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CHARACTERISTIC PAIRS ALONG
THE RESOLUTION SEQUENCE

KENT M. NEUERBURG

ABSTRACT. Suppose that f is irreducible in a power series
ring in two variables over an algebraically closed field k of
characteristic 0. The characteristic pairs of f can be defined
from a fractional power series expansion of a solution of f.
The singularity of f can be resolved by a finite number of
blow ups of points. This subject, which can be traced back
to Newton, has been studied extensively. A few references
are Abhyankar [1], Brieskorn and Knorrer [2], Campillo 3],
Enriques and Chisini [4] and Zariski [7].

In Sections 1 and 2 we give an exposition of the basic results
in the theory of Puiseux series. In Section 3 we give a formula
for the characteristic pairs of the transform of f along the
sequence of blow ups of points resolving the singularity. As
a corollary, we obtain the classical theorem of Enriques and
Chisini relating the multiplicity sequence of a resolution and
the characteristic pairs of f, and we recover the classical result
that the characteristic pairs are an invariant of f. We use an
inversion formula of Abhyankar to obtain the results of this
paper.

1. The Puiseux series. Let R be a power series ring in two
variables over an algebraically closed field k. Then we have the
following well-known theorem (see [2, pp. 405-406], [7, p. 7]).

Theorem 1.1. Suppose that f € R is irreducible and (z,y) are
regular parameters for R such that the multiplicity v(f) = v(f(0,y)).
Then a fractional power series exists (called a Puiseux series) of y in
terms of x. The expansion has the form

It

y=>Y ai;z'+bam/m
i=1
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l2
+ Z Qg pmatd)/my) o g g (n2/(mim2))
=1

(1) + ..

lQ
+ Z Qg i x((ng,1+i)/(m1>--mg,1)) + bg x(”g/(mlmg))
i=1

+ Z ¢ I((nﬁi)/(mlmmg)),
i=1
where
i no Ng

1< —< << ————,
mq mimso my---Mgy

m;>1, 1<j<gy,
(In‘jvmj):L 1<j<g,
) bj #0, 1<j<y,
lj_{w} | <j<g ng=0
m;
m=mimg---mg = v(f),

where [t| represents the greatest integer function. Note that the a;; and
¢; can be 0. We define the characteristic pairs to be (m;,n;), 1 <i < g.

We note that if the power series p(z!/™) is the Puiseux series (1), it
can be shown that a unit ¢ € R exists such that

(3) f=e]]w-pwzt/m))

i=1

where w is a primitive mth root of unity.

2. An inversion theorem. Suppose that h € R is irreducible and
(z,y) are regular parameters for R. Abhyankar [1] writes a fractional
power series for y in terms of x in the form

x=t"

(4) g—1 sj o %) ) -
y= Z Z aji +(5+3) (Mj1---mg) + Z ag.i thati

j=1 i=0 =1
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where
g,ni, 7,ﬁ‘§am17 7quN
(mjunj)_L ISJSQ
. B Y
mi mj_1 my---Mm;
s
(5) SJ_|:_J+1 _ ]:|7 1<]<§
mji1
ajo7#0, 1<j<g
’n_’Lj>]., 1<j<g

Substituting t = z'/™ in the expression for y, we get
g—1 sj [e%s)
- a. » p((Ri+i)/(ma-m;)) a. . p((Rg+i)/(m1--mg))
6) vy aji T + ) a5z .
j=1 i=0 i=1

When (721 /m1) > 1, it is possible to compare (6) with the expression
(1) for the series. We obtain the following

Lemma 2.1. If my =1, then

m=m=1ms- Mg
g=g—1
m; =mjy1, 1<j5<g

nj=njt1, 1<j<g

= (mj,nj) = (Mjy1,7541), 1<j<g
lj=sj, 1<j<yg
bj =aj10, 1<j5<y.

If my > 1, then

g

mj':’ﬁlj, 1S]Sg
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nj:ﬁj, ].Sjég
= (mj,n;) = (my,n;), 1<j<g
lit1=s5, 1<j<g,l1=0
bj:(lj,o, 1§j§g

Proof. Case 1. If my = 1, then Abhyankar’s series (6) is

g—1 s; 0
Z Zaﬂli (A +0) /(M --my) + dg’ix((ﬁgﬂ)/(mlmmg))
j=1 i=0 =0

51
= Z dy,; o(P+D/m)) | g, o g(R2/ (ama)

=0
82
+ Z Go. i (P2 +1)/(Mamz)) 4 3.0 2R3/ (M1mzms))
i=1
+ ..
S§71 . — . .
+ Z g1 (Rg—1+1)/(Mm1mg_1)) | 5.0 2 (Pg/(mmg))
=1
+ ag.i 2((Ag+i)/ (M -mg))
i=1

which, since m; = 1, we can write as

S1
Y= Z ai i$ﬁ1+i + a2 2/ m2)
=0
52
+ Z g g (P2 )/ m2) | Gg o () (Mams))
=1
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which is exactly the classical Puiseux series (1) with
m=1n=ing---ing
g=g9-1
mj=mjy1, 1<j<g
nj=njt1, 1<j<g
lji=s;, 1<j<gyg
bj =aj410, 1<j<g.

Hence, (m;,n;) = (Mjy1,7,41) for all 1 < j < g as claimed.

Case 2. If my > 1, then Abhyankar’s series (6) has the form
g—1 sj
Z aja n]Jrl (ml mJ)) + Z CL (n9+z)/( mg))
J=114=0 i=0
= 6170 " 71 /M1
S1
+ Z ai i x((A1+0)/m1) + G2 2 (P2/(Mm1ms2))
i=1
EP)
+ Z as.; x((ﬁ2+i)/(m1rﬁ2)) +aso x(ﬁg/(mlm2m3))
i=1
4.
Sg—1
+ Z Gg-1,i 2((Pg—1+9)/(m1--mg—1)) +dg.0 (g /(1))

=1
+Z“ (g +i) /(ma i)

This is the classmal Puiseux series (1) with oy ; = 0 for 1 < ¢ < 5.
Comparing terms, we have
m=m = ml e mg
9=g
m; = my, 1<5<g
nj=n;, 1<j<g
lj+1:3ja 1§]<g,l1:()
bj =djo, 1<j<ug,
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giving (mj,n;) = (m;,n;) for all 1 < j < g. O

For a fractional power series of the form (6) we define g(y,z) = g,
m;(y,z) = m; and n;j(y,x) = n; for 1 < j < g. Abhyankar [1,
Theorem 1] proves the following inversion theorem.

Theorem 2.2 (Abhyankar). Given a fractional power series of the
form (6), we can express the inversion of this series using g(x,y) = g,
ni(z,y) = my, mi(z,y) = ni, nj(z,y) =n; — (n1 —mi)me---m; for
1<j<gand mj(z,y) =m; for1 <j<g.

3. The characteristic pairs. Let R be a power series ring in
two variables over an algebraically closed field k of characteristic 0. A
quadratic transform of R, R — Ry, is defined as follows. Let (x,y) be
regular parameters in R, x = 1, y = z1y1. Set Ry = k[[z1,y1]].

Suppose that f € R is irreducible of multiplicity v(f) = r and
R — R; is a quadratic transform. Then f =z f1 in Ry where x4 1 f1.
There is a unique quadratic transform R — R; such that f; is not a
unit in Ry. The multiplicity v(f;) < r. We call x; the exceptional
divisor of R — Ry, and we call f; the strict transform of f in Ry.

After a finite sequence of quadratic transforms, the strict transform
of f becomes nonsingular (it has multiplicity 1).

There is a unique sequence of quadratic transforms

(7) R—R —--—R,

such that the strict transform of f in R, has multiplicity 1 and
fR, = (22 y") where (z,,y,) are regular parameters in R,, (fR, has
simple normal crossings), and for m < n, fR,, does not have simple
normal crossings. This is proved in [2] or [6] and will follow from
Theorem 3.1. We will call (7) the resolution sequence of f.

Using the notation of (1), define r13 = m, kg = 0 and k; =
nymjy1---mg for 1 < j < g. We consider the following chain of g
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Euclidean algorithms:

kj=kj1=pjarja+rje
Tj1 = Hj2752 753
(8)

Tjw(@)—1 = Hjw(g) Tiw(j)
where 1 < 5 < g, with 0 <
’I"j,l’w(jfl) for 1 < j < g.

In (8) we have

Tjq+1 < Tjq, and we define 7,1 =

L oged(kj —kj_1, 1j1) = 7jw(j) = Mjr1---mg for 1 < j < g, note
that Tgw(g) = 1,

2. p1,1 > 0 but p; 1 can be zero for j > 1,
3. rj2 >0 for all j.

As convention we use

7 0
f[ B;=1 and Zai:().
=1

i=n+1

Theorem 3.1. Let f € R be irreducible and R — Ry —
Ry — — R, be the resolution sequence of f. Let fr be
the strict transform of f in Ry, let g(k) be the genus of fr and

(m1(k), na(k)), ..., (mg)(k), nguy(k)) be the characteristic pairs of
the Puiseuz expansion of fr. We have the following

LI (00 S0 ) < k< (D02 S n) + g with
1<j<g setl=k=332 S pni. Then

gk)=g—3j+1
i1
mi(k = m;
1(k) e j
(9) mi(k) =miyj-1, 1<i<g-—j+1
Kivj_1 — ki1 —Ir;
ﬂz(k): i1 J—1 rj"l, 1§’ng—j+1
mi+j-.-mg
m(k)=mj---mg=rj1.
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k<2 Zzil),uhz_‘_
w(j) — 1, set 1 = k —

i—1 h
2. If Z‘;L:l 27(1) /Lhz Zz 1 Mg
Eglum with 1 < j < g, 2 < ¢

w( -1
E Zz ,th Y41 wji- Then

_ Tiq
M1 My
Mmiyj—1, 1<i<g—j+1
Kivj—1—kj +1jq-1—1rjq
Mitj My 7

1<i<g-—j+1

—
—
=)
=
> 3
—
-
D D O
Il

3.0 S o s+ T e < k< 0T Y g+
SUD s with 1< j < g1, set 1 = k— Y9 Sy,

S g Then

() =93
S
k) = Jsw(J) — .
(k) 7mj+2-~-mg mMjt+1
(11) mi(k) =miy;, 1<i<g—j
(k) = 43 i w1 = U, W q<i<g—j
Mitjt1 My
(

k) = 1) = M1 mg.

4. Ifz ZZ 1 Mhz‘i"zz 17 wii <k, then g(k) =0.

We will find coordinates (zj,yr) in Ry such that fi has a Puiseux
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series expansion (xlgl/m(k))):
11 (k)
Yk = Z o (B) 2 + by (k) 2 B/ k)

12(k
n Zazz O m®) |y (g (020 (m (R)ma (k)

ly(k)(k) . . )
+ Z (k)i () xé(ng_l( )+1)/ (ma (k) mg ) —1(k)))

ng mi(k)---my k
+bg(k) (k) ! (ng(k)/(mai(k)---mge)(k)))

((ng k)+4)/(ma(k)-mg(k)(K)))
Y -

Before proving the theorem we state and prove

Lemma 3.2. Suppose that fi has the Puiseuz expansion yi(xy).
1. Suppose that 2 < (ny(k)/m1(k)). Set xxr1 = Tk, Yp+1 = (yu/TK)—
a11(k). Then fri1 has the Puiseux expansion yii1 (ajél_ﬂn(k—’_l))) with
gle+1) = g(h),
(12) mi(k+1)=my(k), 1<i<g(k),
ni(k +1) = ni(k) =ma(k)---mi(k), 1<i<g(k).
2. Suppose that 1 < (ny(k )/ml( )) < 2 and ny(k) — my(k) > 1.

(Note that this forces l1(k) = 0.) Set 1 = (yr /%K), Yet1 = . Then

fr+1 has the Puiseuz expansion yk+1(x,(€1_i{m(k+1))) with

(13)

1<y
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3. Suppose that 1 < (n1(k)/m1(k)) < 2 and that ni(k) —mq(k) = 1.
(This also forcesli(k) = 0). Then fr41 has the Puiseuz series expansion

Ykt 1 (:E,(:l;n(kﬂ))) with

g(k+1) =g(k) -1,
mi(k+1) =mip(k), 1<i<gk+1),
ni(k +1) = nip1(k) + ma(k) - --miqa (k)
- n1(l€)m2(1€) tee mi+1(l€).

(14)

Proof. Suppose we are in Case 1. Then a blow up of f; at 0 gives the
fractional power series expansion for yjy1 as

Ly (k)
Yer1 = Z ar; (k) zhy + b1 () xl(c(fi(k)_ml(k))/ml(k))
=2

Io(k)
+ 3 i (k) BT m k)
=1

by (k) {2 ()= (B)ma () (oma (k) ma ()

4.
gk (K)

+ Z Qg (k)i (k) x](c(:i’fl(k)_ml(k)"'my(k)(’C)+i)/(7m(k)»--mg(k)fl(/g)))
i=1

gy (k) a7 B e () Gma (R0 ()

N i e (k) ()= 0=y () om0y 40
=1

We will show that this yk+1(x§#;n(k+l))) is a Puiseux series.

Recalling (3), we can write

m(k)
fe=or [ (e — yr(w ™Y
r=1

for some unit ¢y, in Ry, and where w is a primitive m(k)th root of unity.
Making the change of variables xxy1 = 2k, Yr+1 = (yu/xk) — a11(k)
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and solving the second of these for yi, we get vy = xr(Yr+1 + a1,1(k)).
Substituting for y;, we have

m(k)
fo= o ] (@rrrs + a1 (k) — au(yrar (@27 ) + ar i (k).

r=1
Then, substituting for xy, we get

fe=or [] (@era(yprn + a1 (k)

r=1

m(k
2 D) a1 (K)))

— Trr1 (Yrr1 (0"

m(k)
k r (1/m(k
= @kkail) H (Y1 — Y1 (w x;ﬁn( ))))~

r=1

Thus, fr+1 = ¢k H:%:(’f) (Ykt1 — yk+1(wr1:,(#fz(k))) is y-general of order

m(k) and yg41(zk41) is a fractional power series of fiq1. Further, we
note that
(k) —ma (k)

mk) o
and
i1 (k) —ma(k)---miypi (k) nit1(k) 1
ma(k) - mita(k) ma(k) - mia (k)
n; (k)

2 k)R

_ ni(k) —ma(k) - --mi(k)
my(k)---m;(k)

forall1<i<g-—1and
(ni(k) —ma(k) - - -mi(k), mi(k)) = (ni(k), mi(k)) =1

for all i. Thus, (2) is satisfied and we see that ykﬂ(x,(clﬁn(kﬂ))) is a

Puiseux series.
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Now suppose we are in Case 2 or Case 3, then f 1 has a fractional
power series in the coordinates Zy11 = Tk, Jr+1 = (Yr/Tk):

k41
— b (k) ((nl(k) ma(k))/m1(k))

l2(k)

+ Z g jgc(-ti k)—m1(k)+i)/ma(k))

+ by (k) k}:f(k) ma (k)ma(k)+i)/(m1(k)m2(k)))
4.

lg(ry (k)

+ Z gy ~l(€(ri,(k> 1(B)—mi(k)-mgy—1(k)+i)/(mi(k)mguy—1))

4-bg&a(k)fgff““k) ma (k)1 (i) () (ma (K)-+ g 1) (K))

+Zci k:i](k)(k) my (k) -mgpy (k)+4)/(ma (k) mg(k)(k))).

In the notation of (5) we have, for the series gkﬂ(azg_(l (k)))7 m; =
m;(k), 1 <i < g(k) and n; = n;(k) —mq(k)---m;(k), 1 <i<g(k). By
hypothesis, this expansion has (71 /m1) = ((n1(k) — my(k))/mi(k)) <
1, so we must perform the inversion xx4+1 = Ygt1, Yk+1 = Tk41 tO
construct the Puiseux series.

There are two possibilities. Firstly, suppose that nj(k) — mq(k) >
1. Then we are in Case 1. By Abhyankar’s inversion theorem

ykﬂ(:t,&/?l( ))) is a Puiseux series with
gk +1) = g(k)
my(k+ 1) =nq(k) — mq(k)
(15) my(k+1) =my;(k)
ni(k+1) =mq(k)
ni(k+1) = ni(k) + mi(k) - - -my(k) — na(k)ma(k) - - - my(k),

1<i<g(k+1).
Let fx41 be the strict transform of fi in Ry 2 k[[2k+1, Yk+1]]- We have

Rk+1/(.fk+1) —T= k[[t”
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where in T the relations (15) and (4) hold. Set

m(k+1)
m(k
A= T] kn — g (W)

r=1

where w is a primitive root m(k+1)th root of unity. Now A = 0in T and
A € Riy1. We note that A is irreducible in Ry since its irreducible
factors in Rk+1[ac,(c¥;n(k+1))] are the terms yg41 — yk+1(w”"ac,(€¥1n(k+1))),

and the only product of these terms which is invariant under the action
2A/m(k+1)) 0 (1/m(k+1)) §g A

Hence, (A) = (fx+1), frt1 is y-general of order m(k + 1) and

ykﬂ(:v,&/?l(kﬂ))) is a Puiseux expansion of fi1.

Secondly, suppose that nq (k) —m4(k) = 1. Then we are in Case 2. By

(1/m(7€+1)))
1

e is a Puiseux series

Abhyankar’s inversion theorem, yj41(z
with

gk +1)=g(k) -1
mi(k+1)=mip1(k) 1<i<gk+1)
ni(k +1) = nip1(k) + ma(k) - mip1(k) — ni(k)ma(k) - - - mig (k)
1<i<g(k+1).

. . 1 N . .
As in the previous case, yk_s_l(xéﬁ"(wr ))) is a Puiseux expansion of

fr+1, the strict transform of fj in Ryyq. O
We now offer an inductive proof of Theorem 3.1.

Proof. Suppose that k = 0. We have 1,1 > 0, so we are in Case 1 with
j=1,1=0,9(0) =g, m(0) = (ri,1/(ma---mg)) = mi, m;(0) =m;
forl <i<g—j+1, nz(k:) = (ki/(mi+1 3 mq)) =n;forl <i<g—j+1
in agreement with the formula.

Now suppose that the theorem is true for k = n. We will verify the
theorem for k = n + 1. There are six cases to consider:

ji—1 w(h) ji—1 w(h)

Cl Y D> mmi<n=) > mnitpa—-1 1<j<g

h=1 i=1 h=1 i=1
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j=1 w(h) j—1 w(h)
C2 ZZuhl<n<ZZuhl+u31—l 1<j<g
h=1 i=1
ji—1 w(h
C3 Zuhz'i_Zszgn—z Zﬂhz+2ﬂjz_
i= h=1 i=1
1§]§% ZSqS w(j) =1
j—1 w(h) ji—1 w(h
C4 Z hz+Zsz§n< Zﬂhz+2ﬂjz_
h=1 i= h=1 i=1
1§j§% 2<q<wU 1
j=1 w(h) w(g)—1 j—1 w(h) w(g)
C5 Z hz+ Z M]zgn—z Zﬂhz""Zsz_
h=1 i=1 i=1 h=1 i=1
1<j<g-1
j=1 w(h) w(g)—1 j—1 w(h) w(g)
C6 ZZ h7.+ Z sz<n<z Z,u’hl—i_z,u’jl_
h=1 i= h=1 =1
1§j§g—1

Suppose we are in Case Cl. Then n+ 1 = Zi;ll i (?) Bhi + g1

There are three subcases to consider.

Cl.1. 2 < w(j). Then n+ 1 is in Case 2 of the statement of the
theorem (with ¢ =2 and [ = 0).

Cl.2. 2=w(j),7 <g—1. Then n+ 1 is in Case 3 of the statement
of the theorem (with [ = 0).

C13. 2 =w(j), j =¢g. Then n+ 1 is in Case 4 of the statement of
the theorem.

We begin with subcase C1.1. Here n is in Case 1 of the statement of
the theorem. So, by the inductive hypothesis and (9) we have

ni(n) _ kj—kjo1— (pin —1)rjn myga---my
mi(n) Mjp1 My 1

_ ki =k = (=

= o
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_oria (k= ki — i)

74,1
Applying the identities from the Euclidean algorithms (8) we get

m(n) _ratre

since ;9 < ;1. Similarly,

kj — ki1 = (o =D rja —7jn
m]+1 ... mg

ni(n) —my(n) =

_ ki — ki —pyaria
o Mjy1 - My
’I”j72
Tj,w(5)
> 1,

since 7; ;) | 7,2 and 2 < w(j). We are thus in Case 2 of Lemma 3.2.
So we have, after applying (13) and (9),

gn+1) =g(n) =g —-j+1
mi(n+1) =ny1(n) —my(n)
ki — ki —(mia —Drja—7ia
- m]+1 oo mg

_ 2
Mjt1 My
mi(n+1) =mi(n) =mipj_1, 1<i<g—j+1

r
ni(n+1) =my(n) = 71

Mjy1-- Mg
n;(n+1) = n;(n) + my(n)---m;(n) — ny(n)mg(n) - - -m;(n)
_ (ki =k = (o= i) +rja— (k= kj 1= (nja—1) r51)
Mgy Mg

- ’“”ﬂ'*l_kﬂ'*ﬁ”vl, l<i<g-—j+1,
Miyj - Mg

which is in agreement with the conclusion of the theorem.
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Now consider subcase C1.2. Here we have n in Case 1 of the statement
of the theorem. Therefore,

ni(n) _ ki —kj—1— (pin —1)rjn

mi(n) i
_ Tiat e
S
<2
and
ni(n) —ma(n) = —22 =1,
Tjw(5)

so we are in Case 3 of Lemma 3.2. Accordingly, we apply (14) and (9)
to get

gin+1)=g(n)—1=g—j
mi(n+1) =mipi(n) =mq;, 1<i<g—j
ni(n+1) =nis1(n) + mi(n) - - -mip1(n) — ni(n)ma(n) - -mis1(n)
_ (i =k = (ia= D) ra)+ria—(ki—kj—1 = (uja=1) rj1)
Mt Mg

_ k:i+j - k‘j + 71
- b)
mi+j .. .mg

I<i<g—17,

again, in agreement with the conclusion of the theorem.

Next we consider subcase C1.3. In this case n is again in Case 1 of
the statement of the theorem so we can apply (9) to get

m(n) _ratrie

and
ni(n) —mq(n) = T2 g
Tjw(3)
which implies we are again in Case 3 of Lemma 3.2. Therefore, (14)
and (9) imply g(n +1) =g(n) —1=(¢9—j+1)—-1=1-1=0as
claimed in the theorem.
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Suppose we have Case C2. Then n + 1 is in Case 1 of the statement
of the theorem. This puts n in Case 1 of the statement of the theorem.
Thus, by (9), we have

nl(n) - kj — k’j,1 — lrj,l ] mj+1 s -mg

my(n) Mjp1 My Tj,l

_miarin — (0= 000 S ) ia
Tj1

gn+1)=gn)=g—-j+1

min 1) =min) = o e
J g

mi(n+1)=m;(n) =myj_1, 1<i<g—j+1
ni(n+1) =n;(n) —myi(n)---m;(n)
. ki—i—j—l kj 1 — (n— E Z 1 Mh z) Tji1 —Tj1

Mg - mq

_ ki =k = (4 1) - >” Ef}(}f i) T
Miqj My

_ kivjo1 — ki —lrja

as desired.

Now we consider case C3. Here we have

j=1 w(h) q(n)
TL+1—Z Z/’th—i_zl’l/jl
h=1 i=1

with 1 < j <gand 2 <¢g(n) <w(j)— 1. There are three subcases.

C3.1. g(n)+1 <w(j) — 1. Then n+ 1 is in Case 2 of Theorem 3.1
with ¢(n+1) =¢(n)+1and [ =0.

C3.2. g(n) = w(j)—1,j < g—1. Then n+ 1 is in Case 3 of
Theorem 3.1 with { = 0.
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C33. q(n)=w()—-1,5j=g9.

Suppose we are in subcase C3.1. Then we have that n is in Case 2 of
the statement of the theorem, so by (10):

m(n) _ Tigm-1 ~ Whgm) = D Tigm) myt1---my

ml(n) mMjqy1 My rj7q(n)
_ Tiam) tTjam)+1
Tj,a(n)
<2
and , ,
ni(n) —mi(n) = dam)+1  _ Tha(n)+1 -1
Mjy1:- My Tj,w(d)

since 7.y | 7j,q(n)+1 and w(j) > g(n) + 1. This places us in Case 2
of Lemma 3.2. We use (13) and (10) to conclude

gin+1)=g(n)=g—j+1

mi(n+1) =ni(n) —my(n)
_ Tiam—1 = Wiam) = 1 Tham) = Tjatn)
Mjy1:: My

Tj,a(n)+1
M1 Mg

Tj,a(n+1)
Mys1 - Mg

mi(n+1) =m;(n) =myj_1, 1<i<g—j+1
Tj,q(n)

ni(n+1) =mi(n) = 74

i ) 1(n) Mjy1- My

_ Tiam+1 — 1
Mgy
ni(n+1) =n;(n) + mi(n)---mi(n) — ny(n)ma(n) - - - m;(n)
_ i1 = ki a1 = (Bjaem) = D Ta(m)
M4t Mg
Tiatm) = (Mjam)—1 = (Hiam) = D7)
M1 Mg

_|_
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ki1 — ki 15 00)

Kivj—1—kj +7jqn+1)—1
M1 My

, I<i<g—37+1,
as desired.

Now consider subcase C3.2. In this case we have that n is in Case 2
of the statement of the theorem. From (10) we get:

ni(n) 1+ Tier

1< = <2
my(n) Tj.q
as in C3.1 above. Also
Ti oln
ni(n) —ma(n) = 21—
Tjw(5)

since ¢(n) + 1 = w(j). This places us in Case 3 of Lemma 3.2. Hence
we invoke (14) and (10) to write
gn+1)=g(n) —1=g—j
mi(n+1) =mi1(n) = Mitj, 1<i<g—j
ni(n+1) = nip1(n) + my(n)---miy1(n)
—ni(n)ma(n)---mit1(n)
_ ki — kit rie1 = (g = DTig
B Miqj Mg
4 lia ™ (rjg—1— (g — 1) 7jq)
Miyj My
_ Kii — kA7
C O Mayyemy

ki — k4w -1

ml+] ... mg
as claimed in the theorem.

In subcase C3.3, n + 1 and n are each in Case 2 of the statement of
the theorem. By (10), we have

ni(n) _ Tig-1— (g =D rjg mje1-my

mi(n) Mjt1---My Tja
_ Mgt e+

Tj,q
<2
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and

TS a(n
ni(n) —mi(n) = M =1.
Tj,w(5)

Again we are in Case 3 of Lemma 3.2 so (14) and (10) imply g(n+1) =
gln)—1=1-1=0.

If we are in Case C4 we see that n is in Case 2 of the statement of
the theorem. Thus, (10) yields

) Jj—1 g~w(h) =1\ .
ni(n) Tj,q—l_(”_zhzl i=1 Mhi= 2. =1 Hji) Tjq ity My

m1(n) Mijtj -+ My Tiq
Jj—1 w(h) q—
Hij.qT5,— (” = D he1 Qoic1 Mhg i= 1 Hii) Tjq

Tj.q

gn+1)=gn)=g—-j+1
r
min+1)=mi(n)= —2L
1(n+1) =mi(n) S
ni(n+1) =ni(n) —mi(n)---mi(n), 1<i<g-—j+1

ki+] 1= k +T]q 1

_ g-1 o
<n Z i= 1 /~Lh1 i=1 :“M) Tj.a — Tjq
kg k4 rie

Mitj Mg

((” +1) = 90 S s = Mj,z‘) Tjq
Mirg 1
_ ki1 =k g1 =g
B Mg+ My

in agreement with the statement of the theorem.
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Turning to Case C5 we see that

j—1 w(h) w(y) j  w(h)
n+1:Z Zﬂh=i+zﬂj=izz Zﬂh,i
h=1 i=1 =1 h=1 i=1

when 1 < j < g— 1. This generates the following subcases.

C5.1. pjt11 > 0. Here n+ 1 is in Case 1 of the statement of the
theorem with [ =0 and j(n+ 1) = j(n) + 1.

C5.2. pj+11 = 0 and 2 < w(j +1). Then n + 1 is in Case 2 of
the statement of the theorem with [ = 0, j(n + 1) = j(n) + 1 and
gn+1)=2.

C53. pjt110 =0, w(i+1) =2and j+1 < g—1. Thenn+1
is in Case 3 of the statement of the theorem and we have [ = 0 and
jn+1)=j(n)+1.

C5.4. pjt11=0,w(j+1)=2and j+1=g. Inthiscasen+1isin
Case 4 of the statement of the theorem.

In subcase C5.1 we have that n is in Case 3 of the statement of the
theorem. Using (11), we compute

mn) _ ki =k 4w -1 = W) = D Tw)
my(n) T ()
_ ki =R i)

N T w()

since 7, (j)—1 — Mjw(j) Tj,w(g) = 0- Now, by the Euclidean algorithms
(8) and the fact that r; ;) = 41,1, we can write this as

ni(n)  pjr1aTie1 T2 i

ml(n) Tj+171
(i D) i1 F e
B Tj+1,1
> 2,

and we are in Case 1 of Lemma 3.2. Thus, by (12) and (11),

gn+1)=gn)=g—jn)=g—jn+1)+1
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mi(n+1) =mi(n) = mjm)41 = Mjm+1)
mi(n+1) =mi(n) = mipjm) = Mitjmin-1 1 <i<g—jn+l)+1
ni(n+1) =n;(n) —mi(n)---m;(n)

ki =k e -1 — Wiw) — D riwl) — Tiwl)

Mitj41 My
Miyj41 Mg
_ kijan—1 —ki(n+1) -1

Mitj(n+1) " My

1<i<g—j(n+l)+1,

as claimed in the theorem.

In the event that we are in subcase C5.2, we would have that n is in
Case 3 of the statement of the theorem. Hence, by (11):

ni(n) ki1 — ki +rjeim-1— (e — D riwe)

ma(n) Tjw(i)
_ (ke = k) + () -1 = Kiw() Tiw)) + Tw()
Tjw(d)
_ (g i) +(0) 7540
Tjw(d)

_ Tl T T2

Tj+1,1
<2

and

(Bj1 =k +75 (i) —1= (1jw) = D) Tw) = Tiw()
My My

ni(n) —mi(n) =

(rjr11 +7j11,2) = Tjw)
Mji My
Tj+1,2
Mjtg- My
> 1

since 2 < w(j + 1). This places us in Case 2 of Lemma 3.2. We then
apply (13) and (11) to get

gn+1)=gn)=g—jn)=g—jn+1)+1
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mi(n+1) =ni(n) —my(n)
kivi = ki + Tjwi-1 = (Bw@) — D Mw@) = M)
M1 Mg

Tj+1,2
Myt Mg
Tj(n+1),q(n+1)
Mj(n+1)+1 """ Myg

mi(n+1) =mi(n) = mitjn) = Miyjmrn-1 1 <i<g—jn+l)+1
7". .
ni(n+1)=mi(n) = —wl)
Mjy1 My
Titi1 Tt q(nt1)—1

Mjpa My Mjminypr Mg
ni(n+1) =n;(n) + mi(n)---my(n) —ni(n) ma(n) - --m;(n)

ki =k wG -1 — (BiwG) — 1) Tiw) T Tiwl)

Mipjy1 - My
ki R G- — (Bwg) — D Tw)
Miyj41- My

ki = ki T 00)

Mitj1-7 My
Kivjmi1—1 = Kjnt1) + Tin+1), gt 1)—1
Mitj(nt1) " My
1<i<g—jn+1)+1

in agreement with the conclusion of the theorem.

Subcase C5.3 puts both n and n + 1 into Case 3 of the statement of
the theorem. So, by (11), we have

ni(n)  Tit11 12

= <2
mi(n) Tj+1,1
which we computed in C5.2 above. But now,
Tj4+1,2
ni(n) —m(n) = I+ =1

mj+2...mg
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since w(j + 1) = 2. We are thus in Case 3 of Lemma 3.2 which, via
(14) and (11), gives

gn+1)=gn)—1l=g—j—-1=g—jn+1)
mi(n+1) =mip1(n) = Mg jr1 = Mgy, 1 <1< g—j(n+l)
ni(n+ 1) = nipr(n)+ma(n) - - miyp1(n)—ni(n) ma(n) - - -mip1(n)

ki =k rwg)-1 — MwG) — D TiwG) F Tiw)

Mitjt2 My
ki =k )1 = (w) = D iwe)
Mitjt2 My

ki = ki r00)

Mitjt2 My

_ ki) = Eimrn) F Tiet) w1 - 1)

Mt j(nt1)+1" "My
l<i<g—jn+1),
as desired.
If we are in subcase C5.4, we note that n is in Case 3 of the statement

of the theorem. Thus, as in C5.3, we have

n(n) _ rjrintrivie  rgatree
my(n) Tt rg.1

and
Tj+1,2

) =) = e
J g

Now by our convention
i—1
n=i

Using this, the fact that j +1 = g, w(g) = 2 = rj112 = 74 u(g), and
recalling from (8) that rg .4 = 1, we get

ni(n) —mi(n) =rgug =1,
which implies that we are in Case 3 of Lemma 3.2 and we have from

(14) and (11) that g(n+1) =g(n) —1=g—j—-1=g—(j+1)=0as
claimed.
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Lastly, suppose we are in Case C6. Then n and n+1 are each in part
3 of the statement of the theorem. So by (11) we have

ni(n) ki1 — ki +15004)-1

ml(n) mj+2...mg

j—1 w(h) w(j)—1
(”—Zizl 2oimt M= 21 ﬂm) Tiw@) myyg--omy

mj+2...mg

Tj,w(3)
S ki = ks + w1 = W) = 2 e

Tj,w(5)
_ ki = Ky A b)) — W) = 2 i)
Tj,w(3)
ki k427500

a T ()
> 9

= 4

which places us in Case 1 of Lemma 3.2. By (12) and (11) we have

ni(n+1) =n;(n) —mqi(n)---m;(n)
kivj = ki + 7)1 — (n — 02 S
Mitjt1 My
- Mj,i) Tiw(i) ~ Tiw()

Mitj1-° My

+

ki — kw1

Mitj41- Mg
j—1 w(h w(j)—1
—((”‘H) — Y1 Zz‘=(1) ﬂh,i_zz':({) ﬂj,i) Tj,w(4)
Mitjp1 My
Kivj — ki +mjw@—1 = ITwi)

= ’ 1§'L§g_]a
Mitj+1 Mg

in accord with the theorem.

Thus, we’ve shown the theorem true by induction. |
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Let

R— R — - —R,

be the resolution sequence of an irreducible f € R. Let v; = v(f;)
where f; is the strict transform of f in R; and vy = v(f). We define
the multiplicity sequence of f to be the sequence (v, v1,... ,Vp—1).

A classical theorem of Enriques and Chisini [4] follows from Theo-
rem 3.1 since v, = m(k) for all k.

Corollary 3.3 (Enriques-Chisini). Let the notation be as in the
statement of Theorem 3.1.

1. The multiplicity sequence of f is completely determined by the
characteristic pairs of f. In fact, the multiplicity sequence is deter-
mined by the chain of Fuclidean algorithms (8). In the multiplicity

sequence, the multiplicity r; ; appears p; ; times where ¢ = 1,... ,g;
j=1,... w(i), i.e., the multiplicity sequence is
1,15+ 571,171,254+ 5T1,25 - - - arl,w(l)a v 7T1,w(1)7r2,17 sy 21,
P11 P12 H1,w(1) H2,1

2. Conwversely, one can reconstruct the characteristic pairs of a
Puiseux expansion of f from the multiplicity sequence by the chain of
Euclidean algorithms (8).

An immediate consequence of this corollary is the fact that the
characteristic pairs are an invariant of f.

Acknowledgment. The author would like to thank Dr. Steven Dale
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