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THE RESTRICTED TANGENT BUNDLE
OF SMOOTH CURVES IN GRASSMANNIANS

AND CURVES IN FLAG VARIETIES

EDOARDO BALLICO AND LUCIANA RAMELLA

ABSTRACT. Let X be a smooth curve of genus g ≥ 2
over an algebraically closed base field k of any characteristic.
Denote by G(r, ν) the Grassmannian of the rank r quotients
of kν and by Q the universal quotient bundle of G(r, ν). Let
us consider degree d embeddings ϕ : X → G(r, ν). We prove
that, for d ≥ ν + r(g − 1) and (ν, r, d) �= (4, 2, 2g + 2), varying
ϕ we obtain as restricted quotient bundles ϕ∗(Q) points of an
open dense subset of the moduli space M(X; r, d) of rank r
stable vector bundles on X with degree d. We can extend
this result to the flag varieties. For the projective spaces Pn,
we obtain that if d is large with respect to g, d ≥ ng + 1,
then degree d embeddings ϕ : X → Pn cover a dense open
subset of the moduli space M(X; n, (n+1)d) by means of the
restricted tangent bundles ϕ∗(TPn ). This fact does not hold
for restricted tangent bundles of a Grassmannian G(r, ν) with
2 ≤ r ≤ ν − 2. However, for a large degree d, we are able to
characterize the restricted tangent bundles ϕ∗(TG(r,ν)) of a
Grassmannian, obtaining that in general they are stable. For
an elliptic curve Y , we show that in characteristic 0 there is
a degree d embedding of Y in a Grassmannian with a stable
restricted tangent bundle if and only if there is not a numerical
restriction to its existence.

Introduction. Let X be a smooth curve of genus g ≥ 2 over an
algebraically closed base field k of any characteristic. Let M(X; r, d)
be the irreducible smooth variety parameterizing the stable vector bun-
dles on X with rank r > 0 and degree d. We have dimM(X; r, d) =
r2(g − 1) + 1. If L is a line bundle on X with degree d, we denote by
M(X; r, L) the irreducible smooth subvariety of M(X; r, d) parameter-
izing the stable rank r vector bundles with determinant L. We have
dimM(X; r, L) = (r2 − 1)(g − 1).

Let us consider degree d embeddings ϕ : X → Pn, n ≥ 3. Several
authors studied the semi-stability and stability of the restricted tangent
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bundle ϕ∗(TPn) [7], [8] and [4]. We prove that, for d ≥ ng + 1,
varying ϕ we obtain as restricted tangent bundles ϕ∗(TPn) points of
an open dense subset of the moduli space M(X;n, (n + 1)d) of rank n
stable vector bundles on X with degree (n + 1)d (Theorem 1.5). For a
large d, d ≥ ng + n + 2, and in characteristic 0, the above statement
on the restricted tangent bundle of Pn is easy and certainly “well-
known to the specialists.” That follows from the fact that TPn(−1)
is the universal rank n quotient bundle on Pn and, for a large d,
a general E in M(X;n, d) is such that E, E(−P ) and E(−P − P ′)
are nonspecial for every P, P ′ ∈ X ([16], [13] and [5]). To have the
result for d ≥ ng + 1 and in any characteristic of k, we use positive
elementary transformations of a known restricted tangent bundle and
degenerations of curves as in [4].

Furthermore, by using elementary transformations, we can prove
that in any characteristic of k a general E in M(X; r, d) has either
h0(X, E) = 0 or h1(X, E) = 0 (Lemma 1.2).

Then, if the normalized restricted tangent bundle ϕ∗(TPn(−1)) is a
general vector bundle in M(X;n, d), we have h0(X, ϕ∗(TPn(−1))) ≥
n + 1 and h1(X, ϕ∗(TPn(−1))) = 0. The Riemann-Roch Theorem
implies d ≥ ng + 1. Hence the numerical assumptions in Theorem 1.5
are necessary conditions and, from this point of view, Theorem 1.5 is
sharp.

We extend the above result to the universal quotient bundle of a
Grassmannian. If 0 < r < ν, G(r, ν) denotes the Grassmannian of
the rank r quotients of kν . Let Q be the universal rank r quotient
bundle of G(r, ν) and S the universal rank ν − r subbundle of G(r, ν).
If ν, r and d are integers with ν > r ≥ 2, d ≥ ν + r(g − 1) and
(ν, r, d) �= (4, 2, 2g + 2), we prove that for a general vector bundle
Q in M(X; r, d) there exists a nondegenerate degree d embedding
ϕ : X → G(r, ν) such that ϕ∗(Q) ∼= Q (Theorem 2.1). Note that the
numerical assumption d ≥ ν + r(g−1) is sharp to have a nonspecial Q.

We obtain some results concerning the restricted tangent bundle of
a Grassmannian to a curve. If d is large with respect to ν, r and
g, and L is a general degree d line bundle on X, we prove that for
a general vector bundle Q in M(X, r, L) and a general vector bundle
S in M(X, ν − r, L∨) a nondegenerate embedding ϕ : X → G(r, ν)
exists such that Q ∼= ϕ∗(Q), S ∼= ϕ∗(S) and in particular ϕ∗(TG(r,ν)) ∼=
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Q ⊗ S∨ (Theorem 2.13).

With the assumption char k = 0, if E is a general stable bundle in
M(X; r, a) and F is a general stable bundle in M(X; s, b), then the
tensor product E ⊗ F is stable. Hence in the above result (Theorem
2.13) with the assumption char k = 0, we can obtain stable restricted
tangent bundles ϕ∗(TG(r,ν)) (Remark 2.14).

Note that, if ν ≥ r + 2 ≥ 4, for any integer d the restricted tangent
bundles to degree d embeddings of X into G(r, ν) cannot cover a dense
open subset of M(X; r(ν − r), νd) (Remark 2.15).

In Theorem 3.1 we extend the result on the universal quotient bundle
of a Grassmannian restricted to a curve (Theorem 2.1) to (partial) flag
varieties.

In the last section we will consider briefly the stability of the restricted
tangent bundle of maps from an elliptic curve Y to a Grassmannian
G(r, ν) with 1 ≤ r ≤ ν − 1 and ν ≥ 4, showing that in characteristic 0
there is a degree d embedding of Y in G(r, ν) with a stable restricted
tangent bundle if and only if there is not a numerical restriction to its
existence (Theorem 4.2).

1. Degenerations and the restricted tangent bundle of n. Let
X be a smooth projective curve, P a point of X, E a vector bundle
on X and k(P ) a skyscraper sheaf with length 1 supported at P . A
surjection φ : E∨ → k(P ) gives a point K of P(E∨) lying on the fiber
of P(E∨) at P . The vector bundle kerφ is denoted by elm−

KE∨ and
it is called a negative elementary transformation of E∨. The vector
bundle E′ := (kerφ)∨ is called a positive elementary transformation
of E, and it is denoted by elm+

KE. E′ fits in an exact sequence
0 → E → E′ → k(P ) → 0.

Note that, for a general point K of P(E∨), we have h0(X, elm−
KE∨) =

max{0, h0(X, E∨)− 1} and h1(X, elm+
KE) = max{0, h1(X, E)− 1}.

With the assumption char k = 0, Sundaram in [16] and Laumon
in [13] proved that a general vector bundle E on a smooth curve
X of genus g ≥ 2 has either h0(X, E) = 0 or h1(X, E) = 0. By
using elementary transformations and a result of Hirschowitz (see the
following Lemma 1.1) on the deformations of vector bundles contained
in [9], we will prove in Lemma 1.2 the above statement for a base field
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k of any characteristic.

Lemma 1.1 (Hirschowitz). Let X be a genus g smooth curve over
a field k of arbitrary characteristic with g ≥ 2. Then every vector
bundle F on X is a flat limit of a flat family of stable bundles having
as determinant the line bundle det (F ).

Proof. We report the proof contained in [9]. Let F and G be two
vector bundles on X of rank r with isomorphic determinants. Then a
rank r vector bundle F0 exists, with determinant det (F0) ∼= det (F ) ∼=
det (G) such that both F and G specialize to F0.

The proof of that statement uses the induction on the rank r. For
r = 1 the assertion is trivial. Let r ≥ 2. For an ample line bundle
L on X and for a large n, the bundles F ⊗ Ln and G ⊗ Ln have
a section that is nonnull at every point of X (X is a curve). So
we obtain two exact sequences 0 → L−n → F → F ′ → 0 and
0 → L−n → G → G′ → 0 where F ′ and G′ are two vector bundles
of rank r − 1 with det (F ′) ∼= deg (G′).

By considering the universal extensions of Ext1(F ′, L−n) and Ext1 ×
(G′, L−n), we have that L−n ⊕ F ′ and L−n ⊕ G′ are respectively
specializations of F and G (see [12]). We conclude by the inductive
hypothesis.

Now let F be a rank r vector bundle on X and G ∈ M(X; r, det (F )).
Let F0 be a specialization of both F and G and E → S × X a versal
deformation of F0. The scheme S is smooth because Ext2(F0, F0) = 0.
Since there is an s0 ∈ S such that E(s0) = G, that is stable, and
stability is an open property, we have that for a general s ∈ S the
bundle E(s) is stable.

Lemma 1.2. Fix integers g, r, d with g ≥ 2, r > 0, d ≥ r(g − 1)
and a smooth genus g curve X. Then a general E ∈ M(X; r, d) has
h1(X, E) = 0.

Proof. Fix a large integer t > 0 such that G ∈ M(X; r, d + tr) exists
with h1(X, G) = 0 (e.g., take t ≥ g). Since degG > r(g − 1), we have
h0(X, G) �= 0 and then a general negative elementary transformation
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G′ of G has h0(X, G′) = h0(X, G) − 1 and h1(X, G′) = 0. Thus
the rank r bundle F obtained from G making rt general negative
elementary transformations has degree d and h1(X, F ) = 0. Use the
semi-continuity theorem and Lemma 1.1.

Let us consider a morphism f : X → Pn and set E := f∗(TPn(−1)).
To every line D in Pn passing through f(P ) we associate a positive
elementary transformation elm+

KE of E with support at P because the
line D corresponds to a one-dimensional subspace of (TPn(−1))f(P ).

The following proposition, proved in [4], interprets, in terms of posi-
tive elementary transformations, the flat limit of the restricted tangent
bundle of a degeneration of curves in projective spaces considered in
[3, Proposition 2.1].

Note that the proof made in [4] works in arbitrary characteristics
of k.

Proposition 1.3. Fix a smooth projective curve X. Let L0 be a
very ample line bundle on X of degree d0 with h1(X, L0) = 0 giving
a nondegenerate embedding h : X → Pn, n ≥ 3. Consider a point P
of X and a line D passing through h(P ). Assume that D is not the
tangent line to h(X) at h(P ). Then we have the following assertions:

a) (see [3]) The reducible curve h(X)∪D is a flat limit of a flat family
of smooth curves {Ct} obtained as images of nondegenerate embeddings
ht : X → Pn with h∗

t (OPn(1)) ∼= L0(P ).

b) (see [4, Proposition 1.4]) Set E := h∗(TPn(−1)) and Et :=
h∗

t (TPn(−1)) where ht are the above embeddings. Let E′ be the bundle
obtained from E by the positive elementary transformation associated
to the point P and the line D.

Then E′ is the flat limit of the flat family {Et} of spanned rank n
vector bundles of degree d0 + 1 with det (Et) ∼= L0(P ).

Lemma 1.4. Let X be a smooth projective curve of genus g ≥ 2 and
h : X → Pn a degree d0 embedding as in Proposition 1.3.

Set l := h1(X, H∗(TPn(−1))). For every d ≥ d0 + l there is a
Zariski open nonempty subset Ω of the variety M(X;n, d) of rank n
degree d stable vector bundles on X such that for every F ∈ Ω
there is a nondegenerate degree d embedding ϕ : X → Pn such that
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F ∼= ϕ∗(TPn(−1)).

Proof. It is sufficient to prove the existence of a rank n degree d
stable vector bundle F on X and a nondegenerate degree d embedding
ϕ : X → Pn such that F ∼= ϕ∗(TPn(−1)).

Put s := d − d0. Take s general points P1, . . . , Ps of X and for
each Pi a general line Di in Pn passing through h(Pi). Let Y be the
union of h(X) and the s lines D1, . . . , Ds. Y is the flat limit of a
flat family {Ct} of smooth curves in Pn, where Ct is the image of an
embedding ht : X → Pn (see part a) of Proposition 1.3). By the
second part of Proposition 1.3, the positive elementary transformation
G of E := h∗(TPn(−1)) at D1, . . . , Ds is the flat limit of the flat family
of the vector bundles Gt := h∗

t (TPn(−1)) with L := L0(P1+ · · ·+Ps) ∼=
det (Gt).

For a general positive elementary transformation E′ of E we have
h1(X, E′) = max{0, h1(X, E)−1}. Then the rank n bundle G obtained
from E applying s = d−d0 general positive elementary transformations
has h1(X, G) = 0.

Let F0 be a general bundle of the family {Gt} and F ∈ M(X;n, L)
a general stable deformation of F0 with L ∼= det (F0) (see Lemma 1.1).
By semi-continuity we have h1(X, F0) = h1(X, F ) = 0.

Note that TPn(−1) is the universal rank n quotient bundle of Pn.
To be spanned and inducing an embedding are open conditions in a
family of bundles on X with constant cohomology and moreover the
bundle F0 induces a nondegenerate embedding X → Pn. So the same
assertion holds for the stable vector bundle F .

Theorem 1.5. Fix integers g, n with g ≥ 2, n ≥ 3 and a smooth
projective curve X of genus g. Then for every d ≥ ng + 1 there is
a Zariski open nonempty subset Ω of the variety M(X;n, d) of stable
vector bundles of rank n and degree d on X such that for every F ∈ Ω
there is a nondegenerate degree d embedding ϕ : X → Pn such that
F ∼= ϕ∗(TPn(−1)).

Proof. By [4, Theorem 2.3], if n > g, a general line bundle L0 on X
with degree d0 = g+n induces a linearly normal embedding h : X → Pn
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having h0(X, h∗(TPn(−1)) = n + 1.

Note that the proof of this result made in [4] holds in any character-
istic of k.

Then we have h1(X, h∗(TPn(−1)) = −g − n + 1 + ng. Applying
Lemma 1.4, we obtain the proof for n > g.

Now let L0 be a line bundle on X with degree 2g+1 inducing a linearly
normal embedding h0 : X → Pg+1. The projection of C0 = h0(X) over
a Pg from a general point of Pg+1 gives a degree 2g + 1 embedding
h1 : X → Pg. By considering the sequence of all the general projections
over the projective spaces Pn, with 3 ≤ n ≤ g, we obtain degree
2g +1 embeddings hg+1−n : X → Pn with h∗

g+1−n(OPn(1)) ∼= L0. Put
Cg+1−n = hg+1−n(X). A general projection of the curve Cg−n in Pn+1

over a projective space Pn induces the following commutative diagram
whose rows and columns are exact:

0

u

0

u

OX

u

OX

u

0 w L∨
0 w O⊕(n+2)

X

u

w h∗
g−n(TPn+1(−1))

u

w 0

0 w L∨
0 w O⊕(n+1)

X

u

w h∗
g+1−n(TPn(−1))

u

w 0

0 0

We obtain h0(h∗
g+1−n(TPn(−1))) = n+1 and h1(h∗

g+1−n(TPn(−1))) =
−2g+ng. Applying Lemma 1.4 to curves Cg+1−n, we have the assertion
also for 3 ≤ n ≤ g.

Remark 1.6. Since for all r, d and L ∈ Picd(X) a general F ∈
M(X; r, L) has either h0(X, F ) = 0 or h1(X, F ) = 0 (Lemma 1.2) in
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the statement of Theorem 1.5 we have h1(X, F ) = 0. By the Riemann-
Roch Theorem, the conditions h1(X, F ) = 0 and h0(X, F ) ≥ n + 1
imply d ≥ ng + 1. Hence the numerical assumptions in Theorem 1.5
are necessary conditions and, from this point of view, Theorem 1.5 is
sharp.

2. Universal quotient bundles and tangent bundles of Grass-
mannians restricted to curves. If 0 < r < ν, G(r, ν) denotes
the Grassmannian of the rank r quotients of kν . Let Q be the uni-
versal rank r quotient bundle of G(r, ν) and S the universal rank
ν − r subbundle of G(r, ν). We have the following exact sequence:
0 → S → O⊕ν

G(r,ν) → Q → 0.

We say that a morphism ϕ from X into a Grassmannian G(r, ν) is
nondegenerate if its image is not contained in a Grassmannian G(r′, ν′)
with ν′ < ν, i.e., neither ϕ∗(Q) nor ϕ∗(S) has OX as a component.

A rank r bundle E on X quotient ofO⊕ν
X induces a morphism ϕ : X →

G(r, ν); ϕ is an embedding if and only if we have h0(X, E(−P −P ′)) <
h0(X, E(−P )) for every P, P ′ ∈ X (allowing P = P ′).

We denote by X a smooth projective curve of genus g ≥ 2.

Theorem 2.1. Let X be a smooth projective curve of genus g ≥ 2.
Fix integers ν, r and d with ν > r ≥ 2, d ≥ ν + r(g − 1) and
(ν, r, d) �= (4, 2, 2g + 2). Then there is a nonempty open subset U
of M(X; r, d) such that for every Q ∈ U there is a nondegenerate
embedding ϕ : X → G(r, ν) with ϕ∗(Q) ∼= Q.

Proof. Let us consider the case r ≥ 3. Since G(r, r + 1) = Pr, for
ν = r + 1 the result is contained in Theorem 1.5. If ν > r + 1, we also
have d > rg + 1 and by Theorem 1.5 a general bundle F in M(X; r, d)
gives a degree d embedding f : X → Pr with f∗(TPr(−1)) ∼= F ; then
we have h0(X, F (−P − P ′)) < h0(X, F (−P )) for every P, P ′ ∈ X.

Since F is general, we have h1(X, F ) = 0 (Lemma 1.2) and
h0(X, F ) = d + r(1 − g). F is spanned and there is a surjec-
tion σ : H0(X, F ) ⊗ OX → F giving a nondegenerate embedding
h : X → G(r, d + r − rg) with h∗(Q) ∼= F .

We point out that h is an embedding because the same holds for f .
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Since F is stable and H0(X, kerσ) = 0, we have that neither F nor
kerσ has OX as a component and so h is nondegenerate.

Consider the sequence of all the general projections of h(X) over
the Grassmannians G(r, ν) with r + 1 ≤ ν < d + r − rg. We obtain
nondegenerate morphisms hν : X → G(r, ν) that are embeddings
because hr+1 = f and we have h∗

ν(Q) ∼= F .

Now we consider the case r = 2. Let M be a spanned nonspecial line
bundle on X with degree g + 1. We have an exact sequence

(1) 0 −→ M∨ −→ O⊕2
X −→ M −→ 0.

Suppose ν ≥ 6. For n ≥ 3, consider a nonspecial line bundle Ln on
X with degLn ≥ g + n, giving an embedding fn : X → Pn.

Put Fn := f∗
n(TPn(−1)). We have an exact sequence

(2) 0 −→ F∨
n −→ O⊕(n+1)

X −→ Ln −→ 0.

Exact sequences (1) and (2) give the following exact sequence:

(3) 0 −→ F∨
ν−3 ⊕ M∨ −→ O⊕ν

X −→ Lν−3 ⊕ M −→ 0.

E := Lν−3⊕M is a rank 2 vector bundle with degree d ≥ ν+2(g−1).
E is nonspecial and spanned. Moreover, for every P, P ′ ∈ X, allowing
P = P ′, we have h0(X, E(−P −P ′)) < h0(X, E(−P )). Thus the exact
sequence (3) gives a nondegenerate embedding h : X → G(2, ν) with
h∗(Q) ∼= E.

On a smooth curve every vector bundle is the flat limit of a flat family
of stable vector bundles, and we may also assume that in the flat family
the determinant is constant (see Lemma 1.1). Then a general Q in
M(X; 2, d) is spanned and induces an embedding from X to G(2, ν).

For r = 2 and ν = 5, consider a nonspecial line bundle L2 on X with
degL2 ≥ g + 2 giving a morphism f : X → P2 whose image is a nodal
curve. We have an exact sequence

(4) 0 −→ F∨
2 −→ O⊕3

X −→ L2 −→ 0.

Now check that, for every pair of points P, P ′ ∈ X, allowing P = P ′,
such that h0(X, L2(−P −P ′)) = h0(X, L2(−P )), the line bundle M in
(1) satisfies the condition h0(X, M(−P − P ′)) < h0(X, M(−P )).
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Exact sequences (1) and (4) give the following exact sequence:

(5) 0 −→ F∨
2 ⊕ M∨ −→ O⊕5

X −→ L2 ⊕ M −→ 0.

Take E := L2⊕M . E is a rank 2 vector bundle with degree d ≥ 2g+3.
We can conclude as above.

To have the assertion for the Grassmannian G(2, 4), take a general Q
in M(X; 2, d), with d ≥ 2g + 3, giving an embedding h : X → G(2, 5)
and consider a general projection of h(X) over a Grassmannian G(2, 4)
(see [1, Section 5]).

Remark 2.2. Let us consider the Grassmannian G(2, 4) and a smooth
projective curve X of genus g ≥ 2. For every d ≥ 2g + 2 there is a
nonempty open subset U of M(X; 2, d) such that for every Q ∈ U there
is a nondegenerate morphism ϕ : X → G(2, 4) whose image is a nodal
curve and ϕ∗(Q) ∼= Q.

In fact we can consider two spanned nonspecial line bundles M, M ′

on X with degree g+1. They give two coverings of P1. We can choose
M and M ′ such that the two sets of ramification points are disjoint.
Take E := M ⊕ M ′ and proceed as in the proof of Theorem 2.1.

Remark 2.3. Fix P ∈ G(r, ν), P corresponds to a codimension r
linear subspace A of Kν , i.e., P corresponds to an exact sequence of
linear spaces 0 → A → kν → B → 0 with dimB = r. The fibers of
the universal vector bundles Q and S at P corresponds to B and A,
respectively.

A line D in G(r, ν) with P ∈ D is uniquely determined by the choice
of linear subspaces A′, A′′ with A′ ⊂ A ⊂ A′′ and with dimA′′ =
dimA′+2 = dimA+1. The points of D correspond to the codimension
1 linear subspaces of A′′ containing A′.

The exact sequence 0 → A → A′′ → k → 0 induces an exact sequence
0 → k → B → B′′ → 0 where B′′ is the quotient kν/A′′, so we have
the exact sequence 0 → (B′′)∨ → (Q∨)|{P}

α→ k(P ) → 0. Note that α
gives a point of P(Q∨) lying on the fiber at P .

The exact sequence 0 → A′ → A → k → 0 can be written in this
way: 0 → A′ → S|{P}

β→ k(P ) → 0. Thus β gives a point of P(S) lying
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on the fiber at P . For simplicity we denote by D the point of P(Q∨)P
and P(S)P defined by α and β.

In [4], the interpretation in terms of elementary transformations of
a degeneration of curves in a projective space (see Proposition 1.3) is
extended to curves in a Grassmannian ([4, Theorem 6.1]). Also in this
case the proof works in any characteristic of k.

Lemma 2.4 ([4, Theorem 6.1]). Fix integers g, r, ν with g ≥ 0,
r > 0 and ν > r. Let Y be a smooth genus g curve and Q a
rank r degree d vector bundle on Y giving a nondegenerate embedding
h : Y → G(r, ν). Define the kernel bundle S on X by the exact sequence
0 → S → O⊕ν

Y → Q → 0. Assume h1(Y, S∨) = 0. Let P be a
point of Y and D a general line of G(r, ν) passing through h(P ). Let
Q′ := elm+

DQ be the positive elementary transformation of Q supported
by P and defined by the line D.

Then Q′ is the flat limit of a flat family {Qt} of spanned vector
bundles, each of them a quotient of O⊕ν

Y and as kernel bundles a family
{St} having as flat limit the negative elementary transformation elm−

DS
of S supported by P and defined by the line D.

Lemma 2.5. Let X be a smooth curve of genus g ≥ 2, r and d
integers with r > 1. Then for a general vector bundle E in M(X; r, d)
we have that a general negative elementary transformation of E and a
general positive elementary transformation of E are both stable.

Proof. Let E be a general stable bundle of M(X; r, d) and F a rank i
subbundle of E. Put F +, the transformed bundle of F , in the positive
elementary transformation elm+

KE of E. We recall that K is a point of
P(E∨).

If K /∈ P(F∨), then degF + = degF and (degF +/i) < (d + 1)/r.

If K ∈ P(F∨), we have degF + = degF + 1. Since E is general, we
have r(degF ) ≤ id− i(r − i)(g − 1) (see [11] and, in any characteristic
of k, [9]). If the inequality is strict, we obtain (degF + 1)/i <
(d + 1)/r. The bundle E has only finitely many rank i subbundles
F with r(degF ) = id− i(r − i)(g − 1) ([9]) and then a general point K
of P(E∨) is not contained in P(F∨) for such an F .



1218 E. BALLICO AND L. RAMELLA

Thus, elm+
KE is stable. Since elm−

KE ∼= (elm+
KE∨)∨, we also have

the assertion on the negative elementary transformations.

Remark 2.6. Let Z(X; r, d) be a ramified covering of M(X; r, d) such
that there is a semi-universal vector bundle E on X × Z(X, r, d).

The projective bundle P(E∨) → X×Z(X; r, d) parameterizes the pos-
itive elementary transformations of the vector bundles corresponding
to the points of Z(X; r, d). Set Z ′(X; r, d) := P(E∨). By Lemma 2.5,
we obtain a rational map from Z ′(X; r, d) to X × M(X; r, d + 1). By
using negative elementary transformations, we obtain that the above
rational map is dominant.

We will pass several times to a finite ramified covering to get freely
many sections of the various morphisms; to simplify the notations
we will never change the name of the maps and spaces after such a
procedure.

Definition 2.7. Let E be a rank r vector bundle on X. Let t(E)
be the minimal integer t such that a general G ∈ M(X; r, degE + t) is
obtained from E by t positive elementary transformations, i.e., there is
an exact sequence 0 → E → G.

Remark 2.8. Here we will check that t(E) is always defined.

We can prove that t(E) is well-defined for every spanned bundle E,
see Lemma 2.11 below.

Note that t(E) is well-defined if and only if there is a line bundle
L0 on X such that t(E ⊗ L0) is well-defined. In that case we have
t(E) = t(E ⊗ L) for every line bundle L on X.

For every vector bundle E, a line bundle L0 exists on X with a large
degree such that E ⊗ L0 is spanned by its global sections. We obtain
that t(E) = t(E ⊗ L0) is well defined.

Remark 2.9. Let E be a rank r vector bundle on X. By Lemma 2.5,
for every t ≥ t(E), a general G ∈ M(X; r, degE + t) is obtained from
E by t positive elementary transformations. Easy examples with direct
sums of line bundles show that the integer t(E) depends on the “insta-
bility degree” of the bundle E. The integer t(E) is also the minimal
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integer t such that a general G ∈ M(X; r,− degE − t) is obtained from
E∨ making t general negative elementary transformations.

Lemma 2.10. We have t(O⊕r
X ) = rg, r ≥ 2.

Proof. We have t(O⊕r
X ) ≥ rg because for every d a general G ∈

M(X; r, d) has either h0(X, G) = 0 or h1(X, G) = 0 (Lemma 1.2) and
hence it may contain O⊕r

X only if d ≥ rg.

Conversely, if d ≥ rg and G is general in M(X; r, d), we have
h1(X, G) = 0 (Lemma 1.2) and h0(X, G) ≥ r. If d ≥ rg + 1 and
r ≥ 3, by Theorem 1.5 a general G is generated by its global sections
and H0(X, G) spans a rank r subsheaf of G, i.e., we have an exact
sequence 0 → O⊕r

X → G.

For d = rg and r ≥ 3, let E be a general bundle in M(X; r, rg + 1);
then h1(X, E) = 0 and E is generated by its global sections. Thus
h1(X, E(−P )) = 0 for every P ∈ X. Fix P0 ∈ X for a general point P
of X and a general point K of P(E)P = P(E(−P0)P take the negative
elementary transformations G := elm−

K(E) and elm−
K(E(−P0)) ∼=

G(−P0). We have h1(X, G) = h1(X, G(−P0)) = 0; then h0(X, G) = r
and h0(G(−P0)) = 0. We have an injective morphism O⊕r

X → G.

For r = 2 and d ≥ 2g + 3, by [4, Proposition 3.3], a general
E ∈ M(X; 2, d) is generated by its global sections. Taking general
negative elementary transformations as above, we conclude

Lemma 2.11. Let E be a rank r degree d vector bundle on X spanned
by its global sections. Then t(E) ≤ (r − 1)d + rg.

Proof. Since E is spanned, there is an exact sequence 0 → O⊕r
X → E,

i.e., E is obtained from O⊕r
X by d positive elementary transformations,

say supported by P1, . . . , Pd ∈ X (allowing repetitions). Hence,
(OX(P1 + · · · + Pd))⊕r is obtained from E making (r − 1)d positive
elementary transformations. Since for every m ∈ Z twisting by a
line bundle M ∈ Picd(X) induces a natural isomorphism between
M(X; r, m) and M(X; r, m + rd), we conclude by Lemma 2.10.

Lemma 2.12. Fix integers d, r, ν with 1 < r < ν such that
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there is a degree d0 nondegenerate embedding h : X → G(r, ν) with
h1(X, h∗(S∨)) = 0. Then for every integer d ≥ d0 + max{t(h∗(Q)),
t(h∗(S∨))} (see Definition 2.7), and a general L ∈ Picd(X) there is
an open dense subset U of M(X; r, L) and an open dense subset V of
M(X; ν − r, L∨) such that for every Q ∈ U and every S ∈ V there is
an embedding ϕ : X → G(r, ν) with Q ∼= ϕ∗(Q), S ∼= ϕ∗(S) and in
particular ϕ∗(TG(r,ν)) ∼= Q ⊗ S∨.

Proof. We have the exact sequence 0 → h∗(S) → O⊕ν
X → h∗(Q) → 0.

A general rank r degree d vector bundle Q on X is obtained from
h∗(Q) by d − d0 positive elementary transformations. We have an
exact sequence

(6) 0 −→ h∗(Q) −→ Q −→ k(P1, . . . , Pd−d0) −→ 0.

We may assume that the points P1, . . . , Pd−d0 are general; in fact,
the line bundle L = detQ is general and detQ ∼= deth∗(Q)⊗OX(P1 +
· · · + Pd−d0). For a general vector bundle S on X of rank ν − r and
degree −d we have an exact sequence

(7) 0 −→ h∗(S∨) −→ S∨ −→ k(Q1, . . . , Qd−d0) −→ 0.

Since deth∗(Q) ∼= deth∗(S∨) and by our assumptions detS∨ ∼=
detQ, the positive elementary transformations (6) and (7) are sup-
ported by the same points P1, . . . , Pd−d0 of X. The exact sequences
(6) and (7) give the following exact sequences: 0 → Q∨ → h∗(Q)∨ α→
k(P1, . . . , Pd−d0) → 0 and 0 → B → h∗(S) β→ k(P1, . . . , Pd−d0) → 0.

For every point Pi, 1 ≤ i ≤ d − d0, the pair (α, β) gives a line Di in
G(r, ν) passing through h(Pi) (Remark 2.3). By using Lemma 2.4 we
can conclude

Theorem 2.13. Fix a smooth projective curve X of genus g ≥ 2
and integers r, ν with 2 ≤ r < ν. If (r, ν) �= (2, 4), consider any integer
d satisfying the condition d ≥ max{r((ν − r + 1)g + r), (ν − r)((ν − r
+ 1)g + r)}. For (r, ν) = (2, 4) consider any integer d ≥ 6g + 6.

Then for a general L ∈ Picd(X) there is an open dense subset U
of M(X; r, L) and an open dense subset V of M(X; ν − r, L∨) such
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that for every Q ∈ U and for every S ∈ V there is a nondegenerate
embedding ϕ : X → G(r, ν) with Q ∼= ϕ∗(Q), S ∼= ϕ∗(S) and in
particular ϕ∗(TG(r,ν)) ∼= Q ⊗ S∨.

Proof. If (r, ν) �= (2, 4), let d0 = ν + (ν − r)(g − 1). If (r, ν) = (2, 4),
take d0 = 2g + 3. Let F be a general bundle in M(X; ν − r, d0) with
h1(X, F ) = 0.

F gives a nondegenerate embedding X → G(ν − r, ν) (Theorem 2.1)
and an exact sequence 0 → G → O⊕ν

X → F → 0. Its dual sequence
gives a nondegenerate embedding h : X → G(r, ν). Applying Lemmas
2.11 and 2.12, we obtain the assertion.

Remark 2.14. If char k = 0, the tensor product of two stable bundles is
polystable, i.e., it is a direct sum of stable bundles with the same slope.
Moreover, if E and F are two general stable bundles, then the tensor
product E ⊗F is stable. This fact is well known. One may prove it by
means of the irreducible unitary representations of suitable Fuchsian
groups [15] and by following the proof of Theorem 10.5 contained in
[6]. Hence we can take in Theorem 2.13 open dense subsets U and V
giving stable restricted tangent bundles ϕ∗(TG(r,ν)).

Remark 2.15. Fix integers r, ν and d with 2 ≤ r ≤ ν − 2. Let
L be a general degree d line bundle on X. In characteristic 0, the
tensor product of two general stable bundles is stable, Remark 2.14.
Hence, there are an open subset U of M(X; r, L), an open subset V of
M(X; ν − r, L∨) and a morphism of varieties φ : U × V → M(X; r(ν −
r), L⊗ν) defined by φ((E, F )) = E⊗F∨. φ is not dominant because we
have dimM(X; r, L)+dimM(X; ν−r, L∨) < dimM(X; r(ν−r), L⊗ν).
Hence, if ν ≥ r+2 ≥ 4, for any integer d the restricted tangent bundles
to degree d embeddings of X into G(r, ν) cannot cover a dense open
subset of M(X; r(ν − r), νd).

3. Morphisms into flag varieties. X denotes a smooth projective
curve of genus g ≥ 2.

Theorem 3.1. Fix integers ν, s and ri, 1 ≤ i ≤ s, with ν > r1 >
r2 > · · · > rs > 0. Let Flag (r1, . . . , rs; ν) be the (partial) flag variety of
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quotient spaces of kν of dimension r1, . . . , rs. Fix s integers d1, . . . , ds

with d1 ≥ ν + r1(g − 1) and (ν, r1, d1) �= (4, 2, 2g + 2).

a) Suppose (di/ri)+g ≤ (di+1/ri+1) for every i with 1 ≤ i < s. Then
there is a nonempty open subset U of M(X; r1, d1)×· · ·×M(X; rs, ds)
such that for every (E1, . . . , Es) ∈ U there exists a nondegenerate
embedding f : X → Flag (r1, . . . , rs; ν) such that h1(X, E1) = 0,
h1(X,Hom(Ei, Ei+1)) = 0 for every 1 ≤ i < s and E1 → E2 →
· · · → Es are the pullbacks by f of the universal flag of quotients on
Flag (r1, . . . , rs; ν).

b) Suppose (di/ri) + 2g − 1 ≤ (di+1/ri+1) for every i with 1 ≤ i < s.
Then there is a nonempty open subset U ′ of M(X; r1, d1) such that for
every E1 ∈ U ′ and for every Ei ∈ M(X; ri, di) with 2 ≤ i ≤ s there
is a nondegenerate embedding f : X → Flag (r1, . . . , rs; ν) such that
h1(X, E1) = 0 and E1 → E2 → · · · → Es are the pullbacks by f of the
universal flag of quotients on Flag (r1, . . . , rs; ν).

Proof. By Theorem 2.1 there is a nonempty open subset U ′′ of
M(X; r1, d1) such that for every E1 ∈ U ′′ we have h1(X, E1) = 0,
hence h0(X, E1) = d1 + r1(1 − g) ≥ ν, and such that there is a linear
space V ⊂ H0(X, E1) with dimV = ν, V spanning E1 and such that
the morphism ϕ : X → G(r1, ν) induced by the pair (E1, V ) is a
nondegenerate embedding.

Applying s − 1 times the first case of Lemma 3.2 below, we obtain
the chain of surjections E1 → E2 → · · · → Es with (E1, V ) inducing
a nondegenerate embedding of X into G(r1, ν). Hence (E1 → E2 →
· · · → Es, V ) induces a nondegenerate embedding into the flag variety.

Part a) is proved. For part b) we proceed as above by using the
second case of Lemma 3.2 below.

Lemma 3.2. Fix integers a, b, u, w with u > w ≥ 1 and (b/w) ≥
(a/u) + g, respectively, (b/w) ≥ (a/u) + 2g − 1. Then for a general,
respectively for every, pair (A, B) in M(X;u, a)× M(X;w, b) there is
a surjection f : A → B and we have h1(X,Hom(A, B)) = 0.

Proof. Let us consider the first case. Since in arbitrary characteristic
every bundle on X is the flat limit of a flat family of stable bundles
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([9]), it is sufficient to find bundles A′, B′ with rankA′ = u, degA′ = a,
rankB′ = w, degB′ = b, h1(X,Hom(A′, B′)) = 0 and such that there
exists a surjection A′ → B′. Fix P ∈ X and set x := [a/u] (the integer
part of (a/u) ). Twisting by OX(−xP ) we may reduce to the case
0 ≤ a < u.

For 1 ≤ i ≤ u − a, take general Mi ∈ Pic0(X). For u − a < i ≤ u,
take general Mi ∈ Pic1(X). Set y := [b/w] ≥ g and m := b−yw (hence
0 ≤ m < w). For 1 ≤ j ≤ w − m, take general Nj ∈ Picy(X). For
w − m < j ≤ w, take general Nj ∈ Picy+1(X). Set A′ := ⊕1≤i≤uMi

and B′ := ⊕1≤j≤wNj . Since deg(Nj ⊗ M∨
i ) ≥ g − 1 for all i, j and the

line bundles Mi and Nj are general, we have h1(X,Hom(A′, B′)) = 0.

Set A′′ := ⊕1≤i≤w+1Mi. It is sufficient to find a surjection A′′ → B′

and then send to 0 the remaining u = w − 1 factors (if any) of A′.
For 1 ≤ j ≤ w, we fix sj ∈ H0(X, Nj ⊗ M∨

j+1), sj �= 0 and such
that their 0-loci D(j)’s, 1 ≤ j ≤ w, are reduced and disjoint. This is
possible by the generality of all Nj ’s and Mi’s. We send the factor
Mj+1 to B′ using sj as map to Nj and 0 for maps to the other
factors. Since D(j) ∩ D(l) = ∅ for j �= l, the corresponding map
⊕2≤i≤uMi → B′ has rank w outside ∪1≤j≤wD(j) and rank w − 1 at
each point of ∪1≤j≤wD(j). Fix aj ∈ H0(X, Nj ⊗M∨

1 ), aj �= 0 and such
that their 0-loci are disjoint from ∪1≤j≤wD(j) and map M1 to B′ using
(a1, . . . , aw). The map A′ → B′ constructed in this way has rank w
also at each point of ∪1≤j≤wD(j).

Now let us consider the second case. Since A and B are stable and
µ(B) ≥ µ(A)+2g− 1 (for any bundle A, µ(A) denotes the slope of A),
we have h1(X,Hom(A, B)) = h1(X,Hom(A, B(−P ))) = 0 for every
P ∈ X. Hence h0(X,Hom(A, B(−P ))) = h0(X,Hom(A, B)) − uw
by the Riemann-Roch Theorem. Set H := H0(X,Hom(A, B)). Fix
P ∈ X. The vector space H(−P ) := {f ∈ H/f(AP ) = 0} has
codimension uw in H. Since the vector space BP given by the fiber of
B at P has dimension w, for every codimension 1 linear subspace M of
BP the algebraic set HM = {f ∈ H/f(AP ) ⊆ M} has codimension ≥ u
in H. Thus the set H ′(P ) := {f ∈ H/f(AP ) �= BP } has codimension
≥ u − w + 1 ≥ 2 in H. Since dimX = 1, ∪P∈XH ′(P ) �= H, i.e., a
general f ∈ H is surjective.

4. On the elliptic curves in a Grassmannian. In this section
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we will consider briefly the stability of the restricted tangent bundle
of maps from an elliptic curve Y to a Grassmannian G(r, ν) with
1 ≤ r ≤ ν − 1 and ν ≥ 4.

We show that in characteristic 0 there is a degree d embedding of Y
in G(r, ν) with stable restricted tangent bundle if and only if there is
not a numerical restriction to its existence.

For r = 1 and r = ν − 1 we have maps from Y to a projective space
Pn; these cases are easy and well known.

We assume char k = 0 and use the multiplicative structure of vector
bundles on elliptic curves proved by Atiyah in [2, Part III].

We need the following well-known lemma.

Lemma 4.1. Every vector bundle E on Y is the flat limit of a family
of semi-stable vector bundles with fixed determinant.

Proof. By [2] there is a semi-stable vector bundle F on Y with
rankF = rankE and detF ∼= detE. Since semi-stability is an
open condition, it is sufficient to show that E and F have a common
specialization by flat families of vector bundles with fixed determinant.
We may use induction on b := rankE, the case b = 1 being trivial.
Assume b > 1. Fix an ample line bundle L and a large integer n such
that both E ⊗ L⊗n and F ⊗ L⊗n are spanned. Hence we obtain exact
sequences 0 → L⊗(−n) → E → E′ → 0 and 0 → L⊗(−n) → F →
F ′ → 0, with detE′ ∼= detF ′ and rankE′ = rankF ′ = b − 1. E has
L⊗(−n)⊕E′ as a flat specialization. Hence we conclude by the inductive
assumption applied to E′ and F ′.

Theorem 4.2. Assume char k = 0. Let Y be an elliptic curve. Fix
integers d, r and ν with 1 ≤ r ≤ ν − 1, ν ≥ 4. Then a nondegenerate
degree d exists embedding i : Y → G(r, ν) with i∗(TG(r,ν)) stable if and
only if d ≥ ν and (r, ν) = (r, d) = (ν − r, d) = (1).

Proof. Fix a nondegenerate degree d embedding i from Y to G(r, ν).

Put Q := i∗(Q) and S := i∗(S). If either Q or S are not stable,
then i∗(TG(r,ν)) ∼= Q ⊗ S∨ is not stable. By Atiyah’s classification of
vector bundles on Y ([2, Part II]) there is a stable vector bundle A
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with rank x and degree y if and only if (x, y) = 1. Hence a necessary
condition for the stability of i∗(TG(r,ν)) is that (r, d) = (ν − r, d) = 1.
Note that deg(Q ⊗ S∨) = νd and rank (Q ⊗ S∨) = r(ν − r). Hence
(r, ν) = 1 is another necessary condition for the stability of i∗(TG(r,ν))
and we may assume (r, ν − r) = 1.

Let A be a stable vector bundle with rank r and B a stable vector
bundle of rank ν − r. By [2, Lemma 28], A ⊗ B is indecomposable
and hence it is stable if and only if deg(A ⊗ B) and rank (A ⊗ B) are
coprime. Hence if degA = degB = d, A ⊗ B is stable if and only
if (νd, r(ν − r)) = 1. This is the case because (d, r) = (d, ν − r) =
(ν, r) = 1.

Now fix a stable bundle A on Y with rankA = r ≥ 2 and degA =
d > 0. Note that h0(Y, A) = d. We claim that A is spanned by its
global sections if and only if d > r. Indeed, this condition is obviously
necessary and, to see that it is sufficient, just use the fact that A and
A(−P ) for every P ∈ Y are nonspecial and the Riemann-Roch Theorem
to show that for every P ∈ Y we have h0(Y, A(−P )) = h0(Y, A) − r.
Furthermore, for d > r ≥ 2 and P, P ′ ∈ Y (we may have P = P ′), we
obtain h0(Y, A(−P − P ′)) < h0(Y, A(−P )).

In fact we have degA(−P − P ′) = d − 2r.

If d−2r > 0, then A(−P −P ′) is nonspecial and h0(Y, A(−P −P ′)) =
d − 2r. If d − 2r ≤ 0, we have h0(Y, A(−P − P ′)) = 0. If d − 2r = 0,
we have h0(Y, A(−P − P ′)) ≤ 1 < h0(Y, A(−P )) = r ([2, Lemma 15]).

Thus the map induced by (A, H0(Y, A)) into the Grassmannian
G(r, d) is an embedding if d > r. Hence, for all integers ν with
r < ν ≤ d, for a general subspace V of H0(Y, A) with dimV = ν
the pair (A, V ) induces an embedding into G(r, ν). By construction
this embedding has stable universal quotient bundle.

For r = ν − 1, we have obtained an embedding i : Y → Pν−1 with
i∗(TPν−1(−1)) ∼= A stable. The case r = 1 is dual to the above case
and the theorem is proved for r = 1 and r = ν − 1.

Consider now the case 2 ≤ r ≤ ν − 2. We want to check that for
a general V the corresponding universal subbundle SV is stable. We
fix any SV . We have h0(Y, SV ) = 0 because the map V → H0(Y, A)
is injective. Hence, by Serre duality, we have h1(Y, S∨

V ) = 0. Fix
a flat family {Bt}t∈T of vector bundles on Y parameterized by an
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integral affine curve T with o ∈ T such that Bo
∼= S∨

V , Bt is semi-
stable for general t and det (Bt) ∼= det (A) for every t (Lemma 4.1).
By semi-continuity we have h1(Y, Bt) = 0 for general t. Since, to be
spanned by global sections is an open condition in a flat family of
bundles with constant cohomology, for general t we obtain surjections
σt : V ∨ ⊗ OY → Bt. Hence we have a flat family of bundles kerσt

with fixed determinant which are deformations of A∨. By Atiyah’s
classification ([2]), every stable bundle on Y is rigid in flat families
with fixed determinant. We conclude that we have an exact sequence

0 → SV → V ⊗OY → A → 0

with A and SV stable. Hence we have proved the theorem.
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