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A THEOREM ON TRANSCENDENCE
OF INFINITE SERIES

M.A. NYBLOM

1. Introduction. There are a number of sufficient conditions
known within the literature for an infinite series,

∑∞
n=1 1/an, of positive

rationals to converge to an irrational number (see [3], [4], [11], [10]
and the references cited therein). These conditions, which are quite
varied in form, share one common feature, namely, they all require
rapid growth of the sequence {an} to deduce irrationality of the series.
As an illustration consider the following results of Sándor which have
been taken from [11] and [12].

Theorem 1.1. Let {am}, m ≥ 1, be a sequence of positive integers
such that

lim sup
m→∞

am+1

a1a2 · · · am
= ∞ and lim inf

m→∞
am+1

am
> 1.

Then the sum of the series
∑∞

m=1 1/am is an irrational number. Al-
ternatively, if {am} and {bm} are a sequence of positive integers with
bm|bm+1, bm → ∞ and λ > 2 exists such that bλ

N

∑
m>N am/bm < 1,

for infinitely many N , then the sum of the series
∑∞

m=1 am/bm, when
convergent, is a transcendental number.

In view of the fact that all algebraic numbers cannot be approximated
by infinitely many rationalsm/n to within 1/nr for any r ∈ N\{0}, one
possible approach to demonstrating the transcendence of a given series
having sum s would be to produce a sequence of rapidly converging
rational approximations to s, for example, using the partial sums of
the series. Such an approximation, in the absence of methods for
accelerating the convergence of a series, may still be achieved if the
sequence {an} has sufficiently strong growth as in Theorem 1.1. In this
paper we do precisely this by showing that, under the following growth
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condition,

(1) lim inf
m→∞

am+1

am
m

> 1,

the series
∑∞

m=1 1/am will converge to a transcendental number. De-
spite the severity of the above assumption, one can still find specific
examples within the family of series determined by (1). In particular,
we prove as a direct corollary of the main result in Section 2 (see The-
orem 2.1) the transcendence of

∑∞
m=1 1/Um! and

∑∞
m=1 1/Vm!, where

{Um} and {Vm} are the sequence of generalized Fibonacci and Lucas
numbers, respectively. In addition, an unexpected consequence of The-
orem 2.1 is deduced in which every convergent infinite series of positive
rationals,

∑∞
m=1 1/am, with an ∈ N\{0}, has infinitely many disjoint

subseries (to be defined) having transcendental sums.

2. Main result. To prove the main result of this paper, we will first
require a preliminary lemma, which incidentally shows that the first
group of conditions in Theorem 1.1 is implied by (1).

Lemma 2.1. Suppose that {am}∞m=1 is a sequence of reals greater
than unity and such that

lim inf
m→∞

am+1

am
m

> 1.

If n is any fixed positive integer and bm = (a1a2 · · · am)n/am+1, then
bm = o(1) as m → ∞.

Proof. By the above assumption, δ > 0 must exist such that for
all m′ > N(δ), say, am′+1/a

m′
m′ ≥ (1 + δ). Choose a fixed integer

p > max{N(δ), n} and for m > p consider b′m = (ap · · · am)n/am+1.
The result will follow upon showing that b′m → 0. To this end consider
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log(1/b′m). Now

log(1/b′m) =
m∑

r=p

(log ar+1 − log ar) + log ap − n
m∑

r=p

log ar

=
m∑

r=p

log
(
ar+1

an+1
r

)
+ log ap

≥
m∑

r=p

log
(
ar+1

an+1
r

)
.

However, since p > max{N(δ), n}, one has for each r = p, . . . ,m,

log
(
ar+1

an+1
r

)
≥ log

(
ar+1

ar
r

)
≥ log(1 + δ).

Consequently, log(1/b′m) ≥ (m − p + 1) log(1 + δ) → ∞ as m → ∞.

Using this lemma one can deduce the following result.

Theorem 2.1. Suppose {am}∞m=1 is a sequence of integers greater
than unity and such that

lim inf
m→∞

am+1

am
m

> 1.

Then the series
∑∞

m=1 1/am converges to a transcendental number.

Proof. From the assumption it is clear that the series under con-
sideration is convergent. Choosing k sufficiently large so that ξ1 =∑∞

r=k 1/ar < 1, it will suffice to demonstrate the transcendence of ξ1.
Thus, assume the contrary and suppose that ξ1 is an algebraic number
of degree n. Let

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0

be a polynomial over the integers with cn �= 0 such that f(ξ1) = 0,
and set L =

∑n
r=1 r|cr|. Via the assumption, an integer N > 0 must
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exist such that am+1/a
m
m > 1 for all m > N ; moreover, as am ↑ ∞

and so ak · · · am < a1 · · · am, we may by Lemma 2.1 choose a fixed
m > max{k,N} such that am > 2 with

(2) 0 < 2L
(ak · · · am)n

am+1
< 1.

In addition, define ξ2 =
∑m

r=k 1/ar, which can be expressed in the form
ξ2 = A/(ak · · · am) for some positive integer A. We shall examine the
following nonnegative real number

M = |f(ξ1)− f(ξ2)|(ak · · · am)n.

Firstly, M > 0 since if M = 0, that is, if f(ξ2) = 0, then f(x) =
(x − ξ2)q(x) where q(x) ∈ Q[x] has degree n − 1 and as ξ1 �= ξ2 one
would have to conclude that q(ξ1) = 0, which contradicts the degree of
the assumed algebraic number ξ1. Furthermore, from the definition of
M it is clear that

M = |f(ξ2)|(ak · · · am)n

=
∣∣∣∣cn

An

(ak · · · am)n
+ cn−1

An−1

(ak · · · am)n−1
+ · · ·+ c0

∣∣∣∣(ak · · · am)n

and so M is a positive integer. We now obtain an upper bound for M .
Writing f(ξ1)−f(ξ2) in terms of a difference of two polynomials, observe
after an application of the triangle inequality and noting ξ2 < ξ1 < 1
that

|f(ξ1)− f(ξ2)| =
∣∣∣∣

n∑
r=1

cr(ξr
1 − ξr

2)
∣∣∣∣

=
∣∣∣∣

n∑
r=1

cr(ξ1 − ξ2)
r∑

l=1

ξr−l
1 ξl−1

2

∣∣∣∣

≤ (ξ1 − ξ2)
n∑

r=1

|cr|
( r∑

l=1

ξr−l
1 ξl−1

2

)

≤ (ξ1 − ξ2)
n∑

r=1

|cr|
r∑

l=1

1

= (ξ1 − ξ2)L.
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From the above construction, one has ar−1/ar < 1/ar−2
r−1 for r =

m+ 2,m+ 3, . . . . Consequently, as am+1 > am > 2, observe that

ξ1 − ξ2 =
1

am+1

(
1 +

∞∑
r=m+2

am+1

ar

)

<
1

am+1

(
1 +

∞∑
r=m+2

ar−1

ar

)

<
1

am+1

(
1 +

∞∑
r=m+2

1
ar−2

r−1

)

<
1

am+1

(
1 +

∞∑
r=m+2

1
ar−2

m+1

)

<
1

am+1

(
1 +

∞∑
r=m+2

1
2r−2

)

<
2

am+1
.

Thus, as a result of our choice of m in (2.1) we have

|f(ξ1)− f(ξ2)|(ak · · · am)n < 2L
(ak · · · am)n

am+1
< 1.

Hence, we have produced an integer M such that 0 < M < 1; a
contradiction. Therefore, as n was arbitrarily chosen, ξ1 cannot be
an algebraic number to any degree.

To conclude this section we quickly illustrate how the above result
can be used to provide a partial answer to a question of John Brillhart
(see [2, Problem 5]) in which sufficient conditions were sought on a
sequence nk ∈ N such that the series of the form

∑∞
k=1 1/n1n2 · · ·nk

would sum to a transcendental number. Clearly, if we define ak =
n1n2 · · ·nk, then by Theorem 2.1, one such sufficient condition is that
the lim infk→∞ nk+1/(n1n2 · · ·nk)k−1 > 1.

3. Some comparisons. We examine now some immediate conse-
quences of Theorem 2.1 which show the similarity of our results with
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those of Sandor and Erdös who provided sufficient conditions for irra-
tional and transcendental valued series. The following result is an easy
consequence of the main theorem and mirrors Theorem 1.1 of Sandor.

Corollary 3.1. Let {am}∞m=1 be a sequence of positive integers
greater than unity and such that

cm =
am+1

(a1 · · · am)m

is strictly monotone increasing for all but finitely many m. Then the
series

∑∞
m=1 1/am converges to a transcendental number.

Proof. As the sequence {cm}∞m=1 is eventually strictly monotone
increasing we have that cm−1 < cm for m sufficiently large. Upon
simplifying this inequality, we find

(a1 · · · am) <
am+1

am
m

,

from which it is immediately apparent that am+1/a
m
m → ∞ as m → ∞.

Hence the condition of Theorem 2.1 is satisfied.

Consider now the following results of Erdös taken from [3] and [5].

Theorem 3.1. Let a1 < a2 < · · · < am < · · · be a sequence of
positive integers such that

lim sup
m→∞

a1/2m

m = ∞ and am > m1+ε

for a number ε > 0 and for every m > m0(ε). Then the sum of the
series

∑∞
m=1 1/am is a transcendental number.

Theorem 3.2. If n1 < n2 < · · · < nk < · · · is a sequence of positive
integers such that

lim sup
k→∞

log(nk)
log(k)

= ∞,

then for any integer t ≥ 2, the sum of the series
∑∞

k=1 t
−nk is a

transcendental number.
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In connection with these results of Erdös we now state two further
corollaries.

Corollary 3.2. Let {am}∞m=1 be a sequence of integers greater than
unity and such that

cm = a1/mm

m

is strictly monotone increasing for all but finitely many m. Then the
series

∑∞
m=1 1/am converges to a transcendental number.

Proof. By the above assumption one has that cm < cm+1 for m
sufficiently large. Raising both sides of this inequality to the power
(m+ 1)m+1 we find upon rearrangement that

abm
m <

am+1

am
m

,

where bm = m(((m + 1)/m)m+1 − 1) ∼ m(e − 1) as m → ∞. Thus,
as am > 1 one has abm

m → ∞ as m → ∞ and so the condition of
Theorem 2.1 is satisfied.

Corollary 3.3. Suppose {nk} is a strictly monotone increasing
sequence of positive integers such that

lim inf
k→∞

(nk+1 − knk) > 0.

Then for any integer t ≥ 2 the series
∑∞

k=1 t
−nk converges to a

transcendental number.

Proof. For the integer t and sequence {nk} define ak = tnk . Via the
assumption, δ > 0 exists such that nk+1 − knk ≥ δ for k > N(δ), say.
Hence, for all k > N(δ), we have that

ak+1

ak
k

= tnk+1−knk ≥ tδ ≥ 2δ > 1.

Consequently, the condition of Theorem 2.1 is again satisfied.

4. Disjoint subseries with transcendental sums. The following
definition of disjoint subsequences and subseries is taken from [6].
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Definition 4.1. We say that
∑∞

m=1 vm is a subseries of a given
series

∑∞
m=1 um if {vm} is a subsequence of the sequence {un}. Two

subseries
∑∞

m=1 vm and
∑∞

m=1 wm of the same series
∑∞

m=1 um are
disjoint if {wm} is a subsequence of the sequence {un} from which the
subsequence {vm} has been taken, that is, {wm} and {vm} are disjoint
subsequences of the sequence {un}.

As an application of Theorem 2.1, we shall demonstrate the following
unexpected result.

Theorem 4.1. Every convergent infinite series of positive rationals∑∞
m=1 1/am where am ∈ N\{0}, has infinitely many disjoint subseries

converging to a transcendental number.

Proof. Let
∑∞

m=1 1/am be a convergent series of positive rationals.
Then the sequence {1/am} tends to zero when m → ∞. Thus, as
am → ∞ asm → ∞, one can find infinitely many disjoint subsequences,
{a(p)

m(k)}∞k=1 of the sequence {am}∞m=1 where p = 1, 2, . . . , and such that

a
(p)
m(k+1)

(a(p)
m(k))

m(k)
> k.

Consequently, the subsequence {a(p)
m(k)}∞k=1 satisfies the condition of

Theorem 2.1 and so
∑∞

k=1 1/a
(p)
m(k) converges to a transcendental num-

ber.

The above result is similar to a proposition in [1] where it was
shown that every convergent series of positive rational

∑∞
m=1 bm/am

had infinitely many disjoint subseries with irrational sums.

Remark 4.1. There is (see [9]) a convergent series of positive rationals
such that all its subseries have transcendental sums. Consequently, one
cannot substitute the word transcendental by the word rational in the
previous result. This is in contrast with the known fact, see [11], that
if

∑∞
m=1 am is a divergent series with am → 0 as m → ∞, then every

positive real number may be given as the sum of a convergent subseries
of the original series.
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5. Application. In this section we shall demonstrate, via Theo-
rem 2.1, the transcendence of a family of series involving the generalized
Fibonacci and Lucas sequences, denoted by Um and Vm, respectively.
These sequences can be defined as follows. Let (P,Q) be a relatively
prime pair of integers such that the roots α and β of x2 − Px+Q = 0
are distinct. Then Um, Vm are given by

Um =
αm − βm

α− β
and Vm = αm + βm.

It is well known that, when the discriminant ∆ = P 2 − 4Q > 0, both
{Um} and {Vm} are an increasing sequence of positive integers. In
particular, for (P,Q) = (1,−1), one has Um = Fm and Vm = Lm where
Fm and Lm are the Fibonacci and Lucas numbers, respectively. The
transcendence of the following series

∞∑
m=1

1
m!F2m

was proved independently by Mahler [7] and Mignotte [8]. As a
related result, we now establish the transcendence of

∑∞
m=1 1/Um! and∑∞

m=1 1/Vm!.

Corollary 5.1. Let (P,Q) be a relatively prime pair of integers with
P > |Q + 1| and Q �= 1 and {Um}, {Vm} the associated generalized
Fibonacci and Lucas sequences. If am = Um! or am = Vm!, then∑∞

m=1 1/am converges to a transcendental number.

Remark 5.1. We note that the restriction on Q is required as
the sequence {Um} will contain infinitely many zero elements when
(P,Q) = (1, 1).

Proof. In view of Theorem 2.1, it will suffice to demonstrate in
either case that am+1/a

m
m → ∞ as m → ∞. Clearly, from definition

α = (P +
√
∆)/2 and β = (P −√

∆)/2 where ∆ = P 2 − 4Q. Now from
assumption

√
∆ >

√
(Q+ 1)2 − 4Q = |Q− 1| > 1 and so

|β| =
∣∣∣∣P −√

∆
2

∣∣∣∣ = |2Q|
P +

√
∆

<
|2Q|

|Q+ 1|+ |Q− 1| = 1,
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noting here that the righthand equality holds for all Q ∈ R with
|Q| ≥ 1. Consequently, |α| = |Q|/|β| > |Q| ≥ 1 and |β/α| < 1.
Now, in the case when am = Um! observe

am+1

am
m

> αm!(
√
∆)m−1

(
1− (β/α)(m+1)!

)
∼ αm!(

√
∆)m−1,

as m → ∞. While, in the latter case,

am+1

am
m

> αm! (1 + (β/α)(m+1)!)
(1 + |β/α|/m)m

∼ αm! e−|β/α|,

as m → ∞. Hence, in both cases, am+1/a
m
m will grow unboundedly

with increasing m.
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