̄1m̄2))

+
s2∑

i=1

ā2,i x
((n̄2+i)/(m̄im̄2)) + ā3,0 x

(n̄3/(m̄1m̄2m̄3))

+ · · ·

+
sḡ−1∑
i=1

āḡ−1,i x
((n̄ḡ−1+i)/(m̄1···m̄ḡ−1)) + āḡ,0 x

(n̄ḡ/(m̄1···m̄ḡ))

+
∞∑

i=1

āḡ,i x
((n̄ḡ+i)/(m̄1···m̄ḡ))

which, since m̄1 = 1, we can write as

y =
s1∑

i=0

ā1,i x
n̄1+i + ā2,0 x

(n̄2/m̄2)

+
s2∑

i=1

ā2,i x
((n̄2+i)/m̄2) + ā3,0 x

(n̄3/(m̄2m̄3))

+ · · ·

+
sḡ−1∑
i=1

āḡ−1,i x
((n̄ḡ−1+i)/(m̄2···m̄ḡ−1)) + āḡ,0 x

(n̄ḡ/(m̄2···m̄ḡ))

+
∞∑

i=1

āḡ,i x
((n̄ḡ+i)/(m̄2···m̄ḡ)),
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which is exactly the classical Puiseux series (1) with

m = m̄ = m̄2 · · · m̄ḡ

g = ḡ − 1
mj = m̄j+1, 1 ≤ j ≤ g

nj = n̄j+1, 1 ≤ j ≤ g

lj = sj , 1 ≤ j ≤ g

bj = āj+1,0, 1 ≤ j ≤ g.

Hence, (mj , nj) = (m̄j+1, n̄j+1) for all 1 ≤ j ≤ g as claimed.

Case 2. If m̄1 > 1, then Abhyankar’s series (6) has the form
ḡ−1∑
j=1

sj∑
i=0

āj,i x
((n̄j+i)/(m̄1···m̄j)) +

∞∑
i=0

āḡ,i x
((n̄ḡ+i)/(m̄1···m̄g))

= ā1,0 x
n̄1/m̄1

+
s1∑

i=1

ā1,i x
((n̄1+i)/m̄1) + ā2,0 x

(n̄2/(m̄1m̄2))

+
s2∑

i=1

ā2,i x
((n̄2+i)/(m̄1m̄2)) + ā3,0 x

(n̄3/(m̄1m̄2m̄3))

+ · · ·

+
sḡ−1∑
i=1

āḡ−1,i x
((n̄ḡ−1+i)/(m̄1···m̄ḡ−1)) + āḡ,0 x

(n̄ḡ/(m̄1···m̄ḡ))

+
∞∑

i=1

āḡ,i x
((n̄ḡ+i)/(m̄1···m̄ḡ)).

This is the classical Puiseux series (1) with α1,i = 0 for 1 ≤ i ≤ l1.
Comparing terms, we have

m = m̄ = m̄1 · · · m̄ḡ

g = ḡ

mj = m̄j , 1 ≤ j ≤ g

nj = n̄j , 1 ≤ j ≤ g

lj+1 = sj , 1 ≤ j < g, l1 = 0
bj = āj,0, 1 ≤ j ≤ g,
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giving (mj , nj) = (m̄j , n̄j) for all 1 ≤ j ≤ g.

For a fractional power series of the form (6) we define g(y, x) = g,
mj(y, x) = mj and nj(y, x) = nj for 1 ≤ j ≤ g. Abhyankar [1,
Theorem 1] proves the following inversion theorem.

Theorem 2.2 (Abhyankar). Given a fractional power series of the
form (6), we can express the inversion of this series using g(x, y) = g,
n1(x, y) = m1, m1(x, y) = n1, nj(x, y) = nj − (n1 −m1)m2 · · ·mj for
1 < j ≤ g and mj(x, y) = mj for 1 < j ≤ g.

3. The characteristic pairs. Let R be a power series ring in
two variables over an algebraically closed field k of characteristic 0. A
quadratic transform of R, R → R1, is defined as follows. Let (x, y) be
regular parameters in R, x = x1, y = x1y1. Set R1 = k[[x1, y1]].

Suppose that f ∈ R is irreducible of multiplicity ν(f) = r and
R→ R1 is a quadratic transform. Then f = xr

1 f1 in R1 where x1 � f1.
There is a unique quadratic transform R → R1 such that f1 is not a
unit in R1. The multiplicity ν(f1) ≤ r. We call x1 the exceptional
divisor of R→ R1, and we call f1 the strict transform of f in R1.

After a finite sequence of quadratic transforms, the strict transform
of f becomes nonsingular (it has multiplicity 1).

There is a unique sequence of quadratic transforms

(7) R −→ R1 −→ · · · −→ Rn

such that the strict transform of f in Rn has multiplicity 1 and
fRn = (xa

n y
b
n) where (xn, yn) are regular parameters in Rn (fRn has

simple normal crossings), and for m < n, fRm does not have simple
normal crossings. This is proved in [2] or [6] and will follow from
Theorem 3.1. We will call (7) the resolution sequence of f .

Using the notation of (1), define r1,1 = m, k0 = 0 and kj =
njmj+1 · · ·mg for 1 ≤ j ≤ g. We consider the following chain of g
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Euclidean algorithms:

(8)

kj − kj−1 = µj,1 rj,1 + rj,2
rj,1 = µj,2 rj,2 + rj,3

...
rj,w(j)−1 = µj,w(j) rj,w(j)

where 1 ≤ j ≤ g, with 0 ≤ rj,q+1 < rj,q, and we define rj,1 =
rj−1,w(j−1) for 1 < j ≤ g.

In (8) we have

1. gcd (kj − kj−1, rj,1) = rj,w(j) = mj+1 · · ·mg for 1 ≤ j ≤ g, note
that rg,w(g) = 1,

2. µ1,1 > 0 but µj,1 can be zero for j > 1,

3. rj,2 > 0 for all j.

As convention we use

n∏
i=n+1

βi = 1 and
0∑

i=1

αi = 0.

Theorem 3.1. Let f ∈ R be irreducible and R → R1 →
R2 → · · · → Rn be the resolution sequence of f . Let fk be
the strict transform of f in Rk, let g(k) be the genus of fk and
(m1(k), n1(k)), . . . , (mg(k)(k), ng(k)(k)) be the characteristic pairs of
the Puiseux expansion of fk. We have the following

1. If (
∑j−1

h=1

∑w(h)
i=1 µh,i) ≤ k < (

∑j−1
h=1

∑w(h)
i=1 µh,i) + µj,1 with

1 ≤ j ≤ g, set l = k − ∑j−1
h=1

∑w(h)
i=1 µh,i. Then

(9)

g(k) = g − j + 1

m1(k) =
rj,1

mj+1 · · ·mg
= mj

mi(k) = mi+j−1, 1 < i ≤ g − j + 1

ni(k) =
ki+j−1 − kj−1 − lrj,1

mi+j · · ·mg
, 1 ≤ i ≤ g − j + 1

m(k) = mj · · ·mg = rj,1.
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2. If
∑j−1

h=1

∑w(h)
i=1 µh,i +

∑q−1
i=1 µj,i ≤ k <

∑j−1
h=1

∑w(h)
i=1 µh,i +∑q

i=1 µj,i with 1 ≤ j ≤ g, 2 ≤ q ≤ w(j) − 1, set l = k −∑j−1
h=1

∑w(h)
i=1 µh,i −

∑q−1
i=1 µj,i. Then

(10)

g(k) = g − j + 1

m1(k) =
rj,q

mj+1 · · ·mg

mi(k) = mi+j−1, 1 < i ≤ g − j + 1

ni(k) =
ki+j−1 − kj + rj,q−1 − lrj,q

mi+j · · ·mg
, 1 ≤ i ≤ g − j + 1

m(k) = rj,q.

3. If
∑j−1

h=1

∑w(h)
i=1 µh,i +

∑w(j)−1
i=1 µj,i ≤ k <

∑j−1
h=1

∑w(h)
i=1 µh,i +∑w(j)

i=1 µj,i with 1 ≤ j ≤ g − 1, set l = k − ∑j−1
h=1

∑w(h)
i=1 µh,i −∑w(j)−1

i=1 µj,i. Then

(11)

g(k) = g − j
m1(k) =

rj,w(j)

mj+2 · · ·mg
= mj+1

mi(k) = mi+j , 1 ≤ i ≤ g − j
ni(k) =

ki+j − kj + rj,w(j)−1 − lrj,w(j)

mi+j+1 · · ·mg
, 1 ≤ i ≤ g − j,

m(k) = rj,w(j) = mj+1 · · ·mg.

4. If
∑g−1

h=1

∑w(h)
i=1 µh,i +

∑w(g)−1
i=1 µj,i ≤ k, then g(k) = 0.

We will find coordinates (xk, yk) in Rk such that fk has a Puiseux
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series expansion yk(x
(1/m(k))
k ):

yk =
l1(k)∑
i=1

α1,i (k)xi
k + b1 (k)x

(n1(k)/m1(k))
k

+
l2(k)∑
i=1

α2,i (k)x
((n1(k)+i)/m1(k))
k + b2 (k)x

(n2(k)/(m1(k)m2(k)))
k

+ · · ·

+
lg(k)(k)∑

i=1

αg(k),i (k)x
((ng−1(k)+i)/(m1(k)···mg(k)−1(k)))

k

+ bg(k) (k)x
(ng(k)/(m1(k)···mg(k)(k)))

k

+
∞∑

i=1

ci (k)x
((ng(k)+i)/(m1(k)···mg(k)(k)))

k .

Before proving the theorem we state and prove

Lemma 3.2. Suppose that fk has the Puiseux expansion yk(xk).

1. Suppose that 2 ≤ (n1(k)/m1(k)). Set xk+1 = xk, yk+1 = (yk/xk)−
α1,1(k). Then fk+1 has the Puiseux expansion yk+1(x

(1/m(k+1))
k+1 ) with

(12)
g(k + 1) = g(k),
mi(k + 1) = mi(k), 1 ≤ i ≤ g(k),
ni(k + 1) = ni(k)−m1(k) · · ·mi(k), 1 ≤ i ≤ g(k).

2. Suppose that 1 < (n1(k)/m1(k)) < 2 and n1(k) − m1(k) > 1.
(Note that this forces l1(k) = 0.) Set xk+1 = (yk/xk), yk+1 = xk. Then
fk+1 has the Puiseux expansion yk+1(x

(1/m(k+1))
k+1 ) with

(13)

g(k + 1) = g(k),
m1(k + 1) = n1(k)−m1(k),
mi(k + 1) = mi(k), 1 < i ≤ g(k),
n1(k + 1) = m1(k),
ni(k + 1) = ni(k) +m1(k) · · ·mi(k)− n1(k)m2(k) · · ·mi(k),

1 < i ≤ g(k + 1).
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3. Suppose that 1 < (n1(k)/m1(k)) < 2 and that n1(k)−m1(k) = 1.
(This also forces l1(k) = 0). Then fk+1 has the Puiseux series expansion
yk+1(x

(1/m(k+1))
k+1 ) with

(14)

g(k + 1) = g(k)− 1,
mi(k + 1) = mi+1(k), 1 ≤ i ≤ g(k + 1),
ni(k + 1) = ni+1(k) +m1(k) · · ·mi+1(k)

− n1(k)m2(k) · · ·mi+1(k).

Proof. Suppose we are in Case 1. Then a blow up of fk at 0 gives the
fractional power series expansion for yk+1 as

yk+1 =
l1(k)∑
i=2

α1,i (k)xi
k+1 + b1 (k)x

((n1(k)−m1(k))/m1(k))
k+1

+
l2(k)∑
i=1

α2,i (k)x
((n1(k)−m1(k)+i)/m1(k))
k+1

+ b2(k)x
((n2(k)−m1(k)m2(k))/(m1(k)m2(k)))
k+1

+ · · ·

+
lg(k)(k)∑

i=1

αg(k),i (k)x
((ng−1(k)−m1(k)···mg(k)(k)+i)/(m1(k)···mg(k)−1(k)))

k+1

+ bg(k) (k)x
((ng(k)−m1(k)···mg(k)(k))/(m1(k)···mg(k)(k)))

k+1

+
∞∑

i=1

ci (k)x
((ng(k)−m1(k)···mg(k)(k)+i)/(m1(k)···mg(k)(k)))

k+1 .

We will show that this yk+1(x
(1/m(k+1))
k+1 ) is a Puiseux series.

Recalling (3), we can write

fk = ϕk

m(k)∏
r=1

(yk − yk(ωrx
(1/m(k))
k ))

for some unit ϕk in Rk and where ω is a primitive m(k)th root of unity.
Making the change of variables xk+1 = xk, yk+1 = (yk/xk) − α1,1(k)
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and solving the second of these for yk, we get yk = xk(yk+1 +α1,1(k)).
Substituting for yk, we have

fk = ϕk

m(k)∏
r=1

((xk(yk+1 + α1,1(k))− xk(yk+1(ωrx
(1/m(k))
k+1 ) + α1,1(k)).

Then, substituting for xk, we get

fk = ϕk

m(k)∏
r=1

((xk+1(yk+1 + α1,1(k))

− xk+1(yk+1(ωrx
(1/m(k))
k+1 ) + α1,1(k))))

= ϕkx
m(k)
k+1

m(k)∏
r=1

(yk+1 − yk+1(ωrx
(1/m(k))
k+1 )).

Thus, fk+1 = ϕk

∏m(k)
r=1 (yk+1 − yk+1(ωrx

(1/m(k)
k+1 )) is y-general of order

m(k) and yk+1(xk+1) is a fractional power series of fk+1. Further, we
note that

n1(k)−m1(k)
m1(k)

≥ 1

and

ni+1(k)−m1(k) · · ·mi+1(k)
m1(k) · · ·mi+1(k)

=
ni+1(k)

m1(k) · · ·mi+1(k)
− 1

≥ ni(k)
m1(k) · · ·mi(k)

− 1

=
ni(k)−m1(k) · · ·mi(k)

m1(k) · · ·mi(k)

for all 1 ≤ i ≤ g − 1 and

(ni(k)−m1(k) · · ·mi(k),mi(k)) = (ni(k),mi(k)) = 1

for all i. Thus, (2) is satisfied and we see that yk+1(x
(1/m(k+1))
k+1 ) is a

Puiseux series.
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Now suppose we are in Case 2 or Case 3, then fk+1 has a fractional
power series in the coordinates x̃k+1 = xk, ỹk+1 = (yk/xk):

ỹk+1

= b1 (k) x̃
((n1(k)−m1(k))/m1(k))
k+1

+
l2(k)∑
i=1

α2,i (k) x̃
((n1(k)−m1(k)+i)/m1(k))
k+1

+ b2 (k) x̃
((n2(k)−m1(k)m2(k)+i)/(m1(k)m2(k)))
k+1

+ · · ·

+
lg(k)(k)∑

i=1

αg(k),i (k) x̃
((ng(k)−1(k)−m1(k)···mg(k)−1(k)+i)/(m1(k)···mg(k)−1))

k+1

+ bg(k) (k) x̃
((ng(k)(k)−m1(k)···mg(k)(k))/(m1(k)···mg(k)(k)))

k+1

+
∞∑

i=1

ci x̃
((ng(k)(k)−m1(k)···mg(k)(k)+i)/(m1(k)···mg(k)(k)))

k+1 .

In the notation of (5) we have, for the series ỹk+1(x̃
(1/m(k))
k+1 ), m̃i =

mi(k), 1 ≤ i ≤ g(k) and ñi = ni(k)−m1(k) · · ·mi(k), 1 ≤ i ≤ g(k). By
hypothesis, this expansion has (ñ1/m̃1) = ((n1(k)−m1(k))/m1(k)) <
1, so we must perform the inversion xk+1 = ỹk+1, yk+1 = x̃k+1 to
construct the Puiseux series.

There are two possibilities. Firstly, suppose that n1(k) − m1(k) >
1. Then we are in Case 1. By Abhyankar’s inversion theorem
yk+1(x

(1/m(k))
k+1 ) is a Puiseux series with

g(k + 1) = g(k)
m1(k + 1) = n1(k)−m1(k)

(15) mi(k + 1) = mi(k)
n1(k + 1) = m1(k)
ni(k + 1) = ni(k) +m1(k) · · ·mi(k)− n1(k)m2(k) · · ·mi(k),

1 < i ≤ g(k + 1).

Let fk+1 be the strict transform of fk in Rk
∼= k[[xk+1, yk+1]]. We have

Rk+1/(fk+1) ↪→ T ∼= k[[t]]
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where in T the relations (15) and (4) hold. Set

Λ =
m(k+1)∏

r=1

(yk+1 − yk+1(ωrx
(1/m(k+1))
k+1 ))

where ω is a primitive rootm(k+1)th root of unity. Now Λ = 0 in T and
Λ ∈ Rk+1. We note that Λ is irreducible in Rk+1 since its irreducible
factors in Rk+1[x

(1/m(k+1))
k+1 ] are the terms yk+1 − yk+1(ωrx

(1/m(k+1))
k+1 ),

and the only product of these terms which is invariant under the action
x(1/m(k+1)) 
→ ωx(1/m(k+1)) is Λ.

Hence, (Λ) = (fk+1), fk+1 is y-general of order m(k + 1) and
yk+1(x

(1/m(k+1))
k+1 ) is a Puiseux expansion of fk+1.

Secondly, suppose that n1(k)−m1(k) = 1. Then we are in Case 2. By
Abhyankar’s inversion theorem, yk+1(x

(1/m(k+1))
k+1 ) is a Puiseux series

with

g(k + 1) = g(k)− 1
mi(k + 1) = mi+1(k) 1 ≤ i ≤ g(k + 1)
ni(k + 1) = ni+1(k) +m1(k) · · ·mi+1(k)− n1(k)m2(k) · · ·mi+1(k)

1 ≤ i ≤ g(k + 1).

As in the previous case, yk+1(x
(1/m(k+1))
k+1 ) is a Puiseux expansion of

fk+1, the strict transform of fk in Rk+1.

We now offer an inductive proof of Theorem 3.1.

Proof. Suppose that k = 0. We have µ1,1 > 0, so we are in Case 1 with
j = 1, l = 0, g(0) = g, m1(0) = (r1,1/(m2 · · ·mg)) = m1, mi(0) = mi

for 1 < i ≤ g−j+1, ni(k) = (ki/(mi+1 · · ·mg)) = ni for 1 ≤ i ≤ g−j+1
in agreement with the formula.

Now suppose that the theorem is true for k = n. We will verify the
theorem for k = n+ 1. There are six cases to consider:

j−1∑
h=1

w(h)∑
i=1

µh,i ≤ n =
j−1∑
h=1

w(h)∑
i=1

µh,i + µj,1 − 1 1 ≤ j ≤ gC1



1450 K.M. NEUERBURG

j−1∑
h=1

w(h)∑
i=1

µh,i ≤ n <

j−1∑
h=1

w(h)∑
i=1

µh,i + µj,1 − 1 1 ≤ j ≤ gC2

j−1∑
h=1

w(h)∑
i=1

µh,i +
q−1∑
i=1

µj,i ≤ n =
j−1∑
h=1

w(h)∑
i=1

µh,i +
q∑

i=1

µj,i − 1C3

1 ≤ j ≤ g, 2 ≤ q ≤ w(j)− 1

j−1∑
h=1

w(h)∑
i=1

µh,i +
q−1∑
i=1

µj,i ≤ n <

j−1∑
h=1

w(h)∑
i=1

µh,i +
q∑

i=1

µj,i − 1C4

1 ≤ j ≤ g, 2 ≤ q ≤ w(j)− 1

j−1∑
h=1

w(h)∑
i=1

µh,i +
w(j)−1∑

i=1

µj,i ≤ n =
j−1∑
h=1

w(h)∑
i=1

µh,i +
w(j)∑
i=1

µj,i − 1C5

1 ≤ j ≤ g − 1

j−1∑
h=1

w(h)∑
i=1

µh,i +
w(j)−1∑

i=1

µj,i ≤ n <

j−1∑
h=1

w(h)∑
i=1

µh,i +
w(j)∑
i=1

µj,i − 1.C6

1 ≤ j ≤ g − 1

Suppose we are in Case C1. Then n + 1 =
∑j−1

h=1

∑w(h)
i=1 µh,i + µj,1.

There are three subcases to consider.

C1.1. 2 < w(j). Then n + 1 is in Case 2 of the statement of the
theorem (with q = 2 and l = 0).

C1.2. 2 = w(j), j ≤ g − 1. Then n+ 1 is in Case 3 of the statement
of the theorem (with l = 0).

C1.3. 2 = w(j), j = g. Then n + 1 is in Case 4 of the statement of
the theorem.

We begin with subcase C1.1. Here n is in Case 1 of the statement of
the theorem. So, by the inductive hypothesis and (9) we have

n1(n)
m1(n)

=
kj − kj−1 − (µj,1 − 1) rj,1

mj+1 · · ·mg
· mj+1 · · ·mg

rj,1

=
kj − kj−1 − (µj,1 − 1) rj,1

rj,1
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=
rj,1 + (kj − kj−1 − µj,1 rj,1)

rj,1
.

Applying the identities from the Euclidean algorithms (8) we get

n1(n)
m1(n)

=
rj,1 + rj,2
rj,1

< 2

since rj,2 < rj,1. Similarly,

n1(n)−m1(n) =
kj − kj−1 − (µj,1 − 1) rj,1 − rj,1

mj+1 · · ·mg

=
kj − kj−1 − µj,1rj,1

mj+1 · · ·mg

=
rj,2
rj,w(j)

> 1,

since rj,w(j) | rj,2 and 2 < w(j). We are thus in Case 2 of Lemma 3.2.
So we have, after applying (13) and (9),

g(n+1) = g(n) = g − j + 1
m1(n+1) = n1(n)−m1(n)

=
kj − kj−1 − (µj,1 − 1) rj,1 − rj,1

mj+1 · · ·mg

=
rj,2

mj+1 · · ·mg

mi(n+1) = mi(n) = mi+j−1, 1 < i ≤ g − j + 1

n1(n+1) = m1(n) =
rj,1

mj+1 · · ·mg

ni(n+1) = ni(n) +m1(n) · · ·mi(n)− n1(n)m2(n) · · ·mi(n)

=
(ki+j−1−kj−1−(µj,1−1) rj,1)+rj,1−(kj−kj−1−(µj,1−1) rj,1)

mi+j · · ·mg

=
ki+j−1 − kj−1 + rj,1

mi+j · · ·mg
, 1 < i ≤ g − j + 1,

which is in agreement with the conclusion of the theorem.
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Now consider subcase C1.2. Here we have n in Case 1 of the statement
of the theorem. Therefore,

n1(n)
m1(n)

=
kj − kj−1 − (µj,1 − 1) rj,1

rj,1

=
rj,1 + rj,2
rj,1

< 2

and
n1(n)−m1(n) =

rj,2
rj,w(j)

= 1,

so we are in Case 3 of Lemma 3.2. Accordingly, we apply (14) and (9)
to get

g(n+ 1) = g(n)− 1 = g − j
mi(n+ 1) = mi+1(n) = mi+j , 1 ≤ i ≤ g − j
ni(n+ 1) = ni+1(n) +mi(n) · · ·mi+1(n)− n1(n)m2(n) · · ·mi+1(n)

=
(ki+j−kj−1−(µj,1−1) rj,1)+rj,1−(kj−kj−1−(µj,1−1) rj,1)

mi+j · · ·mg

=
ki+j − kj + rj,1
mi+j · · ·mg

, 1 ≤ i ≤ g − j,

again, in agreement with the conclusion of the theorem.

Next we consider subcase C1.3. In this case n is again in Case 1 of
the statement of the theorem so we can apply (9) to get

n1(n)
m1(n)

=
rj,1 + rj,2
rj,1

< 2

and
n1(n)−m1(n) =

rj,2
rj,w(j)

= 1

which implies we are again in Case 3 of Lemma 3.2. Therefore, (14)
and (9) imply g(n + 1) = g(n) − 1 = (g − j + 1) − 1 = 1 − 1 = 0 as
claimed in the theorem.
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Suppose we have Case C2. Then n+ 1 is in Case 1 of the statement
of the theorem. This puts n in Case 1 of the statement of the theorem.
Thus, by (9), we have

n1(n)
m1(n)

=
kj − kj−1 − lrj,1
mj+1 · · ·mg

· mj+1 · · ·mg

rj,1

=
µj,1rj,1 − (n− ∑j−1

h=1

∑w(h)
i=1 µh,i) rj,1

rj,1

≥ 2rj,1
rj,1

= 2

which is in Case 1 of Lemma 3.2. Applying (12) and (9) we will have

g(n+ 1) = g(n) = g − j + 1

m1(n+ 1) = m1(n) =
rj,1

mj+1 · · ·mg

mi(n+ 1) = mi(n) = mi+j−1, 1 < i ≤ g − j + 1
ni(n+ 1) = ni(n)−m1(n) · · ·mi(n)

=
ki+j−1 − kj−1 − (n− ∑j−1

h=1

∑w(h)
i=1 µh,i) rj,1 − rj,1

mi+j · · ·mg

=
ki+j−1 − kj−1 − ((n+ 1)− ∑j−1

h=1

∑w(h)
i=1 µh,i) rj,1

mi+j · · ·mg

=
ki+j−1 − kj−1 − lrj,1

mi+j · · ·mg

as desired.

Now we consider case C3. Here we have

n+ 1 =
j−1∑
h=1

w(h)∑
i=1

µh,i +
q(n)∑
i=1

µj,i

with 1 ≤ j ≤ g and 2 ≤ q(n) ≤ w(j)− 1. There are three subcases.

C3.1. q(n) + 1 ≤ w(j) − 1. Then n + 1 is in Case 2 of Theorem 3.1
with q(n+ 1) = q(n) + 1 and l = 0.

C3.2. q(n) = w(j) − 1, j ≤ g − 1. Then n + 1 is in Case 3 of
Theorem 3.1 with l = 0.
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C3.3. q(n) = w(j)− 1, j = g.

Suppose we are in subcase C3.1. Then we have that n is in Case 2 of
the statement of the theorem, so by (10):

n1(n)
m1(n)

=
rj,q(n)−1 − (µj,q(n) − 1) rj,q(n)

mj+1 · · ·mg
· mj+1 · · ·mg

rj,q(n)

=
rj,q(n) + rj,q(n)+1

rj,q(n)

< 2

and
n1(n)−m1(n) =

rj,q(n)+1

mj+1 · · ·mg
=
rj,q(n)+1

rj,w(j)
> 1

since rj,w(j) | rj,q(n)+1 and w(j) > q(n) + 1. This places us in Case 2
of Lemma 3.2. We use (13) and (10) to conclude

g(n+ 1) = g(n) = g − j + 1
m1(n+ 1) = n1(n)−m1(n)

=
rj,q(n)−1 − (µj,q(n) − 1) rj,q(n) − rj,q(n)

mj+1 · · ·mg

=
rj,q(n)+1

mj+1 · · ·mg

=
rj,q(n+1)

mj+1 · · ·mg

mi(n+ 1) = mi(n) = mi+j−1, 1 < i ≤ g − j + 1

n1(n+ 1) = m1(n) =
rj,q(n)

mj+1 · · ·mg

=
rj,q(n)+1 − 1
mj+1 · · ·mg

ni(n+ 1) = ni(n) +m1(n) · · ·mi(n)− n1(n)m2(n) · · ·mi(n)

=
ki+j−1 − kj + rj,q(n)−1 − (µj,q(n) − 1) rj,q(n)

mj+1 · · ·mg

+
rj,q(n) − (rj,q(n)−1 − (µj,q(n) − 1) rj,q(n))

mj+1 · · ·mg
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=
ki+j−1 − kj + rj,q(n)

mj+1 · · ·mg

=
ki+j−1 − kj + rj,q(n+1)−1

mj+1 · · ·mg
, 1 < i ≤ g − j + 1,

as desired.

Now consider subcase C3.2. In this case we have that n is in Case 2
of the statement of the theorem. From (10) we get:

1 <
n1(n)
m1(n)

=
rj,q + rj,q+1

rj,q
< 2

as in C3.1 above. Also

n1(n)−m1(n) =
rj,q(n)+1

rj,w(j)
= 1

since q(n) + 1 = w(j). This places us in Case 3 of Lemma 3.2. Hence
we invoke (14) and (10) to write

g(n+ 1) = g(n)− 1 = g − j
mi(n+ 1) = mi+1(n) = mi+j , 1 ≤ i ≤ g − j
ni(n+ 1) = ni+1(n) +m1(n) · · ·mi+1(n)

− n1(n)m2(n) · · ·mi+1(n)

=
ki+j − kj + rj,q−1 − (µj,q − 1) rj,q

mi+j · · ·mg

+
rj,q − (rj,q−1 − (µj,q − 1) rj,q)

mi+j · · ·mg

=
ki+j − kj + rj,q
mi+j · · ·mg

=
ki+j − kj + rj,w(j)−1

mi+j · · ·mg

as claimed in the theorem.

In subcase C3.3, n + 1 and n are each in Case 2 of the statement of
the theorem. By (10), we have

n1(n)
m1(n)

=
rj,q−1 − (µj,q − 1) rj,q

mj+1 · · ·mg
· mj+1 · · ·mg

rj,q

=
rj,q + rj,q+1

rj,q

< 2
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and
n1(n)−m1(n) =

rj,q(n)+1

rj,w(j)
= 1.

Again we are in Case 3 of Lemma 3.2 so (14) and (10) imply g(n+1) =
g(n)− 1 = 1− 1 = 0.

If we are in Case C4 we see that n is in Case 2 of the statement of
the theorem. Thus, (10) yields

n1(n)
m1(n)

=
rj,q−1−

(
n−∑j−1

h=1

∑w(h)
i=1 µh,i−

∑q−1
i=1 µj,i

)
rj,q

mi+j · · ·mg
· mi+j · · ·mg

rj,q

=
µj,qrj,q−

(
n− ∑j−1

h=1

∑w(h)
i=1 µh,i −

∑q−1
i=1 µj,i

)
rj,q

rj,q

≥ 2,

and we are in Case 1 of Lemma 3.2. Whence, by (12) and (10),

g(n+ 1) = g(n) = g − j + 1

m1(n+ 1) = m1(n) =
rj,q

mj+1 · · ·mg

mi(n+ 1) = mi(n) = mi+j−1, 1 < i ≤ g − j + 1
ni(n+ 1) = ni(n)−m1(n) · · ·mi(n), 1 ≤ i ≤ g − j + 1

=
ki+j−1 − kj + rj,q−1

mi+j · · ·mg

+
−

(
n− ∑j−1

h=1

∑w(h)
i=1 µh,i −

∑q−1
i=1 µj,i

)
rj,q − rj,q

mi+j · · ·mg

=
ki+j−1 − kj + rj,q−1

mi+j · · ·mg

−
(
(n+ 1)− ∑j−1

h=1

∑w(h)
i=1 µh,i −

∑q−1
i=1 µj,i

)
rj,q

mi+j · · ·mg

=
ki+j−1 − kj + rj,q−1 − lrj,q

mi+j · · ·mg

in agreement with the statement of the theorem.
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Turning to Case C5 we see that

n+ 1 =
j−1∑
h=1

w(h)∑
i=1

µh,i +
w(j)∑
i=1

µj,i =
j∑

h=1

w(h)∑
i=1

µh,i

when 1 ≤ j ≤ g − 1. This generates the following subcases.

C5.1. µj+1,1 > 0. Here n + 1 is in Case 1 of the statement of the
theorem with l = 0 and j(n+ 1) = j(n) + 1.

C5.2. µj+1,1 = 0 and 2 < w(j + 1). Then n + 1 is in Case 2 of
the statement of the theorem with l = 0, j(n + 1) = j(n) + 1 and
q(n+ 1) = 2.

C5.3. µj+1,1 = 0, w(j + 1) = 2 and j + 1 ≤ g − 1. Then n + 1
is in Case 3 of the statement of the theorem and we have l = 0 and
j(n+ 1) = j(n) + 1.

C5.4. µj+1,1 = 0, w(j + 1) = 2 and j + 1 = g. In this case n+1 is in
Case 4 of the statement of the theorem.

In subcase C5.1 we have that n is in Case 3 of the statement of the
theorem. Using (11), we compute

n1(n)
m1(n)

=
kj+1 − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j)

rj,w(j)

=
kj+1 − kj + rj,w(j)

rj,w(j)

since rj,w(j)−1 − µj,w(j) rj,w(j) = 0. Now, by the Euclidean algorithms
(8) and the fact that rj,w(j) = rj+1,1, we can write this as

n1(n)
m1(n)

=
µj+1,1 rj+1,1 + rj+1,2 + rj+1,1

rj+1,1

=
(µj+1,1 + 1) rj+1,1 + rj+1,2

rj+1,1

≥ 2,

and we are in Case 1 of Lemma 3.2. Thus, by (12) and (11),

g(n+ 1) = g(n) = g − j(n) = g − j(n+ 1) + 1
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m1(n+ 1) = m1(n) = mj(n)+1 = mj(n+1)

mi(n+ 1) = mi(n) = mi+j(n) = mi+j(n+1)−1 1 < i ≤ g −j(n+1) + 1
ni(n+ 1) = ni(n)−m1(n) · · ·mi(n)

=
ki+j − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j) − rj,w(j)

mi+j+1 · · ·mg

=
ki+j − kj

mi+j+1 · · ·mg

=
ki+j(n+1)−1 − kj(n+ 1)− 1

mi+j(n+1) · · ·mg
1 ≤ i ≤ g − j(n+1) + 1,

as claimed in the theorem.

In the event that we are in subcase C5.2, we would have that n is in
Case 3 of the statement of the theorem. Hence, by (11):

n1(n)
m1(n)

=
kj+1 − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j)

rj,w(j)

=
(kj+1 − kj) + (rj,w(j)−1 − µj,w(j) rj,w(j)) + rj,w(j)

rj,w(j)

=
(µj+1,1rj+1,1 + rj+1,2) + (0) + rj+1,1

rj,w(j)

=
rj+1,1 + rj+1,2

rj+1,1

< 2

and

n1(n)−m1(n) =
(kj+1−kj+rj,w(j)−1−(µj,w(j)−1) rj,w(j))− rj,w(j)

mj+2 · · ·mg

=
(rj+1,1 + rj+1,2)− rj,w(j)

mj+2 · · ·mg

=
rj+1,2

mj+2 · · ·mg

> 1

since 2 < w(j + 1). This places us in Case 2 of Lemma 3.2. We then
apply (13) and (11) to get

g(n+ 1) = g(n) = g − j(n) = g − j(n+ 1) + 1
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m1(n+ 1) = n1(n)−m1(n)

=
ki+j − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j) − rj,w(j)

mj+1 · · ·mg

=
rj+1,2

mj+2 · · ·mg

=
rj(n+1),q(n+1)

mj(n+1)+1 · · ·mg

mi(n+ 1) = mi(n) = mi+j(n) = mi+j(n+1)−1 1 < i ≤ g − j(n+1) + 1

n1(n+ 1) = m1(n) =
rj,w(j)

mj+1 · · ·mg

=
rj+1,1

mj+2 · · ·mg
=
rj(n+1), q(n+1)−1

mj(n+1)+1 · · ·mg

ni(n+ 1) = ni(n) +m1(n) · · ·mi(n)− n1(n)m2(n) · · ·mi(n)

=
ki+j − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j) + rj,w(j)

mi+j+1 · · ·mg

− kj+1 − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j)

mi+j+1 · · ·mg

=
ki+j − kj+1 + rj,w(j)

mi+j+1 · · ·mg

=
ki+j(n+1)−1 − kj(n+1) + rj(n+1), q(n+1)−1

mi+j(n+1) · · ·mg

1 < i ≤ g − j(n+ 1) + 1

in agreement with the conclusion of the theorem.

Subcase C5.3 puts both n and n+ 1 into Case 3 of the statement of
the theorem. So, by (11), we have

n1(n)
m1(n)

=
rj+1,1 + rj+1,2

rj+1,1
< 2

which we computed in C5.2 above. But now,

n1(n)−m1(n) =
rj+1,2

mj+2 · · ·mg
= 1
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since w(j + 1) = 2. We are thus in Case 3 of Lemma 3.2 which, via
(14) and (11), gives

g(n+ 1) = g(n)− 1 = g − j − 1 = g − j(n+ 1)
mi(n+ 1) = mi+1(n) = mi+j+1 = mi+j(n+1), 1 ≤ i ≤ g − j(n+1)
ni(n+ 1) = ni+1(n)+m1(n) · · ·mi+1(n)−n1(n)m2(n) · · ·mi+1(n)

=
ki+j+1 − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j) + rj,w(j)

mi+j+2 · · ·mg

− ki+j − kj + rj,w(j)−1 − (µj,w(j) − 1) rj,w(j)

mi+j+2 · · ·mg

=
ki+j+1 − kj+1 + rj,w(j)

mi+j+2 · · ·mg

=
ki+j(n+1) − kj(n+1) + rj(n+1),w(j((n+1))−1)

mi+j(n+1)+1 · · ·mg

1 ≤ i ≤ g − j(n+ 1),

as desired.

If we are in subcase C5.4, we note that n is in Case 3 of the statement
of the theorem. Thus, as in C5.3, we have

n1(n)
m1(n)

=
rj+1,1 + rj+1,2

rj+1,1
=
rg,1 + rg,2

rg,1
< 2

and
n1(n)−m1(n) =

rj+1,2

mj+2 · · ·mg
.

Now by our convention
i−1∏
n=i

βn = 1.

Using this, the fact that j + 1 = g, w(g) = 2 ⇒ rj+1,2 = rg,w(g), and
recalling from (8) that rg,w(g) = 1, we get

n1(n)−m1(n) = rg,w(g) = 1,

which implies that we are in Case 3 of Lemma 3.2 and we have from
(14) and (11) that g(n+1) = g(n)− 1 = g− j − 1 = g− (j +1) = 0 as
claimed.
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Lastly, suppose we are in Case C6. Then n and n+1 are each in part
3 of the statement of the theorem. So by (11) we have

n1(n)
m1(n)

=
kj+1 − kj + rj,w(j)−1

mj+2 · · ·mg

−
(
n−∑j−1

h=1

∑w(h)
i=1 µh,i−

∑w(j)−1
i=1 µj,i

)
rj,w(j)

mj+2 · · ·mg
· mj+2 · · ·mg

rj,w(j)

≥ kj+1 − kj + rj,w(j)−1 − (µj,w(j) − 2) rj,w(j)

rj,w(j)

=
kj+1 − kj + µj,w(j)rj,w(j) − (µj,w(j) − 2) rj,w(j)

rj,w(j)

=
kj+1 − kj + 2 rj,w(j)

rj,w(j)

≥ 2,

which places us in Case 1 of Lemma 3.2. By (12) and (11) we have

g(n+ 1) = g(n) = g − j
mi(n+ 1) = mi(n) = mi+j , 1 ≤ i ≤ g − j
ni(n+ 1) = ni(n)−m1(n) · · ·mi(n)

=
ki+j − kj + rj,w(j)−1 −

(
n− ∑j−1

h=1

∑w(h)
i=1 µh,i

mi+j+1 · · ·mg

+
−∑w(j)−1

i=1 µj,i

)
rj,w(j) − rj,w(j)

mi+j+1 · · ·mg

=
ki+j − kj + rj,w(j)−1

mi+j+1 · · ·mg

−
(
(n+1)− ∑j−1

h=1

∑w(h)
i=1 µh,i−

∑w(j)−1
i=1 µj,i

)
rj,w(j)

mi+j+1 · · ·mg

=
ki+j − kj + rj,w(j)−1 − l rj,w(j)

mi+j+1 · · ·mg
, 1 ≤ i ≤ g − j,

in accord with the theorem.

Thus, we’ve shown the theorem true by induction.
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Let
R −→ R1 −→ · · · −→ Rn

be the resolution sequence of an irreducible f ∈ R. Let νi = ν(fi)
where fi is the strict transform of f in Ri and ν0 = ν(f). We define
the multiplicity sequence of f to be the sequence (ν0, ν1, . . . , νn−1).

A classical theorem of Enriques and Chisini [4] follows from Theo-
rem 3.1 since νk = m(k) for all k.

Corollary 3.3 (Enriques-Chisini). Let the notation be as in the
statement of Theorem 3.1.

1. The multiplicity sequence of f is completely determined by the
characteristic pairs of f . In fact, the multiplicity sequence is deter-
mined by the chain of Euclidean algorithms (8). In the multiplicity
sequence, the multiplicity ri,j appears µi,j times where i = 1, . . . , g;
j = 1, . . . , w(i), i.e., the multiplicity sequence is

r1,1, . . . , r1,1︸ ︷︷ ︸
µ1,1

r1,2, . . . , r1,2︸ ︷︷ ︸
µ1,2

, . . . , r1,w(1), . . . , r1,w(1)︸ ︷︷ ︸
µ1,w(1)

, r2,1, . . . , r2,1︸ ︷︷ ︸
µ2,1

, . . .

2. Conversely, one can reconstruct the characteristic pairs of a
Puiseux expansion of f from the multiplicity sequence by the chain of
Euclidean algorithms (8).

An immediate consequence of this corollary is the fact that the
characteristic pairs are an invariant of f .
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