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ABSTRACT. We will determine all universal integral lat-
tices on binary positive definite Hermitian spaces over arbi-
trary imaginary quadratic fields, where a positive definite lat-
tice is said to be ‘universal’ if it represents all positive rational
integers. A.G. Earnest and A. Khosravani determined univer-
sal binary Hermitian lattices when the imaginary quadratic
fields have class number 1. In this paper we will extend the
result to the case of fields with arbitrary class numbers and ob-
tain nine new universal binary Hermitian lattices up to equiv-
alence, including nonfree lattices.

1. Introduction. Lagrange [5] proved that any positive rational
integer is a sum of four squares. In other words, the quaternary
quadratic form f(x, y, z, w) = x2 + y2 + z2 +w2 represents all positive
rational integers. We call such a positive definite form a universal form.
Ramanujan [7] showed that there are 55 universal diagonal quaternary
quadratic forms in all. More generally, we know that there are only a
finite number of universal integral forms with cross products but have
not yet determined them completely, when they have an odd cross
product. Recently, Earnest and Khosravani [2] investigated the similar
problem for binary classic integral Hermitian forms over the imaginary
quadratic fields of class number one and determined the classes of
universal forms in the case. We say a lattice or a form is classic integral
if its scale ideal is integral. As for the representation of numbers, binary
Hermitian forms over quadratic fields can be regarded as quaternary
quadratic forms over the rational number field. Accordingly, universal
binary Hermitian forms provide universal quaternary quadratic forms,
which may not be classic integral whereas Hermitian forms are classic.
In this paper we will determine all universal binary Hermitian lattices
for arbitrary imaginary quadratic fields.

In Section 2 we will give a correspondence of Hermitian lattices to
quadratic lattices. In Section 3 we will obtain universal and potentially
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universal lattices by checking the representability of a few certain
integers and state the main theorem which lists all universal Hermitian
lattices for imaginary quadratic fields with class number greater than
or equal to 2. Then we will show a proposition which is needed to prove
the theorem. In the last section we will show the universality of some
nonclassic quadratic forms to complete the proof of the theorem.

2. Hermitian lattices and quadratic lattices. We establish the
correspondence of a quadratic form over the rational number field Q
to a Hermitian form over an imaginary quadratic field. Notation for
lattices and spaces is due to O’Meara’s book [6]. Let F denote an
imaginary quadratic field over Q and m < 0 be a square-free integer
for which F = Q(

√
m). We write a mapping: x → x̄ for the nontrivial

involutive Q-automorphism of F . The ring o of integers in F has a
basis [1, ω] as a Z-module of rank 2, where ω := ω−m = (1 +

√
m)/2

if m ≡ 1 (mod 4) or ω−m =
√
m if m ≡ 2, 3 (mod 4). Let V be an

n-dimensional Hermitian space over F with nondegenerate Hermitian
form H and L an o-lattice on V . Consider the corresponding 2n-
dimensional quadratic space Ṽ over Q to V as defined in Jacobson
[4]. Taking an F -basis [u1, u2, . . . , un] of V , we can regard V as a 2n-
dimensional vector space Ṽ over Q with a basis [u1, ωu1, . . . , un, ωun].
We associate a symmetric bilinear form B(x, y) = {H(x, y)+H(y, x)}/2
to Ṽ as to be a quadratic space over Q. The associated quadratic form
Q is also defined by Q(u) := B(u, u) for u ∈ Ṽ . A Hermitian lattice
L on V is a finitely generated o-module in V , which is represented
as L = p1u1 + p2u2 + · · · + pnun for fractional ideals pi of F and an
F -basis [u1, . . . , un]. Each pi has a Z-basis [αi, βi]. Using the above
correspondence of Ṽ to V , we obtain a quadratic Z-lattice L̃ on Ṽ :

L̃ = Zα1u1 + Zβ1u1 + Zα2u2 + Zβ2u2 + · · · + Zαnun + Zβnun.

We let vL and dL̃ denote the volume ideal of L and the discriminant
of the corresponding L̃, respectively. Then we have

vL = det (H(ui, uj)) · p1p̄1 · p2p̄2 · · · pnp̄n,

and
dL̃ = {disc (F/Q)/4}2N(vL),

where disc (F/Q) denotes the discriminant of F over Q, and N(a) the
absolute norm of a fractional ideal a. Note that L̃ satisfies Q(L̃) =
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H(L), and L is a universal binary Hermitian lattice if and only if L̃ is a
universal quaternary quadratic lattice. In [3], Earnest and Khosravani
showed that the discriminant of a universal positive definite integral
quaternary quadratic form over Z cannot exceed 1073/4, which implies
that |disc (F/Q)| is less than 65. We look for imaginary quadratic
fields with a class number greater than or equal to 2 and a discriminant
greater than −65. There are 14 such fields: Q(

√
m) for m = −5, −6,

−10, −13, −14, −15, −23, −31, −35, −39, −47, −51, −55, −59.

3. Universal Hermitian lattices. We suppose that L is a universal
classic integral Hermitian lattice on a positive definite binary Hermitian
space V , where an o-lattice L is said to be classic integral if H(u, v) ∈ o
for any u, v in L. From the universality of L, we see that a vector
u exists in L such that H(u) = 1 and ou ⊂ L is an orthogonal
component of L. We can choose an appropriate vector v in V such
that [u, v] is a basis of V and L = ou ⊥ pv where p is an element
of fixed representatives of the ideal class group of F . Then elements
α ∈ o and β ∈ p exist such that H(αu + βv) = |α|2 + |β|2H(v) = 2,
because L represents 2. Put N(a) := {|α|2 : α �= 0 and α ∈ a} and
m(a) = min N(a) for a fractional ideal a. In any field listed at the
end of the last section, the set N(o) does not contain 2, so we have
an inequality H(v) � 2/m(p). Because L is classic integral, we see
that H(β1v, β2v) = β1β̄2H(v) ∈ o for any β1, β2 in p, which provides
that H(v) is in N(p)−1Z. It follows that there are only a few lattices
which we have to check on the universality. We will treat a quaternary
quadratic form f(x, y, z, w) associated with a quadratic lattice L̃, and
check whether it represents integers 2, 3, 5, 13 or not.

First we consider the case where L is a free o-lattice. We can assume
that L = ou+ ov, H(u) = 1, H(u, v) = 0, H(v) = 1 or 2. If disc (F/Q)
is not equal to −20 then the set N(o) contains neither 3 nor 5. If
H(v) = 1 then L does not represent 3, and if H(v) = 2 then L does
not represent 5. Thus, no universal lattice exists except for the case of
disc (F/Q) = −20 (m = −5). In this case, if H(v) = 1 then L does not
represent 3, and if H(v) = 2, then the associated quadratic form with
L̃ equals f(x, y, z, w) = x2 + 2y2 + 5z2 + 10w2, which is listed in [7].

Next we consider the nonfree case, in which L = ou+pv. An ideal p is
nonprincipal, and we write it [α, β] which is a basis of p as a Z-module.
We can assume that p is integral and that u ∈ L and v ∈ V satisfy
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H(u) = 1, H(u, v) = 0, H(v) ∈ N(p)−1Z in what follows.

In the case of m = −5, the class number of F is equal to 2, so we
set p = [2, 1 + ω], m(p) = 4. Since H(v) ∈ (1/2)Z and H(v) � 1/2,
H(v) is equal to 1/2. In this case, the quadratic form associated with
L̃ is f(x, y, z, w) = x2 + 2y2 + 2yz+ 3z2 + 5w2. It is in one class genus,
therefore its universality is proven from local conditions.

In the case of m = −6, there is only one universal lattice: L = ou+pv
(p = [2, ω], H(v) = 1/2). The quadratic form associated with L̃ is
f(x, y, z, w) = x2 + 2y2 + 3z2 + 6w2, which is listed in [7].

In the case ofm = −10, there is only one universal lattice: L = ou+pv
(p = [2, ω], H(v) = 1/2). The associated form f(x, y, z, w) = x2+2y2+
5z2 + 10w2 is universal as is listed in [7].

In the case of m = −13 or −14, no lattices represent all of 2, 3, and
5.

In the case of m = −15, L = ou + pv (p = [2, ω], H(v) = 1/2) is
potentially universal. The associated form is f(x, y, z, w) = x2 + 2y2 +
y2 + yz + 2z2 + xw + 4w2, which has not been shown to be universal
yet. The other lattices are not universal.

In the case of m = −23, both L = ou + pv (p = [2, ω], H(v) = 1/2)
and L′ = ou + pv (p = [2, ω̄], H(v) = 1/2) are potentially universal.
They are not equivalent, but their corresponding quadratic lattices are
equivalent. The associated quadratic form is f(x, y, z, w) = x2 + 2y2 +
yz + 3z2 + xw + 6w2. The other lattices are not universal.

In the case of m = −31, both L = ou + pv (p = [2, 1 + ω],
H(v) = 1/2) and L′ = ou + pv (p = [2,−2 + ω], H(v) = 1/2)
are potentially universal. Their associated forms coincide. It is
f(x, y, z, w) = x2 + 2y2 + yz + 4z2 + xw + 8w2. The other lattices
are not universal.

In the case of m < −35, any lattice does not represent at least one
of four integers, 2, 3, 5, 13. Thus any more universal lattice does not
exist.

Consequently, we obtained four universal and five potentially univer-
sal lattices. Here we state our theorem.
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Theorem. Let L be a classic integral Hermitian lattice on a binary
positive definite Hermitian space over an arbitrary imaginary quadratic
field with class number greater than or equal to 2. If L represents all
positive integers, L is equivalent to one of the following lattices:

L1 = ou+ ov (H(v) = 2) in Q(
√−5),

L2 = ou+ pv (H(v) = 1/2, p = [2, 1 + ω5]) in Q(
√−5),

L3 = ou+ pv (H(v) = 1/2, p = [2, ω6]) in Q(
√−6),

L4 = ou+ pv (H(v) = 1/2, p = [2, ω10]) in Q(
√−10),

L5 = ou+ pv (H(v) = 1/2, p = [2, ω15]) in Q(
√−15),

L6 = ou+ pv (H(v) = 1/2, p = [2, ω23]) in Q(
√−23),

L7 = ou+ pv (H(v) = 1/2, p = [2, ω̄23]) in Q(
√−23),

L8 = ou+ pv (H(v) = 1/2, p = [2, 1 + ω31]) in Q(
√−31),

L9 = ou+ pv (H(v) = 1/2, p = [2,−2 + ω31]) in Q(
√−31),

where H(u) = 1, H(u, v) = 0 in any case.

Conversely, these nine lattices represent all positive integers.

The former part of the Theorem has already been verified. To prove
the latter part, we have to show that the last five lattices are universal.
These are L = ou+ pv (H(u) = 1, H(u, v) = 0, H(v) = N(p)−1) with
which associated Hermitian forms are |α|2 +N(p)−1|β|2 (α ∈ o, β ∈ p).
The numbers represented by such a form are multiplicatively closed, as
to be shown in the following proposition. It plays an important role in
the proof of the theorem.

Proposition 1. If H(α, β) = |α|2 +N(p)−1|β|2 (α ∈ o, β ∈ p) then

n1n2 ∈ H(L) for any n1, n2 ∈ H(L).

Proof. Put p = N(p) for brevity. We call a pair (α, β), (α ∈ o, β ∈ p)
a representation of a number k if H(α, β) = k. We let (αi, βi) be a
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representation of any elements ni in H(L), i = 1, 2. We obtain that

n1n2 =
(
|α1|2 +

1
p
|β1|2

)(
|α2|2 +

1
p
|β2|2

)

= |α1|2|α2|2 +
1
p2

|β1|2|β2|2 +
1
p
{|α1|2|β2|2 + |α2|2|β1|2}

= |α1ᾱ2 +
1
p
β1β̄2|2 +

1
p
|α1β2 − α2β1|2,

and α1ᾱ2 + p−1β1β̄2 ∈ o, α1β2 − α2β1 ∈ p because of αi ∈ o, βi ∈ p.
Hence, (α1ᾱ2+p−1β1β̄2, α1β2−α2β1) is a representation of n1n2.

Then we only have to show that each form represents all prime
integers. This will be done in the following section.

4. Universality of quadratic forms. In the previous section,
we obtained potentially universal Hermitian lattices, whose associated
quadratic forms are:

f15(x, y, z, w) = x2 + 2y2 + yz + 2z2 + xw + 4w2,

f23(x, y, z, w) = x2 + 2y2 + yz + 3z2 + xw + 6w2,

f31(x, y, z, w) = x2 + 2y2 + yz + 4z2 + xw + 8w2.

We can show the universality of the form f15 immediately using some
of the included ternary forms in f15. We consider the following two
ternary forms:

g1(x, y, z) := f15(x, y, z, 0) = x2 + 2y2 + yz + 2z2,

g2(x, y, z) := f15(x, z, z, y) = x2 + xy + 4y2 + 5z2.

From the results of Watson [9] and Schulze-Pillot [8], the form g1 can
represent all positive integers but ones in the form 52µ+1ν (µ � 0,
gcd (5, ν) = 1, (ν/5) = −1) and g2 can represent all but in the form
52µν (µ � 0, gcd (5, ν) = 1, (ν/5) = −1) where (q/p) denotes the
Legendre symbol. There are no integers which cannot be represented
by g1 nor g2. Hence f15 represents all positive integers.

Our problem for the two remainder forms is more complicated. By
means of Proposition 1 it is enough to show that they represent every
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prime integer. First we note the well-known fact: The binary quadratic
form x2 +4y2 represents any prime integer p such that p ≡ 1 (mod 4).
Because both of the two forms represent this binary form as

f23(x, y,−y, 0) = f31(x, 0, y, 0) = x2 + 4y2,

they can represent all prime integers congruent to 1 modulo 4. To
show the representations of prime integers congruent to 3 modulo 4,
we define two ternary forms represented by f23 and f31 respectively:

h23(x, y, z) := x2 + 2y2 + yz + 3z2,

h31(x, y, z) := x2 + 2y2 + yz + 4z2.

We have the following lemma about these two ternary forms.

Lemma. If a positive integer k is coprime to 23, then the form h23

represents 4k. If k is coprime to 31, then h31 represents 4k.

Proof. The genus of h23 consists of three classes and their represen-
tatives are h23 and

φ1(x, y, z) := x2 + y2 + xz + 6z2,

φ2(x, y, z) := x2 + xy + y2 + xz + 8z2,

which are given in Brandt and Intrau [1]. In view of localization at
each prime, if k is coprime to 23, then the genus represents k, that is,
at least one of these three forms represents k. If h23 represents k, then
h23 represents 4k, too. If φ1 represents k, then

k = x2 + y2 + xz + 6z2,

4k = 4x2 + 4y2 + 4xz + 24z2,

= (2y)2 + 2(−x+ 2z)2 + (−x+ 2z)(x+ 2z) + 3(x+ 2z)2

= h23(2y,−x+ 2z, x+ 2z).

If φ2 represents k then

k = x2 + xy + y2 + xz + 8z2,

4k = 4x2 + 4xy + 4y2 + 4xz + 32z2

= (x+ 2y)2 + 2(4z)2 + (4z)x+ 3x2

= h23(x+ 2y, 4z, x).
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Thus h23 represents 4k for any integer k coprime to 23. As for h31,
we can prove in a similar way. The genus of h31 also consists of
three classes, whose representatives are h31, x2 + y2 + xz + 8z2 and
x2 + xy + 2y2 + 2yz + 5z2. If k is coprime to 31, then h31 represents k
or

k = x2 + y2 + xz + 8z2,

4k = 4x2 + 4y2 + 4xz + 32z2

= (2y)2 + 2(4z)2 + (4z)x+ 4x2

= h31(2y, 4z, x),

or

k = x2 + xy + 2y2 + 2yz + 5z2,

4k = 4x2 + 4xy + 8y2 + 8yz + 20z2,

= (2x+ y)2 + 2(y − 2z)2 + (y − 2z)(y + 2z) + 4(y + 2z)2,
= h31(2x+ y, y − 2z, y + 2z).

If a prime integer p ≡ 3 (mod 4) and p > 23, then p = 4k + 23 for
a positive integer k coprime to 23. As a result of the Lemma the form
h23 represents 4k, and

f23(x− 1, y, z, 2) = (x− 1)2 + 2y2 + yz + 3z2 + 2(x− 1) + 6 · 22

= x2 + 2y2 + yz + 3z2 + 23
= h23(x, y, z) + 23.

Hence f23 represents p. Similarly, if p ≡ 3 (mod 4) and p > 31, then
p = 4k + 31 for a positive integer k coprime to 31. The form h31

represents 4k and

f31(x− 1, y, z, 2) = (x− 1)2 + 2y2 + yz + 4z2 + 2(x− 1) + 8 · 22

= x2 + 2y2 + yz + 4z2 + 31
= h31(x, y, z) + 31.

Hence f31 represents p. As we can verify that f23 and f31 represent all
integers less than 31, we obtain the following proposition.
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Proposition 2. The quaternary quadratic forms

f15(x, y, z, w) = x2 + 2y2 + yz + 2z2 + xw + 4w2,

f23(x, y, z, w) = x2 + 2y2 + yz + 3z2 + xw + 6w2,

f31(x, y, z, w) = x2 + 2y2 + yz + 4z2 + xw + 8w2,

are all universal.

This completes the proof of the Theorem.
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