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ABSTRACT. Some techniques to overcome the problem of
enforced drainage in mathematical terrain modeling are pre-
sented. Data available about the terrain consist of a set of
scattered benchmarks and an idealized, piecewise linear hy-
drographic net. First, a cubic spline minimum norm network,
MNN, on a triangulation of the benchmark data is created, in
order to create a first impression of the terrain. The cubics
from the MNN supply temporary profiles along the edges of
the triangulation; these are modified on those edges which in-
tersect the hydrographic net in order to simulate erosion of the
terrain. This is done by weighted smoothing spline techniques.
A network of monotonic cubic arcs is created on the edges of
the hydrographic net. To arrive at the final surface model,
a blending method is applied that requires the specification
of elevations and gradient vectors along all edges. Although
the elevations along the edges that lie in the hydrographic net
are monotonic by construction, the gradient there should also
be parallel to the direction of the hydrographic net. This is
achieved approximately in an L2-sense. The result is a dif-
ferentiable surface which interpolates the stream channels as
well as the modified spline MNN.

1. Introduction. An important problem in mathematical terrain
modeling is that of enforced drainage. Terrain models based on topo-
graphic benchmark data often suffer from undulations and this results
in “dams” and associated pools forming in what should be stream chan-
nels. In part, this is the result of not constraining the terrain model
to honor the hydrographic net. We will develop some techniques that
help to overcome this problem. Our approach was motivated by aerial
observation of some prairie terrain in western Canada. It was strikingly
evident that an underlying, slowly undulating surface was eroded by
systems of streams, and that a terrain model based solely on point data
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such as elevations or even gradients at benchmarks would most likely
be unsatisfactory. We therefore include a simplified hydrographic net
as data. Any method that honors the hydrographic net must do so to
the extent of interpolating some of its elevations and the preservation
of monotonicity. It is possible to achieve this simply by triangulating
all data locations in such a way that the (simplified) hydrographic net
lies along edges. Linear interpolation on the triangles yields a surface
that interpolates all Lagrangian point data and preserves the mono-
tonicity of the net. It does so at the cost of smoothness. Nevertheless,
this method has been employed by geographers [10].

The method developed here yields a C1 surface whose shape can be
influenced to some extent by the user making adjustments to some
parameters locally. As well, we insist on preserving not just point
properties of the hydrographic net but its monotonicity as well. It
does not appear possible to satisfy such requirements by using methods
based solely on minimization of functionals such as thin-plate splines
or smoothing splines on R2. Figure 6 is a contour map of a thin-
plate spline surface that interpolates benchmark elevations as well as
elevations of the hydrographic net at selected confluences and should
be compared with a result of applying our method shown in Figures
7 9. We have used only 9 benchmark points and 11 points on the
hydrographic net taken from Figure 10. The thin-plate spline is very
smooth but does not capture the main features of the hydrographic net
or the original contour map. This is especially evident in the eastern
part of the map. Our approach leads to noisier surfaces which, however,
conform better to the original, especially in view of the sparse data.

In Section 2 we describe our assumptions about the data set to which
our method can be applied. In Section 3 we begin the method with a
short review of a minimum norm network, MNN, of cubic arcs [8],
[5] defined on a triangulation of benchmarks and interpolating the
benchmark elevations. A smooth, uneroded surface could be realized
by applying a blending method such as the side vertex method [7] or
the finite element method discussed in [1]. The hydrographic net is
modeled by a set of vertices and edges that form a tree, in the graph-
theoretic sense, in the coordinate plane, together with monotonic cubic
elevations constructed in Section 4 on the edges of the net by the
techniques in [4]. The MNN is then merged with the hydrographic
net by simulating some erosion of the MNN on those edges of the
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triangulation that intersect the edges of the net. For this we use a
family of weighted smoothing splines constructed in Section 5 and an
erosion model presented in Section 6. This modifies the cubic profile
coming from the MNN to correspond with the hydrographic net. By
constructing a family of weighted smoothing splines on each such edge,
we are able to avoid undershoot in the modified profile, and some
user interaction is allowed. The hydrographic net then contributes
additional edges to the original triangulation, and cubic arcs are defined
on all edges. Finally, in our illustration of the method, the entire curve
network is blended by the side vertex method. For this it is necessary
to define a gradient on every edge. This is discussed in Section 7, where
we interpolate gradients known at the vertices and take some care that
the interpolated gradient is close in direction to the hydrographic net
in an L2 sense on the appropriate edges.

2. Preliminaries. We assume that the data available about the
terrain consist of two sets. One is a set B := {xi, yi, zi}N

1 of scattered
benchmarks consisting of the set of “vertices,” V := {Vi = (xi, yi)}N

1

together with the corresponding elevations zi. A triangulation of these
vertices will have a set of edges, say E . Let Ω denote the convex hull
of V . A system of streams (including their elevations) located in Ω
will be called a 3D-hydrographic net. Its projection on the coordinate
plane will be simply called a hydrographic net. Our second data is
an idealized 3D-hydrograhpic net whose (idealized) hydrographic net
H is assumed to have the appearance of a tree, in the graph-theoretic
sense, with elevations defined at its vertices. H is to be a reasonable
approximation to the physical net, and we assume that we have some
freedom in how to choose it. In particular, we assume that the physical
hydrographic net cuts any edge of a triangulation at at most one point
interior to the edge, and that the idealized net H has its vertices only
on the edges at precisely these crossing points. We seek a C1 surface
S : Ω → R such that S(xi, yi) = zi, i = 1, . . . , N , and whose restriction
to the net H is monotonic and interpolates its elevation.

Figures 1(a), (b) and (c) illustrate a typical triangulation of V , an
approximate hydrographic net H and their superposition.

3. The spline minimum norm network. Spline minimum norm
networks are discussed in some generality in [8], [5] and [9]. For our
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(a) The triangulation E.

(b) The hydrographic net H.

(c) E ∪ H.

FIGURE 1.
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purposes it will be sufficient to describe such a network as follows. The
points of V are used as vertices of a triangulation of the domain Ω. Let
E be the set of edges of the triangulation. The minimum norm network
is a set of cubic arcs, each defined on an edge, that interpolate the
given elevations at the vertices of the triangulation. The arcs meeting
at a vertex are tangent to one and the same plane, and the gradients
of all such planes are determined by minimizing an energy semi-norm.
Specifically, in the simplest notation, if e is an edge in E , f is a cubic
arc on e and t is the arc length along e, the gradients are chosen to
minimize ∑

e∈E

∫
e

[f ′′(t)]2 dt.

Holland [5] provides for a weighted semi-norm for additional control of
the shape of the MNN.

We focus on a typical triangle with vertices Vi, Vj , Vk. Let lij be the
length of the edge connecting Vi to Vj . If the minimum norm network
is regarded as the restriction to E of a certain C1 function S : Ω → R,
the required gradients at the vertices are ∇Si = (Sx(Vi), Sy(Vi)),
1 ≤ i ≤ N . Let Ni denote the set of index pairs i, j for edges emanating
from Vi. In [8] these are shown to satisfy

∑
ij∈Ni

(xj−xi)
l3ij

[
(xj−xi)Sx(Vi) + (yj−yi)Sy(Vi)

+
(xj−xi)

2
Sx(Vj) +

(yj−yi)
2

Sy(Vj) +
3(zi−zj)

2

]
= 0,

∑
ij∈Ni

(yj−yi)
l3ij

[
(xj−xi)Sx(Vi) + (yj−yi)Sy(Vi)

+
(xj−xi)

2
Sx(Vj) +

(yj−yi)
2

Sy(Vj) +
3(zi−zj)

2

]
= 0.

See [5] for generalizations of this to weighted semi-norms and other
bases. Figure 2 illustrates an unweighted MNN for data defined at the
benchmarks used for Figure 1(a).

4. An elevation system for the hydrographic net. We
now propose a method for generating an elevation system for the
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FIGURE 2. A minimum norm network.

hydrographic net with the property that, on any connected subgraph
of H not containing a confluence in its interior, the elevation is a C1

piecewise cubic (in arc length) which interpolates the given elevations at
the vertices and is monotonically increasing in the upstream direction.
Confluences can be regarded as initial points of such connected graphs.
Thus, an elevation system can be generated for the entire net H and,
with H, constitutes the idealized 3D-hydrographic net. We will make
use of the results of Fritch and Carlson [4].

Recall our assumption that the hydrographic net has its vertices only
on the interiors of the edges of the triangulation. At each vertex one
has to ensure consistency in the sense that the various curves of a 3D-
net meeting there correspond to a unique tangent plane. In addition,
the gradient of the tangent plane should be approximately parallel to
the hydrograhic net at the vertex. We say “approximately” because the
edges entering the vertex need not be collinear. This places a restriction
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on the gradients of the underlying surface at the vertices of the net,
and we pursue this next.

Consider a connected subgraph of H with n vertices and no interior
confluences. Denote the vertices consecutively Pi, 1 ≤ i ≤ n, in the
(positive) upstream direction. (It will be convenient to regard the Pi

as position vectors.) Let S̃ be an elevation function, i.e., the restriction
of S to the subgraph, on this portion of the stream, and let t be the
arclength parameter along edges of H.

Proposition 4.1. There are constants Ai > 0 such that

∂

∂t
S̃(P+

i ) = Ai
∂

∂t
S̃(P−

i ), 2 ≤ i ≤ n− 1,

and the valley profile and stream are tangent to one and the same
surface at the vertex Pi.

Proof. Let a = (a1, a2) = (Pi−Pi−1)/‖Pi−Pi−1‖ and b = (b1, b2) =
(Pi+1 −Pi)/‖Pi+1 −Pi‖ be unit tangent vectors along the edges of H
at Pi in the positive (upstream) direction and c = (c1, c2) a unit vector
approximately perpendicular to net. Denote by ∇Si the gradient of the
underlying surface S at Pi.

The directional derivatives of S at the intersection point are

(4.1)

DaS(Pi) =
∂

∂t
S̃(P−

i ) = ∇Si · a,

DbS(Pi) =
∂

∂t
S̃(P+

i ) = ∇Si · b,
DcS(Pi) = ∇Si · c = 0.

Solving the first and last of these for the components of ∇Si, we find

∂S(Pi)
∂x

=
c2(∂/∂t)S̃(P−

i )∣∣∣∣ a1 a2
c1 c2

∣∣∣∣
,

∂S(Pi)
∂y

= −c1(∂/∂t)S̃(P
−
i )∣∣∣∣ a1 a2

c1 c2

∣∣∣∣
.

Now

DbS(Pi) = ∇Si · b =

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣∣∣∣∣ a1 a2
c1 c2

∣∣∣∣
∂

∂t
S̃(P−

i ),
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and

(4.2) Ai =

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣∣∣∣∣ a1 a2
c1 c2

∣∣∣∣
.

Extending a,b, c to R3,

a × c =
(
0, 0,

∣∣∣∣ a1 a2
c1 c2

∣∣∣∣
)
,

b × c =
(
0, 0,

∣∣∣∣ b1 b2
c1 c2

∣∣∣∣
)
.

But a × c and b × c have the same direction, consequently, Ai > 0.

It follows that, given a stream gradient at the upstream end of a
segment of H, we have a unique gradient at the downstream end of the
next upstream segment. It is only necessary to make a choice for c. In
our examples we choose c as follows. Because the edges entering the
vertex need not be collinear, we take c orthogonal to (a+b)/2. In the
next result we will show that the slopes at the upstream ends of the
segments can be determined so that S̃ is not only C1 but monotonically
increasing as well.

Following [4], let

(4.3)
∆i =

S̃(Pi+1)− S̃(Pi)
‖Pi − Pi+1‖ ,

αi =
1
∆i

∂

∂t
S̃(P+

i ), βi =
1
∆i

∂

∂t
S̃(P−

i+1),

be the normalized slopes at the ends of the segment PiPi+1, 1 ≤ i ≤
n−1. According to [4], a cubic segment of S̃ onPiPi+1 is monotonically
increasing if the point (αi, βi) ∈ M where M is a certain set in R2, see
Figure 3. From Proposition 4.1, the differentiability constraints have
the form

∂

∂t
S̃(P+

i ) = Ai
∂

∂t
S̃(P−

i ),
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FIGURE 3. Determining slopes for monotonicity.

or equivalently,

αi = µiβi−1 > 0, 2 ≤ i ≤ n− 1,

where

(4.4) µi =
∆i−1

∆i
Ai.

We will show that, given an admissible α1, β1 and the entire set (αi, βi),
2 ≤ i ≤ n − 1 can be chosen to satisfy both the monotonicity and
differentiability constraints for the entire subgraph. The essentials of
the approach can be found in [4].

Proposition 4.2. On any subgraph of H with n vertices, a river ele-
vation function S̃ exists which is monotonically increasing and satisfies
the constraints at the vertices.

Proof. We proceed by constructing an algorithm. As in [4], let S be
a subset of M that satisfies

(α, β) ∈ S and 0 ≤ α∗ ≤ α, 0 ≤ β∗ ≤ β =⇒ (α∗, β∗) ∈ S
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and has positive area.

It is easily seen by examining the regionM (see Figure 3) [4] that S is
bounded by the line segments α = 0, 0 ≤ β ≤ 3, β = 0, 0 ≤ α ≤ 3 and
some suitable continuous curve C connecting the points (0,3) and (3,0)
on the boundary of M. Note that the lines Li : α = µiβ, 1 ≤ i ≤ n− 1
(4.4) pass through the origin, have positive slope since (4.2) Ai > 0
and have a segment of positive length in S.
For the following argument it may be helpful to refer to Figure 3.

Suppose αi ∈ (0, 3) for some i satisfying 1 ≤ i ≤ n − 1. Let
P1 = (αi, βC) be the point on C, and let P2 = (αL, βL) be the
point of intersection of Li+1 and C. Observe that αL ∈ (0, 3). Let
βi = min{βC , βL}. Since (αi, βi) ∈ S, the corresponding segment
of S is monotonic. Now put αi+1 = µi+1βi. If βi = βL, then
αi+1 = αL ∈ (0, 3). On the other hand, if βi = βC ≤ βL, then by
the monotonicity of Li+1 we have αi+1 ≤ αL ∈ (0, 3). We conclude
that αi ∈ (0, 3) implies αi+1 ∈ (0, 3).

It follows that, for an initial choice α1 ∈ (0, 3) and C, there are
determined β1 and a set of pairs (αi, βi), 2 ≤ i ≤ n− 1, such that the
stream elevation function S̃ is monotonically increasing and satisfies
the smoothness constraints at the vertices.

We may make use of this proposition to generate a set of cubic arcs
on all edges of H. At the lowest point of H choose α1 ∈ (0, 3). The
algorithm of Proposition 4.2 determines the slopes of the elevation
function by (4.3) as far as the first confluence point, say Pn. There,
βn−1 = (∂/∂t)S̃(P−

n )/∆n−1. Now there will be a set of different lines
of the form Ln : α = µnβ, one for each new subgraph of H originating
there, one direction vector a, several associated direction vectors b and
corresponding vectors c. If equations in (4.1) are used with different
b’s and c’s, a unique gradient will not result. We therefore take for
b the average of the upstream direction vectors of the tributaries and
then take c orthogonal to (a + b)/2. Next we use Proposition 4.1 to
determine directional derivatives on all streams joining there; each is
an α1 for the subgraph in question. In this way we determine a cubic
arc network on H. The very first value α1 remains a parameter and the
curve C is at the disposal of the user. We can also determine gradients
of an underlying surface at the vertices of H. These will be needed
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FIGURE 4. Smoothing splines.

for the blending of the entire curve network on E and on the edges in
H and can be obtained by solving the second pair of the equations in
(4.1). By this choice, the special situation at an initial point of H is
accommodated.

5. Smoothing splines. We will use simple smoothing splines in
an erosion model in order to merge the curve network of the MNN
with the curve network on H constructed in the previous section. The
idea is to modify a temporary terrain profile obtained from the MNN
in a way that stimulates the erosion of the terrain to the elevation
and slope of the stream. This yields a profile for the valley containing
the stream. A family of weighted smoothing splines is constructed
that avoids undershoot in the modified profile and allows some user
interaction in controlling the nature of the erosion.

Smoothing splines are well known, but we will use weighted smooth-
ing splines, and we develop some of their properties in this section.

We approach the weighted smoothing spline by recalling the simplest
weighted splines introduced for one variable functions by Šalkauskas
[11] and Cinquin [3] as solutions to the problem of finding

f ∈H[a, b] := {f | f ′ is absolutely continuous in [a, b] and f ′′∈L2[a, b]}

which interpolates given values fi at a set of knots a = t1 < · · · < tn = b
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and minimizes the weighted “energy” functional

J(f) =
∫ b

a

w(t)[f ′′(t)]2 dt.

Here w > 0 is a step function which may depend on the data with
possible discontinuities only at the knots. A classical smoothing spline
[12], [6] does not have to interpolate and minimizes

Q(f) =
∫ b

a

[f ′′(t)]2 dt+ α
n∑

i=1

(fi − f(ti))2

over f ∈ H[a, b] for a fixed α ∈ [0,∞). The unique optimum is a
certain cubic spline. As in J , a weight function can be included for
additional shape control. Here we will only need the simplest setting
for these splines, and we will derive some special properties needed for
our application. We restrict f to a small space of functions and work
with few knots and special boundary conditions.

Let {φi, ψi}, i = 1, 2, 3, be the Hermite cardinal functions for ordinate
and derivative interpolation at knots t1 < t2 < t3. Then a piecewise
cubic function s interpolating zero data at t1, whose value at t2 is b
and derivative there is m, and which interpolates ordinate and slope a
and M respectively at t3, can be written as

(5.1) s = bφ2 +mψ2 + aφ3 +Mψ3

on [t1, t3]. See Figure 4.

Proposition 5.1. For any nonnegative weight function w which is
not identically zero, is constant on the intervals [t1, t2), [t2, t3) and any
α > 0, there is a unique σ in the space of C1 piecewise cubics with knots
t1 < t2 < t3 interpolating at t1 with zero ordinate and zero gradient,
and at t3 with given ordinate a and slope M , which minimizes

Q(s) =
∫ t3

t1

w(t)[s′′(t)]2 dt+ α[z − s(t2)]2,

for any constant z. Furthermore,

lim
α→∞ σ(t2) = z.
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Proof. On differentiating Q(s), we have

∂Q(s)
∂m

= 2
∫ t3

t1
ws′′

∂s′′

∂m
dt

∂Q(s)
∂b

= 2
∫ t3

t1
ws′′

∂s′′

∂b
dt− 2α(z − b),

and so, for an extremum, we obtain


b[
∫ t3

t1
w(φ′′2)

2 dt+ α] +m
∫ t3

t1
wψ′′

2φ
′′
2 dt

= −[∫ t3
t1
waφ′′3φ

′′
2 dt+

∫ t3
t1
wMψ′′

3φ
′′
2 dt] + αz,

b
∫ t3

t1
wφ′′2ψ

′′
2 dt+m

∫ t3
t1
w(ψ′′

2 )
2 dt

= −[∫ t3
t1
waφ′′3ψ

′′
2 dt+

∫ t3
t1
wMψ′′

3ψ
′′
2 dt].

Putting
(5.2)

A =
∫ t3

t1

w(φ′′2)
2 dt, D =

∫ t3

t1

w(ψ′′
2 )

2 dt,

B =
∫ t3

t1

wφ′′2ψ
′′
2 dt, E =

[ ∫ t3

t1

waφ′′3ψ
′′
2 dt+

∫ t3

t1

wMψ′′
3ψ

′′
2 dt

]
,

C =
[ ∫ t3

t1

waφ′′3φ
′′
2 dt+

∫ t3

t1

wMψ′′
3φ

′′
2 dt

]
,

we have, for a critical point,[
A+ α B
B D

] [
b
m

]
=

[
αz − C
−E

]
,

and the solution is

(5.3)

b =

∣∣∣∣αz − C B
−E D

∣∣∣∣∣∣∣∣A+ α B
B D

∣∣∣∣
=:

N (α)
D(α)

,

m = −

∣∣∣∣αz − C A+ α
−E B

∣∣∣∣∣∣∣∣A+ α B
B D

∣∣∣∣
=:

M(a)
D(a)

,



1088 L. MALVA AND K. ŠALKAUSKAS

provided D(α) �= 0. But D(α) is, save for a positive factor, the Hessian
of the quadratic form Q(s). Since D > 0, and by the Cauchy-Schwarz
inequality, AD ≥ B2, we have

D(α) = AD + αD −B2 > 0.

The sufficient conditions for a minimum are that the diagonal entries
of D(α) also be positive, and clearly α > 0 implies A + α > 0. The
coefficient of α in N (α) is zD, and in D(α) it is D, so

lim
α→∞ b = z,

independently of the weight function.

It is possible and useful to describe this smoothing spline by charac-
terizing its discontinuities in a way which is reminiscent of the prop-
erties of weighted splines demonstrated in [2]. As in Proposition 5.1,
we now derive necessary conditions satisfied by a smoothing spline σ
interpolating at t1 with zero value and gradient, and at t3 with value
a and slope M . At t2 the optimal spline σ has a value b and a slope m
which depend on the parameters α and z.

The penalized energy is a positive definite functional, say Q, defined
by a bivariate functional F with some parameters w and α. So,

Q(s) :=
∫ t3

t1

w(t)[D2s(t)]2 dt+ α(s(t2)− z)2 = F (s, s).

Here,

F (u, v) :=
∫ t3

t1

w(t)D2u(t)D2v(t) dt+ α(u(t2)− z)(v(t2)− z).

F (u, v) has the form F (u, v) = (u, v) + α(u(t2) − z)(v(t2) − z), where
(u, v) is a semi-inner product and the derivatives are interpreted dis-
tributionally. Now s = σ + βψ2 is amongst the candidates for σ, and

0 ≤ Q(s) = (s, s) + α(s(t2)− z)2
= (s− σ + σ, s− σ + σ) + α(σ(t2)− z)2
= (s− σ, s− σ) + 2(s− σ, σ) + (σ, σ) + α(σ(t2)− z)2
= Q(σ) + ‖βψ2‖2 + 2β(ψ2, σ).



ENFORCED DRAINAGE TERRAIN MODELS 1089

Since Q(σ) ≤ Q(s) for all values of β, a necessary condition for σ to be
best is

(5.4) (ψ2, σ) = 0.

Another necessary condition arises from the fact that s = σ + γφ2(s)
is also a candidate, and a calculation similar to the one above yields

(5.5)

0 ≤ Q(s) = (s, s) + α(s(t2)− z)2
= (s− σ + σ, s− σ + σ) + α(b+ γφ2(t2)− z)2
= (s− σ, s− σ) + 2(s− σ, σ) + (σ, σ) + α(b− z)2
+ α[γ2 + 2γ(b− z)]

= Q(σ) + γ2[‖φ2‖2 + α] + 2γ[(φ2, σ) + α(b− z)].
A second necessary condition is, therefore,

(5.6) (φ2, σ) + α(b− z) = 0.

Alternatively, by calculus of variations techniques, for the first condi-
tion we have

∂Q(s)
∂β

=
∂

∂β
[‖βψ2‖2 + 2β(ψ2, σ)]

= 2β‖ψ2‖2 + 2(ψ2, σ).

Setting β = 0 we get (5.4). For (5.5), a similar computation yields
(5.6).

Proposition 5.2. For any C1 piecewise cubic s with knots t1 < t2 <
t3,

−(ψ2, s) = w(t+2 )D
2s(t+2 )− w(t−2 )D2s(t−2 )

and

(φ2, s) = w(t+2 )D
3s(t+2 )− w(t−2 )D3s(t−2 ).

Proof. Integrating by parts, we obtain

(ψ2, s) = [w(t)D2s(t)Dψ2(t)]t3t1 −
∫ t3

t1

D[w(t)D2s(t)]Dψ2(t) dt.



1090 L. MALVA AND K. ŠALKAUSKAS

The first term in brackets vanishes because Dψ2(t1) = Dψ2(t3) = 0.
Derivatives of order three now have to be interpreted distributionally.
We are assuming that w is piecewise constant, with a jump discontinu-
ity only at t2. Therefore, wD2s has a potential jump discontinuity of
magnitude [wD2s]2 := w(t+2 )D

2s(t+2 )− w(t−2 )D2s(t−2 ) at t2 and wD2s
is piecewise linear while Dψ2 is continuous. We therefore have

(ψ2, s) = −
∫ t3

t1

[
dw(t)s′′(t)

dt
+ [wD2s]2δ(t− t2)

]
Dψ2(t) dt

= −
∫ t3

t1

dw(t)s′′(t)
dt

Dψ2(t) dt− [wD2s]2Dψ2(t2).

Here (dw(t)s′′(t)/dt) is the ordinary derivative of a piecewise lin-
ear function and has a potential jump of some size [wD3s]2 :=
w(t+2 )D

3s(t+2 )−w(t−2 )D3s(t−2 ) at t2. Using the facts that Dψ2(t2) = 1
and ψ2(t1) = ψ2(t2) = ψ2(t3) = 0 we get, by one more integration by
parts,

(ψ2, s) = −
[
dw(t)s′′(t)

dt
ψ2(t)

]t3

t1

+
∫ t3

t1

[wD3s]2δ(t− t2)ψ2(t) dt− [wD2s]2

= −[wD2s]2.

For the other condition we compute

(φ2, s) =
∫ t3

t1

w(t)D2φ2(t)D2s(t) dt

= [w(t)D2s(t)Dφ2(t)]t3t1 −
∫ t3

t1

D[w(t)D2s(t)]Dφ2(t) dt.

Again, the first term vanishes because Dφ2(t1) = Dφ2(t3) = 0. Then

(φ2, s) = −
∫ t3

t1

[
dw(t)s′′(t)

dt
+ [wD2s]2(t− t2)

]
Dφ2(t) dt

= −
[
dw(t)s′′(t)

dt
φ2(t)

]t3

t1

+
∫ t3

t1

[wD3s]2δ(t− t2)φ2(t) dt

= [wD3s]2,
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because φ2(t2) = 1 and Dφ2(t2) = 0.

Corollary 5.3. The necessary conditions for optimality are

w(t+2 )D
2s(t+2 )− w(t−2 )D2s(t−2 ) = 0

and

(5.7) w(t+2 )D
3s(t+2 )− w(t−2 )D3s(t−2 ) + α(b− z) = 0.

Corollary 5.4. The integrals (5.2) in the smoothing spline formula-
tion of Proposition 5.1 are given in terms of weighted jumps in deriva-
tives [wD2s]2 and [wD3s]2 as follows:

B = −[wD2φ2]2 = [wD3ψ2]2, D = −[wD2ψ2]2 > 0,
E = −a[wD2φ3]2 −M [wD2ψ3]2,
A = [wD3φ2]2 > 0, C = a[wD3φ3]2 +M [wD3ψ3]2.

Proof. In the first result of Proposition 5.2, put s = φ2, ψ2, φ3 and
ψ3 in succession to obtain B, D and E. Put s = φ2, φ3 and ψ3 in the
second to obtain A and C.

Corollary 5.5. The equations defining the smoothing spline in
Proposition 5.1 are equivalent to the necessary conditions of Corol-
lary 5.3.

Proof. The equation Bb+Dm+ E = 0 is just

w(t+2 )D
2σ(t+2 )− w(t−2 )D2σ(t−2 ) = 0,

for σ = bφ2+mψ2+aφ3+Mψ3, and the equation Ab+Bm+C = α(z−b)
is easily seen to be

(5.8) w(t+2 )D
3σ(t+2 )− w(t−2 )D3σ(t−2 ) + α(b− z) = 0.
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The weighted jumps are simple to compute for the Hermite basis
functions. We list the derivatives involved for future reference. Using
t2 − t1 = h, t3 − t2 = k, we have

(5.9)

D2φ2(t−2 ) = − 6
h2
, D2φ2(t+2 ) = − 6

k2
,

D2φ3(t−2 ) = 0, D2φ3(t+2 ) =
6
k2
,

D3φ2(t−2 ) = −12
h3
, D3φ2(t+2 ) =

12
k3
,

D3φ3(t−2 ) = 0, D3φ3(t+2 ) = −12
k3
,

D2ψ2(t−2 ) =
4
h
, D2ψ2(t+2 ) = −4

k
,

D2ψ3(t−2 ) = 0, D2ψ3(t+2 ) = −2
k
,

D3ψ2(t−2 ) =
6
h2
, D3ψ2(t+2 ) =

6
k2
,

D3ψ3(t−2 ) = 0, D3ψ3(t+2 ) =
6
k2
.

5.1. Optimal upper and lower splines. We now consider a
family of smoothing splines defined on a portion of an edge (of the
triangulation of the vertices V) that is crossed by the hydrographic
net. The family will be controlled by the weight function w and the
parameters α and z. This will offer a means of simulating the erosion
of the terrain originally described by the MNN. For the time being,
we are using the special boundary conditions as at the beginning of
Section 4. Figure 4 illustrates the context and notation. The edge is
parametrized by arc length t in such a way that t = t1 = 0 corresponds
to the crossing by the net, t = t3 > t1 corresponds to an endpoint. We
choose t2 ∈ (t1, t3) and assume that the elevations z and a at t2 and
t3, respectively, are positive. It is convenient to normalize the weight
function. We choose w(t−2 ) + w(t

+
2 ) = 1.

Definition 5.6. The upper spline σu is a weighted smoothing spline,
satisfying end conditions as in Proposition 5.1 at t1, t3, corresponding
to α = ∞, and therefore interpolating the elevation z at t2, with
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weights w(t−2 ) = 0 (on [t1, t2) ), w(t+2 ) = 1 (on [t2, t3) ). Denote the
corresponding weight function wu.

Observation. The weights chosen above make σu as flat as possible
on [t2, t3] while satisfying the end conditions at t3 and interpolating
the value z at t2. However, σu is normally not the same as the arc of
the MNN on [t2, t3]. Because we have restricted our class of admissible
functions for the smoothing splines, the vanishing of the weight function
on [t2, t3] does not cause difficulties.

Definition 5.7. The lower spline σl is a weighed smoothing spline
on [t1, t3] corresponding to α = 0, satisfying the end conditions at
t1, t3 as above, and with weights w(t−2 ) = 1, w(t+2 ) = 0. Denote the
corresponding weight function wl.

Lemma 5.8. The lower spline σl vanishes on [t1, t2].

Proof. This spline must satisfy

wl(t+2 )D
2σl(t+2 )− wl(t−2 )D

2
l σl(t−2 ) = 0,

wl(t+2 )D
3σl(t+2 )− wl(t−2 )D

3
l σl(t−2 ) = 0.

In Hermitian form, σl = aϕ3 + Mψ3 + blϕ2 + mlψ2. Putting in
wl(t+2 ) = 0 and wl(t−2 ) = 1, the conditions become

blD
2ϕ2(t−2 ) +mlD

2ψ2(t−2 ) = 0,
blD

3ϕ2(t−2 ) +mlD
3ψ2(t−2 ) = 0,

because ϕ3 and ψ3 vanish identically on [t1, t2]. A short calculation
using the values of the second derivatives in (5.9) above shows that
the determinant of this system does not vanish, and thus the unique
solution is bl = ml = 0. In view of the zero end conditions at t1, the
entire segment on [t1, t2] must vanish.

Lemma 5.9. If MK ≤ 3a, the lower spline σl is nonnegative on
[t1, t3].

Proof. Consider the control polygon associated with the representa-
tion of σl in terms of the Bernstein basis. By Lemma 5.8, the control
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FIGURE 5. The erosion model.

polygon of σl on [t1, t2] has zero ordinates. By C1 continuity, the con-
trol polygon on [t2, t3] has zero ordinates at t2 and t2+k/3. IfMk ≤ 3a,
the ordinate at t2 + 2k/3 is positive, as is the ordinate a at t3. Since
σl lies in the convex hull of its control polygon, σl ≥ 0 on [t1, t3].

6. The erosion model. Let eij be an edge of the triangulation that
connects vertices Vi and Vj and is crossed once by the hydrographic net
at a vertex P of the net. Consider the portion of this edge connecting
P to Vj . Parametrize it by arclength t so that t = t1 = 0 corresponds
to P and t = t3 > 0 corresponds to Vj . Let t2 satisfy t1 < t2 < t3.
There is a cubic arc on [t1, t3] originating with the MNN that does not
conform to the hydrographic data at P, t = t1. We can construct a
family of cubic smoothing splines with knots ti, i = 1, 2, 3, that agree
with the hydrographic data and share ordinate and slope with the cubic
arc of the MNN at t3 as follows. See Figures 4 and 5.

The elevation a1 at P is known from hydrographic data. The
algorithm of Section 3 yields the gradient of the underlying surface
S at the vertex P of H corresponding to t1. From this we can calculate
the directional derivative along eij and thus obtain m1, the slope of the
valley containing the stream. We now reset the datum in such a way
that the ordinate and slope at t1 are zero. This we do by subtracting
the straight line

(6.1) l(t) := a1 +m1(t− t1)
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from the data. The elevation at the benchmark Vj is now a := zj−l(t3).
We are assuming that the benchmark elevations are sufficiently larger
than those of the net in the sense that a > 0. Ifm3 is the slope obtained
from the MNN at Vj , we putM := m3−l′(t3) = m3−m1. See Figure 5.
Given an α and z, we can find a smoothing spline σ by the method
of the previous section. Then the spline s := σ + l interpolates the
elevation and MNN slope at the benchmark Vj , the elevation of the
hydrographic net at P, and has an appropriate slope of the valley at P
in the direction of the edge. Furthermore, s is a smoothing spline with
the z-parameter replaced with z + l(t2) because then the functional Q
of Proposition 5.1 satisfies Q(σ+ l) = Q(σ) and σ+ l satisfies the jump
conditions (5.7) at t2.

We now construct a simple erosion model that uses smoothing splines
to modify the original, uneroded MNN profile on an edge to include
the presence of the hydrographic net and simulate various degrees of
erosion. If eij is an edge of the triangulation of P connecting vertices
Vi and Vj and containing a vertex P = (ξ, η) of the hydrographic net,
we apply Proposition 5.1 and subsequent lemmas and definitions to the
two segments from Vi to P and P to Vj . The initial steps are as follows.

1. Choose one of these segments, say P to Vj , denote its length lj
and parametrize it by arc length t so that

(6.2)

x(t) =
(
1− t

lj

)
ξ +

t

lj
xj ,

y(t) =
(
1− t

lj

)
η +

t

lj
yj ,

t ∈ [0, lj ].

For a partition {0 = t1 ≤ t2 < t3 = lj} of [0, lj ], t = t1 and t = t3
will correspond to the vertices P and Vj , respectively. Choose t2. A
convenient choice is the midpoint of [t1, t3]. Verify that a > 0 and
Mk ≤ 3a, see Lemma 6.9 and recall that k = t3−t2. If ζ is the elevation
of the MNN at t2, take z = ζ − l(t2) and verify that z > 0. Then
replace the MNN profile on [t1, t3] with a piecewise cubic smoothing
spline interpolating and tangent to the MNN at t = t3, interpolating
the elevation of the stream with slope m1 at t = t1 and smoothing the
MNN profile at t = t2. Satisfaction of the inequalities above ensures
that the lower spline sl := σl + l lies above l on [t1, t3].
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2. Repeat the process for the segment Vi to P, reversing its orienta-
tion.

In this way we generate a pair of smoothing splines to replace the
MNN on the segment ViVj . Their union is a certain smoothing spline
s on that edge. If the data coming from the MNN do not satisfy the
inequalities above, an adjustment of the MNN may be required, by
addition of elevation data in the vicinity of the hydrographic net, for
example.

Definition 6.1. An erosion model for an edge of the triangulation
crossed by one edge of the hydrographic net is the family of smoothing
splines s constructed as above and defined by

1. parameters (λ, α) ∈ [0, 1]× [0,∞),

2. weight functions linearly interpolated, i.e., w = (1− λ)wl + λwu,

3. a one-to-one mapping q : [0, 1] → [0,∞) defining α = q(λ).

For the time being we do not specify q. We would like the family to
lie between the upper and lower splines for all values of λ ∈ [0, 1] and
to deform from the lower to the upper in a monotonic fashion. There
are simple ways to do this that do not depend on the minimum energy
principle of the smoothing spline. However, since the MNN is based on
such a principle, we wish to be consistent with it. While we do not have
a full answer to the questions this raises, some results in this direction
are proved in this section. They will be obtained for the individuals
in the pair making up s so as to simplify notation and will be derived
with respect to the datum modified by subtracting the appropriate line
l. As in (5.9), we put t2 − t1 = h, t3 − t2 = k.

Recall that the b of Proposition 5.1 is σ(t2). Hence,

σ(t2) =

∣∣∣∣αz − C B
−E D

∣∣∣∣∣∣∣∣A+ α B
B D

∣∣∣∣
=
αzD + F
αD +G

,

where zD > 0, D > 0, F = BE − CD and G = AD − B2 ≥ 0.
These depend on the weights, but for any fixed set of weights, σ(t2)
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changes monotonically from the value F/G corresponding to α = 0, to
z for α = ∞. As a consequence of the linear interpolation of weight
functions, we have w(t−2 ) = 1 − λ, w(t+2 ) = λ and a calculation using
Corollary 5.4 yields

(6.3) G =
12
h4k4

[(k2(1−λ)+h2λ)2 +4λ(1−λ)(h3k+h2k2 +hk3)] > 0.

Also,

(6.4) F =
12λ
h2k4

[λh2(a−Mk) + (1−λ)k(a(3k + 4h)−Mk(k + 2h))].

Since α = 0 corresponds to λ = 0, σ(t2) = 0 when α = 0. When α = ∞
then λ = 1 and σ(t2) = z. We now show that, under mild hypotheses,
σ(t2) ≥ 0 for all (λ, α) ∈ [0, 1]× [0,∞).

Lemma 6.2. If MK ≤ a, then σ(t2) ≥ 0.

Proof. The coefficient of (1− λ)k in (6.4) is

a(3k + 4h)−Mk(k + 2h) > a(k + 2h)−Mk(k + 2h) ≥ 0.

Consequently, F is a nonnegative multiple of a linear combination of
positive quantities with positive coefficients and hence nonnegative.
Since G > 0 and D > 0, the conclusion follows.

In view of Definition 5.10,

(6.5) σ(t2) =
q(λ)zD + F
q(λ)D +G

= z +
F − zG
q(λ)D +G

.

Since q(λ)D+G > 0, σ(t2) < z for λ < 1 if and only if F − zG ≤ 0 for
all λ ∈ [0, 1], and this is independent of q(λ).

Looking at the values of F and zG at the ends of [0, 1], we find

(zG− F )(0) = 12z
h4

> 0,

(zG− F )(1) = 12
k4

(z − a+ kM) ≥ 0.
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The last condition holds only if

z ≥ a−Mk.
It is easy to see that, in terms of the original datum, this condition is

ζ ≥ zj −m3k,

or, geometrically, that the MNN at t2 is not below the tangent line
drawn to the MNN at t3. This is an interesting condition which
is related to how well the MNN approximates a reasonable terrain
profile on the edge in question, and plays a role in the following lemma
concerning the behavior of σ(t2) as a function of λ.

Lemma 6.3. For fixed λ, if z ≥ a−Mk and Mk ≤ a, then σ(t2) < z
for all λ ∈ [0, 1).

Proof. Notice that F − ZG is a quadratic in λ. From (6.4), (6.3)
and assuming that z ≥ a −Mk, (zG − F )′ ≥ (a −Mk)G′ − F ′. For
convenience, put (a−Mk)G′ − F ′ = 12f ′(λ).

If the coefficient of λ2 in zG − F is nonpositive, then in view of the
nonnegative values of (a −Mk)G − F at λ = 0, 1, zG − F ≥ 0 for all
λ ∈ [0, 1]. If the coefficient is positive, then we impose the condition
that the zero of f ′(λ) is greater than or equal to 1. A calculation with
F and G (6.4), (6.3), yields

[−a(−2k4 + 4hk3 + 9h2k2 + 8h3k − h4) + Mk(−2k4 + 4hk3 + 7h2k2 + 6h3k − h4)]

[a(2k4 − 8hk3 − 12h2k2 − 8h3k + 2h4) − Mk(2k4 − 8hk3 − 12h2k2 − 8h3k + 2h4)]

≥ 1.

The denominator is a positive multiple of the positive coefficient of λ2

and the above inequality is equivalent to

a(4hk3 + 9h2k2 + 8h3k)−Mk(4hk3 + 7h2k2 + 6h3k) ≥ 0.

But

a(4hk3 + 9h2k2 + 8h3k)−Mk(4hk3 + 7h2k2 + 6h3k)
> a(4hk3 + 7h2k2 + 6h3k)−Mk(4hk3 + 7h2k2 + 6h3k)
= (a−Mk)(4hk3 + 7h2k2 + 6h3k) ≥ 0
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if a−Mk ≥ 0, and indeed the zero of f ′(λ) is ≥ 1. The end conditions
on (a −Mk)G − F ensure the positivity of zG − F for all λ ∈ [0, 1].

The following proposition summarizes the properties of the smoothing
spline erosion model proved to this point in terms of the original datum.
Recall (Figure 5) that ζ is the elevation of the MNN at a certain point
on an edge eij between a hydrographic net crossing P and the vertex
Vj , distant h from P and k from Vj , zj is the elevation of the MNN at
Vj and m3 is the slope of the MNN at Vj in the direction from P to
Vj . In the preamble to Lemma 6.3, we pointed out that the condition
z ≥ a−Mk is equivalent to ζ ≥ zj −m3k. A simple calculation shows
that Mk ≤ a is the same as

zj −m3k ≥ l(t2),

which has a convenient graphical interpretation and can influence the
choice of t2 in the erosion model.

Proposition 6.4. If ζ ≥ zj −m3k and zj −m3k ≥ l(t2), the family
of smoothing splines defining the profile of the eroded terrain on [t1, t3]
according to Definition 6.1 has the property that, for any choice of the
mapping q, the smoothing spline s corresponding to a parameter value
λ ∈ [0, 1] satisfies 0 ≤ s(t2) ≤ ζ. With obvious changes the same results
hold for the edge connecting P to Vi.

The inequality conditions are not very restrictive and represent a
reasonable behavior of the MNN on the edge in question. In particular
the condition zj −m3k ≥ l(t2) only requires the MNN not to be too
steep at the end point of the edge crossed by the hydrographic net.
Recall also Lemma 5.9 which guarantees the nonnegativity of the lower
spline ifMk < 3a which is certainly true ifMk ≤ a or zj−m3k ≥ l(t2).
The behavior of the smoothing spline family on the entire interval
[t1, t3] depends on the choice of q (see Definition 6.1). While we have
no proof at this time, it seems that in order to prevent unreasonable
oscillations of the profile, q should be chosen so that the low energy of
the smoothing spline on [t1, t2], represented by the relatively large size
of the weight wl(t−2 ) on that interval, i.e., λ close to 0, does not increase
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too rapidly as α increases. For the examples that we have computed,
our choice was

α =
λ

1− λ,

which has qualitatively the appropriate behavior. We note that the
inequalities ensuring reasonable behavior of the family of smoothing
splines represent sufficient, rather than necessary, conditions. In a
practical application, a violation serves as a warning to the user, and
a manual choice of λ may resolve any problem with the valley profile.

7. Blending of the curve network. As a result of the algorithms
of the previous sections, we have a cubic curve network defined on
the edges of E ∪ H. These subdivide Ω into triangular as well as
quadrilateral patches. Here we use the blending method described
in [8] to generate the surface S that we seek. This method applies
only to triangles. We will apply it to quadrilaterals by inserting two
diagonals and averaging the blended interpolant. The method requires
knowledge of∇S on the edges. These can be generated by interpolating
the known gradients at the vertices. For a quadrilateral patch insert a
diagonal. Then the gradient and elevation are known at its end points
and a cubic interpolant along the diagonal is uniquely determined. The
gradient can be interpolated along the diagonal, and blending can be
applied. The same can be done for the other diagonal. To remove
bias, we average the two results on the quadrilateral to obtain the
final interpolant. In this section we describe a piecewise quadratic
interpolant which contains the method used by Nielson [8] as a special
case. On each edge this interpolant contains a parameter that we will
be able to adjust. In particular, on those edges which correspond to
the hydrographic net, we will use it to make the gradient of the blended
surface as parallel to the direction of the stream as possible in an L2

sense. As the hydrographic net is now incorporated into the original
triangulation, we no longer make any notational distinction between
vertices and edges originating from the two initial data sets.

Through the construction of the MNN and the erosion model, we
have the restrictions of some function S to the edges of a triangulation.
In our case these restrictions are cubics. The gradient of S is available
at the vertices; denote this ∇Si at a vertex Vi. The derivative of S
along any edge of the triangulation is also known. Consider an edge
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eij . Let eij be a unit vector along this edge. Parametrize this edge
by arclength t and let lij = ‖eij‖}, the length of the edge. Let t = 0
and t = lij correspond to the vertices Vi and Vj , respectively. Put
v = eij + βnij where nij is a unit vector perpendicular to eij pointing
into the interior of the triangle and β is a parameter.

Proposition 7.1. On every edge eij, a one-parameter family of
quadratic interpolants of the gradient of S exists that can be written in
the form

(7.1) Q(t) = L(t) + αt(lij − t)v,

where L(t) is the linear interpolant of the gradient given by (7.3) and
α is given by

(7.2) α = 6/l2ij(C − T ).

Here T denotes the tangential (scalar) component of the mean of the
gradients at the ends of the edge, and C is the slope of the chord joining
Vi to Vj.

Proof. Because S is cubic on this edge, its derivative along the edge
is a known quadratic, say (dS/dt) = qij(t). It must be true that
∇Si • eij = qij(0) and ∇Sj • eij = qij(lij). We seek a gradient ∇S,
defined on eij such that ∇S • eij = qij(t). Let us interpolate ∇S along
the edge by a quadratic. Such a quadratic is not unique. Let L be the
linear interpolant of the gradients at Vi, Vj . Then

(7.3) L(t) =
(
1− t

lij

)
∇Si +

t

lij
∇Sj ,

and, for each constant α and constant vector v �= 0, one has the family
of quadratic interpolants

Q(t) = L(t) + αt(lij − t)v.

An exceptional case occurs if qij(t) is in fact linear. Then α = 0 and
L(t) reproduces it. Suppose α �= 0. The derivative of S along the edge
is Q•eij = L •eij +αt(lij − t)v •eij = L •eij +αt(lij − t), a quadratic
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in t, say p(t). L • eij is linear in t and, because L interpolates ∇S, we
have p(0) = ∇Si • eij = qij(0) and p(lij) = ∇Sj • eij = qij(lij). Now
we make p(lij/2) = qij(lij/2). This gives

L
(
lij
2

)
• eij +

l2ij
4
α = qij

(
lij
2

)
,

and

(7.4) α =
4
l2ij

[
qij

(
lij
2

)
− L

(
lij
2

)
• eij

]
.

Note that α is independent of the parameter β. If the cubic S is
degenerate, it is possible that α = 0.

Because p(t) and qij(t) are both quadratics which coincide at three
distinct points, they must be identical. With the above value of α, Q is
a quadratic interpolant of the gradient along the edge consistent with
the derivative along the edge obtained from the curve network. Clearly,
the solution is not unique because of the arbitrariness in v coming from
β. Now observe (7.3) that

L
(
lij
2

)
=

∇Si +∇Sj

2
,

and thus T := L(lij/2) •eij is the tangential (scalar) component of the
mean of the gradients at the ends of the edge. A short calculation with
the Hermite form of the cubic along the edge shows that

qij

(
lij
2

)
=

3
2lij

[S(Vj)− S(Vi)]− T

2
.

But C := [S(Vj)− S(Vi)]/lij is the slope of the chord joining Vi to Vj .
We conclude that

α =
6
l2ij

(C − T ).

From the equation (7.1)

∇S =
(
1− t

lij

)
∇Si +

t

lij
∇Sj + αt(lij − t)[eij + βnij ],
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we find that the interpolated value of the derivative normal to the edge
is

∇S • nij =
[(

1− t

lij

)
∇Si +

t

lij
∇Sj

]
• nij + αβt(lij − t)

= L(t) • nij + αβt(lij − t).

Here we see that, if β = 0, then this is equivalent to linear interpolation
of the derivative normal to the edge. In what we call Nielson’s method,
one makes the choice β = 0 on all edges.

If eij is an edge corresponding to the hydrographic net, then the
gradient there should be parallel to the edge. That means that the
derivative normal to the edge should be zero. While α is already
determined, we would like to choose β so that this quantity is as close
to zero on the edge as possible. One measure of this is the L2-norm.
We therefore minimize

‖∇S • nij‖2 =
∫ lij

0

[L(t) • nij + αβt(lij − t)]2 dt.

Let T,C be as in Proposition 7.1, and let N := ((∇Si +∇Sj)/2) • nij

denote the normal (scalar) component of the mean of the gradients at
the ends of the edge.

Proposition 7.2. When α �= 0, ‖∇S • nij‖2 is least if

β =
5
6

N

T − C .

Proof.

‖∇S • nij‖2 =
∫ lij

0

[L(t) • nij + αβt(lij − t)]2 dt.

Now

∂

∂β
‖∇S • nij‖2 = 2α

∫ lij

0

[L(t) • nij + αβt(lij − t)]t(lij − t) dt.
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Since the coefficient of β2 in ‖∇S • nij‖2 is positive, the optimal value
of β is

β = −
∫ lij

0

[L(t) • nij ]t(lij − t) dt
/
α

∫ lij

0

t2(lij − t)2 dt

=
30
αl5ij

∫ lij

0

[L(t) • nij ]t(t− lij) dt.

Using (7.3) we have

∫ lij

0

L(t)t(t− lij) dt = − l
3
ij

12
(∇Si +∇Sj).

Consequently,

∫ lij

0

L(t) • nijt(t− lij) dt = − l
3
ij

6

(∇Si+∇Sj

2

)
• nij = − l

3
ijN

6
,

and
β = − 5N

αl2ij
.

However, recall (7.4) that α = 6(C − T )/l2ij . The result follows.

If the MNN along the edge is linear, then T = C. Then α = 0 and we
do not compute β in this way. It is arbitrary, and for this application
we choose β = 0. Thus,

(7.5) β =

{ 5
6

N

T − C T �= C,
0 T = C.

Discretion is advised due to rounding errors in borderline situations.

8. Examples. For the purpose of illustration the above results,
we chose a set B of 9 benchmark points from a topographical map,
Figure 10, and a set of 11 points of the hydrographic net contained in
the convex hull of B, as illustrated in Figures 1 (a), (b), (c) and 10.
The computations for these, and subsequent figures, were carried out
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FIGURE 6. A thin-plate spline interpolant.

with the aid of Maple V. Additional work on the figures was done with
Corel Draw 7 by www.Highpointdesigns.com.

A spline minimum norm network (MNN) was constructed over the
edges of the triangulation and is shown in Figure 2. In order to include
the presence of the hydrographic net, the MNN profiles intersected by
H were modified by the methods described in Section 5, initially using
λ = 0.7 and t = l/2 (see Proposition 5.4).

Figure 6 is a thin-plate spline interpolant of the 20 initial points. The
netH is also shown. As expected, the surface is very smooth, but poorly
approximates the important features of the original. Figure 7 is a
contour map of the surface produced by the blending method described
by Nielson [8] with α determined from (7.2) and β = 0. In some regions
one can see substantial deviations of the direction of the gradient vector
on H from the direction of H. This has especially serious consequences
in the southeastern part of the map where cuspiness in the contours
on a triangulation edge near the stream appears to be due to a poor
gradient on the stream. Figure 8 was produced with an optimized (7.5)
on edges coming from H. There is a clear difference between these two
pictures. In the latter the contours in the stream in the southeast
are more rounded, and the contours in the west are more orthogonal
to the hydrographic net. There is some roughness in the surfaces,
inherited from the triangulation and the blending method employed.
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FIGURE 7. Nielson’s blending.

FIGURE 8. Blending with optimal beta.
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FIGURE 9. Adjusted map.
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FIGURE 10. Original contour map.
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Some smoothing may be possible by adjusting β on some additional
edges. Figure 9 is a map in which the original value λ = 0.7 and t2 has
been changed in a few places to improve valley profiles in the blended
surface. In particular, the valley in the eastern part of the map has been
narrowed on the south side so as to conform more closely to Figure 10,
which is the contour map from which the data was derived.

For a practical application of the methods discussed above, it is neces-
sary to study further the impact of the various parameters available in
the erosion model and to deal effectively with the problems of insertion
of additional data.
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