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UPPER AND LOWER SOLUTIONS FOR A
HOMOGENEOUS DIRICHLET PROBLEM WITH
NONLINEAR DIFFUSION AND THE PRINCIPLE

OF LINEARIZED STABILITY

ROBERT STEPHEN CANTRELL AND CHRIS COSNER

ABSTRACT. We consider a class of quasilinear elliptic
equations on a bounded domain subject to homogeneous
Dirichlet boundary data. We establish a means of construct-
ing upper and lower solutions in a neighborhood of a given
solution to the quasilinear boundary value problem, leading
to a principle of linearized stability instability for the solu-
tion viewed as an equilibrium to the corresponding parabolic
problem.

1. Introduction. The purpose of this note is to demonstrate a
means of constructing upper and lower solutions in a neighborhood of
a given solution to a homogeneous Dirichlet problem with nonlinear
diffusion of the form

∇ · (d(x, u)∇u) + f(x, u) = 0 in Ω(1.1)
u = 0 on ∂Ω,(1.2)

where Ω is a smooth bounded domain in Rn. The construction requires
only minimal assumptions on the coefficients d and f , namely, that both
are sufficiently smooth and that d is positive. One then formulates the
linearization of (1.1) about u and considers the principal eigenvalue σ
and a positive principal eigenfunction φ of the linearization. If

σ > 0, z = u + εφ − ε2 du(x, u)
2d(x, u)

φ2
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gives a lower solution to (1.1) (1.2) for small positive ε while

w = u − εφ − ε2du(x, u)
2d(x, u)

φ2

gives an upper solution for small positive ε. (If σ < 0, the roles of
z and w are reversed.) If du(x, u) ≡ 0, (1.1) reduces to a semi-linear
problem and z and w reduce to u + εφ and u − εφ, respectively. It
is well known that u ± εφ may be employed as lower and upper (or
upper and lower) solutions for (1.1) (1.2) in the semilinear context.
Moreover, the simpler constructions remain valid in the quasilinear
setting (du(x, u) �≡ 0) so long as the Dirichlet boundary condition
(1.2) is replaced with a Neumann boundary condition, for example.
However, there is a fundamental obstacle to using u±εφ in the context
of (1.1) (1.2). Namely, the eigenfunction φ vanishes on ∂Ω while
|∇φ|2 does not. As a consequence, the lowest order, in ε, term in
∇ · (d(x, z)∇z) + f(x, z), namely εσφ, does not overpower the higher
order, in ε, term ε2du(x, u)|∇φ|2 on all of Ω. The more complicated
construction enables one to circumvent this obstacle, as we demonstrate
in the next section.

The problem of constructing lower or upper solutions for (1.1) (1.2)
arises in a number of contexts. In our case, we encountered a need for
lower solutions above a positive equilibrium solution to

(1.3)
∂u

∂t
= ∇ · (d(x, u)∇u) + λ(m(x)− u)u in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)

while studying persistence phenomena in ecological models that incor-
porate aggregation into the dispersal mechanism of the population ([6]).
See [7] also for background. It seemed to us the construction of upper
and lower solutions to (1.1) (1.2) would be of interest to the mathe-
matical community but of lesser interest per se to the mathematical
biology community. Consequently, we have presented the construction
in some generality in this note. We employ the results of this note in
our analysis of (1.3) in [6].

The remainder of this article is as follows. As noted previously,
we demonstrate that z and w as defined above are lower and upper
(or upper and lower) solutions for (1.1) (1.2) in Section 2. We then
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observe in Section 3 the principles of linearized stability instability
for the corresponding parabolic problems which arise naturally as
consequences of the construction. These versions of the principle of
linearized stability for quasilinear parabolic problems are less general
than those obtained in [8] or [10], for example. However, arising as
they do from the method of upper and lower solutions, the versions in
Section 3 provide more quantitative information regarding the basin of
attraction for the given solution to (1.1) (1.2) than would be feasible
in a more general context.

2. Upper and lower solutions.

We may now establish our main result.

Theorem 2.1. Suppose that d, f ∈ C3(Ω × R) and that d(x, s) >
d1 > 0 for all x ∈ Ω and s ∈ R, where Ω is a smooth bounded domain
in Rn. Suppose that

(2.1)
∇ · (d(x, u)∇u) + f(x, u) = 0 in Ω

u = 0 on ∂Ω

and that σ is the principal eigenvalue of the linearization of (2.1) about
u, i.e., φ exists so that

(2.2)
∇ · [d(x, u)∇φ + du(x, u)φ∇u] + fu(x, u)φ = σφ in Ω

φ = 0 on ∂Ω,

with φ > 0 in Ω.

(i) If σ > 0, then z = u + εφ − ε2(du(x, u)/(2d(x, u)))φ2 is a
lower solution to (2.1) for all sufficiently small ε > 0 and w =
u − εφ − ε2(du(x, u)/(2d(x, u)))φ2 is an upper solution to (2.1) for all
sufficiently small ε > 0.

(ii) If σ < 0 and z and w are given in (i), z is an upper solution to
(2.1) and w is a lower solution to (2.1) for all sufficiently small ε > 0.

Proof. We shall demonstrate that z is a lower solution to (2.1) when
σ > 0. The remaining three arguments proceed analogously and are
left to the reader. Expanding d and f via Taylor’s Theorem, we have
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that

∇ · d(x, z)∇z + f(x, z)

= ∇ ·
[(

d(x, u) + du(x, u)
[
εφ − ε2 du(x, u)

2d(x, u)
φ2

]

+ d∗(x, z)ε2φ2

)
· ∇

(
u + εφ − ε2 du(x, u)

2d(x, u)
φ2

)]

+ f(x, u) + fu(x, u)
(

εφ − ε2 du(x, u)
2d(x, u)

φ2

)
+ q∗(x, z)ε2φ2,

where d∗(x, z) and q∗(x, z) are smooth and bounded.

Rearranging terms, we have that
(2.3)

∇ · d(x, z)∇z + f(x, z)

= ∇ · (d(x, u)∇u) + f(x, u)

+ ε[∇ · (d(x, u)∇φ + du(x, u)φ∇u) + fu(x, u)φ]

+ ε2

[
∇ ·

(
du(x, u)φ∇φ − d(x, u)∇

(
du(x, u)
2d(x, u)

φ2

))]

+ ε2

[
∇ ·

(
φ2d∗(x, z)∇u − d2

u(x, u)
2d(x, u)

φ2∇u

)
+ q∗(x, z)φ2

− fu(x, u)
du(x, u)
2d(x, u)

φ2

]

+ ε3

[
∇ ·

(−d2
u(x, u)φ2

2d(x, u)
+ d∗(x, z)φ2

)
∇

(
φ − εdu(x, u)

2d(x, u)
φ2

)

−∇ · du(x, u)φ∇
(

du(x, u)
2d(x, u)

φ2

)]
.

The first term on the righthand side of (2.3) vanishes since u satisfies
(2.1). By (2.2) the second term equals εσφ. Since σ > 0 and the
remaining three terms are higher in order in ε, z will be a lower solution
provided the remaining terms on the righthand side of (2.3) vanish on
∂Ω. It is evident that such is the case for the fourth and fifth terms since
for �F (x) a smooth vector field on Ω, ∇ · (φ2 �F ) = 2φ∇φ · �F + φ2∇ · �F ,
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which vanishes on ∂Ω by virtue of the fact that φ does. Hence, to
establish that z is a lower solution to (2.1), we need only show that

[
∇ ·

(
du(x, u)φ∇φ − d(x, u)∇

(
du(x, u)
2d(x, u)

φ2

))]

vanishes on ∂Ω. But now
(2.4)[
∇ ·

(
du(x, u)φ∇φ − d(x, u)∇

(
du(x, u)
2d(x, u)

φ2

))]

=
[
∇ ·

(
du(x, u)φ∇φ −d(x, u)φ2∇

(
du(x, u)
2d(x, u)

)
− d(x, u)du(x, u)

2d(x, u)
∇φ2

)]

=
[
∇ ·

(
du(x, u)φ∇φ − φ2d(x, u)∇

(
du(x, u)
2d(x, u)

)
− du(x, u)φ∇φ

)]

= −∇ ·
(

φ2d(x, u)∇
(

du(x, u)
2d(x, u)

))
.

Consequently,
[
∇ ·

(
du(x, u)φ∇φ − d(x, u)∇

(
du(x, u)
2d(x, u)

φ2

))]

vanishes on ∂Ω, and z is a lower solution to (2.1) as claimed.

Remark. Theorem 2.1 remains valid when auxiliary parameters are
included, e.g., when we consider λf(x, u) in place of f(x, u). Moreover,
the smoothness assumptions in the hypotheses are intended to make
the proof of the construction as simple as possible. We do not claim
that they are sharp.

3. Linearized stability and instability. The results of the
preceding section provide a basis for a linearized stability analysis of
the parabolic quasilinear problem corresponding to (2.1), i.e.,

(3.1)
∂u

∂t
= ∇ · (d(x, u)∇u) + f(x, u) in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞).
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Suppose that u0 is an equilibrium solution to (3.1) and that there is
a neighborhood U of u0 in an appropriate Banach space (C1

0(Ω) e.g.)
so that any solution to (3.1) with initial data in the neighborhood is
defined for all t > 0. Such an assumption is met, for instance, if u0 is
positive in Ω and f(x, u) = uf̃(x, u) with (∂f̃/∂u)(x, u) ≤ 0 for x ∈ Ω
and u ≥ 0 and f̃(x, u) < 0 for x ∈ Ω and u ≥ k > 0. (In this case,
solutions are also asymptotically bounded. See [7], for example.)

Theorem 12 of [11, Chapter 3] guarantees that if u1 and u2 are

solutions to (3.1) with u1(x, 0), u2(x, 0) in U such that u1(x, 0)
<

�≡u2(x, 0)
on Ω, then u1(x, t) < u2(x, t) for all t > 0. As in [5], if u is a solution to
(3.1) with u(x, 0) in U a lower solution to (2.1), u(x, t) is monotonically
increasing in t for all x ∈ Ω; likewise, if u(x, 0) in U is an upper solution
to (2.1), u(x, t) is monotonically decreasing in t for all x ∈ Ω. If in either
case u is asymptotically bounded, then it converges pointwise on Ω as
t → ∞. The regularity results of [1] [3] guarantee that the pointwise
limit is an equilibrium to (3.1), i.e., a solution to (2.1), and moreover
that the convergence of u(x, t) to the equilibrium as t → ∞ may be
taken in the C1(Ω) topology.

Suppose now that φ, z and w are as in the statement of Theorem 2.1,
corresponding to u = u0. Since ∇φ · η < 0 on ∂Ω, where η is a unit
outer normal to ∂Ω, z − u and u − w are both positive in Ω with
∆(z − u) · η and ∆(u − w) · η negative on ∂Ω for ε > 0 sufficiently
small. (In other words, z−u and u−w, lie in [C1

0 (Ω)
+]0, the interior of

the positive cone C1
0 (Ω)

+ of C1
0 (Ω). See [4], for example.) Combining

this observation with the information of the preceding paragraph, one
readily obtains the following stability instability principle for positive
solutions to (3.1).

Theorem 3.1. Suppose u0 is a positive equilibrium solution to (3.1),
and assume U is a neighborhood of u0 in C1

0 (Ω) so that solutions to
(3.1) with initial data in U exist for all t > 0. Let φ and σ be as in
(2.2) with u = u0.

(i) Suppose σ < 0. Then u0 is locally asymptotically stable viewed
as a solution to (3.1).

(ii) Suppose σ > 0. Let ρ be a solution to (3.1) with ρ(x, 0) ∈ U and
ρ(x, 0)− u ∈ (C1

0(Ω
+
)0.
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Then for all t > 0, ρ(x, t) > z(x, t) in Ω, where z(x, t) is a
solution to (3.1) having z(x, 0) = z for some ε > 0 and suffi-
ciently small. Consequently, ρ(x, t) is bounded from below away from
u0. In particular, either limt→∞ ρ(x, t) = +∞ for some x ∈ Ω or
lim inft→∞ ρ(x, t) ≥ u∗(x), where u∗ is an equilibrium solution to (3.1)
with u∗(x) > u0(x) on Ω. Similarly, if ρ is a solution to (3.1) with
ρ(x, 0) ∈ U and u− ρ(x, 0) ∈ (C1

0 (Ω)
+)0, ρ(x, t) is bounded from above

away from u0, with either limt→∞ ρ(x, t) = −∞ for some x ∈ Ω or
lim supt→∞ ρ(x, t) ≤ u∗(x), where u∗ is an equilibrium solution to (3.1)
with u∗(x) < u0(x) on Ω.

Remark. The results of this section can be viewed as an extension
of the principle of linearized stability for the semi-linear case (i.e.,
(∂/∂u)d(x, u) ≡ 0) as established in [9].
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