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WILLMORE TORI IN A WIDE FAMILY
OF CONFORMAL STRUCTURES ON

ODD DIMENSIONAL SPHERES

J.L. CABRERIZO AND M. FERNÁNDEZ

ABSTRACT. We obtain a variable reduction principle for
the Willmore variational problem in an ample class of confor-
mal structures on S2n+1. This variational problem is trans-
formed into another one, associated with an elastic-energy
functional with potential, on spaces of curves in CPn. Then,
we give a simple method to construct Willmore tori in certain
conformal structures on S2n+1. Moreover, we exhibit some
families of Willmore tori for the standard conformal class on
S3 and S7.

1. Introduction. Let S2n+1 be the unit sphere in Cn+1 endowed
with the standard metric ḡ. The unit circle S1 acts naturally on
S2n+1 to produce CPn as orbit space. The canonical projection
π : (S2n+1, ḡ) → (CPn, g) is a Riemannian submersion, where g
denotes the Fubini-study metric of constant holomorphic sectional
curvature 4. A vertical, unit global vector field V is defined on S2n+1

by V (z) = iz, for all z ∈ S2n+1. The horizontal distribution H is
defined to be the ḡ-orthogonal complementary to the orbits. As usual,
overbars will denote horizontal lifts of the corresponding objects in a
Riemannian submersion (see [6], [13] for details about notation and
terminology). In particular, the Levi-Civita connections ∇̄ and ∇ of ḡ
and g, respectively, are related via the following well-known formulae:

∇̄X̄ Ȳ = ∇XY − ḡ(iX̄, Ȳ )V,(1.1)

∇̄X̄V = ∇̄V X̄ = iX̄,(1.2)

∇̄V V = 0.(1.3)

Remark 1. (i) It should be noticed that the last formula shows the
geodesic nature of the orbits in (S2n+1, ḡ). (ii) Since π may also be
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regarded as the projection of a principal fiber bundle with structure
group S1 and H is S1-invariant, it defines a principal connection whose
connection 1-form will be denoted by ω. (iii) We can use the nice
argument of Pinkall (see [15]), to show that an immersed surface M
in S2n+1 is S1-invariant if and only if M = Mγ = π−1(γ) for some
immersed curve γ in CPn. In particular, if γ is closed, then Mγ is a
torus, which is embedded if γ is free of self-intersections in CPn.

Let h be a Riemannian metric on CPn and u a positive smooth
function on CPn. We define

(1.4) h̄u = π∗(h) + ε(u ◦ π)2ω∗(dt2),

where dt2 is the usual metric on S1 and ε = ±1. It is clear that h̄u

is a metric on S2n+1, which is Riemannian or Lorentzian according
to whether ε is +1 or −1, respectively. These metrics are called the
generalized Kaluza-Klein metrics on S2n+1 ([9]).

It is not difficult to see that the S1-action on S2n+1 is made up
through isometries of (S2n+1, h̄u). Furthermore, π : (S2n+1, h̄u) →
(CPn, h) is a pseudo-Riemannian submersion, which has geodesic fibers
if and only if u is constant. In this case the scalar curvature of
(S2n+1, h̄u) is constant. Moreover, if γ is a curve with curvature
function k in (CPn, h), then the mean curvature function α of Mγ

in (S2n+1, h̄u) satisfies [1]:

(1.5) α2 =
1
4
(k2 ◦ π).

Let N be the space of immersions of a genus one compact surface N
in S2n+1. For any semi-Riemannian metric h̃ on S2n+1, we have the
Willmore functional W : N → R defined by

(1.6) W(ϕ) =
∫

N

(α2 + S) dv,

where α is the mean curvature function of ϕ, S is the sectional curvature
function of (S2n+1, h̃) along ϕ and dv is the volume element of ϕ∗(h̃)
on N . The critical points of this functional are the so-called Willmore
tori. This functional is an invariant under conformal changes of the
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ambient metric h̃ ([7]). Therefore, if C(h̄u) denotes the conformal class
associated to h̄u, it is natural to pose the following problem:

Studying the existence and characterization of
S1-invariant Willmore tori in (S2n+1, C(h̄u)).

Some particular answers to this problem have been obtained in [1],
[5], [15]. On the other hand, we consider the total squared curvature
functional acting on closed curves (or curves satisfying given first order
boundary data) in a Riemannian manifold (M, g). The extremal points
of this functional are called free elastic curves in (M, g) (see [10],
[11], [12]). In this note we show that the existence of Willmore tori
in (S2n+1, C(h̄u)) which are invariant under the natural S1-action on
S2n+1 is equivalent to the existence of critical points of the functional

(1.7) F(γ) =
∫

γ

(k2 + φ(γ′)) ds,

acting on closed curves γ in (CPn, (1/u2)h), where k is the curvature
function of γ and φ(γ′) = 4ε (g(γ′, γ′))2 works as a potential. A
φ-elastic curve is a critical point of (1.7). Then, we will use the Euler-
Lagrange equation associated with the functional (1.7), to construct
Willmore tori in a wide family of conformal structures on S2n+1 (see
Corollary 3.1). In particular, we obtain families of Willmore tori in
(S3, C(ḡ)) and (S7, C(ḡ)) (see Corollaries 3.2 and 3.3).

2. The main theorem.

Theorem 2.1. Mγ = π−1(γ) is a Willmore torus in (S2n+1, C(h̄u))
if and only if γ is a closed curve in CPn, which is a critical point of
the following elastic-energy functional on (CPn, (1/u2)h):

(2.1) F(γ) =
∫

γ

(k2 + φ(γ′)) ds,

where k is the curvature function of γ and φ(γ′) = 4ε(g(γ′, γ′))2.

Proof. Since the Willmore variational problem is invariant under
conformal changes of the ambient space metric, we choose the following
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metric in C(h̄u):

(2.2) h̃u =
1

(u ◦ π)2 h̄u = π∗
(

1
u2
h

)
+ εω∗(dt2).

This choice has the following advantage: π : (S2n+1, h̃u) → (CPn, (1/
u2)h) has geodesic fibers.

It is clear that the Willmore functional is S1-invariant, that is,
W(eiθϕ) = W(ϕ). We define the submanifold NS1 of S1-invariant
immersions which can be identified (see (iii) of Remark 1) with Mγ =
{π−1(γ) | γ is a closed curve immersed in CPn}. Let Σ be the set
of critical points of W (Willmore tori), and denote by ΣS1 the set of
critical points of W when restricted to NS1 . Then we use the principle
of symmetric criticality ([14]) to get

(2.3) Σ ∩ NS1 = ΣS1 .

Therefore, to obtain Willmore tori in (S2n+1, C(h̄u)) which do not break
the S1-symmetry of the problem, we only need to compute W on NS1

and then to proceed in due course.

To compute W(π−1(γ)), we parametrize γ by its arc length in
(CPn, (1/u2)h) and observe that Tp(Mγ) is a mixed section of Tp(S2n+1)
for any p ∈ Mγ . Since h̃u(V, V ) = ε, the term S in the integrand of W
is given by ([6]):

(2.4) S = εh̃u(D̃u
X̄V, D̃

u
X̄V ),

where X̄ is the horizontal lift of X = γ′ and D̃u is the Levi-Civita con-
nection of h̃u. Take a local horizontal frame {X̄, iX̄, Y2, iY2, . . . , Yn, iYn}
along Mγ . Then we use (1.2) to get

D̃u
X̄V = −1

2
h̃u([X̄, iX̄], V )iX̄ − 1

2

∑
h̃u([X̄, Yj ], V )Yj

− 1
2

∑
h̃u([X̄, iYj ], V )iYj .

To calculate the Lie brackets appearing in the last formula, we use
(1.1) and then

(2.5) D̃u
X̄V = εg(γ′, γ′)iX̄,
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g being the Fubini-study metric in CPn.

Using (1.5), (2.3) and (2.4), we have

W(π−1(γ)) =
∫ L

0

∫ 2π

0

(
1
4
κ2 + ε(g(γ′, γ′))2

)
ds dt

=
π

2

∫ L

0

(κ2 + φ(γ′)) ds,

where L is the length of γ in (CPn, (1/u2)h) and φ(γ′) = 4ε(g(γ′, γ′))2.

This completes the proof of the theorem.

In particular, if n = 1, we identify CP 1 with S2 in the standard
fashion to obtain the usual Hopf map π : S3 → S2. On the other hand,
as a consequence of the uniformization theorem for Riemann surfaces,
we can choose in the conformal class of h̄u a metric

(2.6) ḡu = π∗(g) + ε(u ◦ π)2ω∗(dt2),

where g is the canonical metric of constant Gaussian curvature 4 in S2.
So we have

Corollary 2.2. Let γ be a closed immersed curve in S2. Then
Mγ = π−1(γ) is a Willmore torus in (S3, C(ḡu)) if and only if γ is a
φ-elastica with potential φ(γ′) = 4ε(g(γ′, γ′))2 in (S2, (1/u2)g).

3. Further discussions and applications. Let γ be a φ-elastica
in (CPn, (1/u2)h). The potential φ is a smooth function, defined on
the unit tangent vector bundle of (CPn, (1/u2)h). It is clear that φ is
a basic function on that bundle, i.e., a function on CPn if and only
if h is chosen in the conformal class of the Fubini-study metric g on
CPn. In this case, without loss of generality, we can take h = g.
For basic potentials, the Euler-Lagrange equations of φ-elasticae can
be computed using Lemma 1.1 of [10] in a standard argument which
involves some integration by parts. Then we have

(3.1) 2∇̂3
TT +3∇̂T (κ2T )+2R̂(∇̂TT, T )T + ∇̂φ−φ∇̂TT −T (φ)T = 0,

where the elements appearing in this formula are taken in (CPn, (1/u2)h),
in particular R̂ is the Riemann curvature of this metric and φ = 4u4.
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Let γ be a closed curve in CPn and denote by η its unit normal
vector field in (CPn, g). Put Fγ

+ to name the space of positive smooth
functions, f , on CPn such that η(f) = 0 (along γ). We have

Corollary 3.1. Let γ be a geodesic in (CPn, g) and u ∈ Fγ
+. Then

Mγ is a Willmore torus in (S2n+1, C(ḡu)) which is conformally minimal
in (S2n+1, ḡu).

Proof. A direct computation shows that (3.1) can be written as

(3.2) 2∇̂3
T + 3∇̂T (κ2T ) + 2R̂(∇̂TT, T )T − φ3∇T∗T ∗ = 0,

where T ∗ is the unit tangent of γ computed in (CPn, g). Now it is
obvious that if γ is a geodesic in (CPn, g) and u ∈ Fγ

+, then it is also a
geodesic in (CPn, (1/u2)g) and so a φ-elastica in (CPn, (1/u2)g) with
φ = 4u4. Now the statement follows from the main theorem.

Corollary 3.2. Let γ be any great circle in (S2, g) and u ∈ Fγ
+.

Then Mγ = π−1(γ) is a Willmore torus in (S3, C(ḡu)).

It is obvious that minimal surfaces of the standard sphere (Sm, ḡ) are
Willmore. If we pay attention to the spectral behavior of the position
vector of those surfaces in Rm+1 [16], then it seems natural to look
for Willmore surfaces in (Sm, ḡ) which can be constructed in Rm+1

using eigenfunctions of the Laplacian coming from exactly two different
eigenvalues (2-type surfaces [8]). These surfaces have been completely
classified in [3]. They are certain flat tori which fully yield in (S5, ḡ) or
in (S7, ḡ). Since the family of Willmore tori in (S5, ḡ) has been studied
in [5], in this note we are going to deal with those surfaces in (S7, ḡ).

It was shown in [3] that the map Y : R2 → C4, given by

(3.3) Y (s, t) = eit(c1 cosAs, c1 sinAs, c2 cosBs, c2 sinBs),

with c21+c
2
2 = 1, defines an isometric immersion of a flat torus, say T , in

(S7, ḡ) which is of 2-type when A �= B and Willmore for certain choices
of (A,B) which involve the isometry type of that flat torus (see [3]).
It is evident that these Willmore tori are S1-invariant. Namely, if we
put γ(s) = π(c1 cosAs, c1 sinAs, c2 cosBs, c2 sinBs), then T = π−1(γ).
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Furthermore, one can prove that γ(s) is a helix which yields into a
three-dimensional, Lagrangian and totally geodesic RP 3 of CP 3. It
should be noticed that, according to our main theorem, the curves γ(s)
are closed helices, which are φ-elasticae (in this case elasticae, [10])
with φ = 4 (because of its constancy, φ works as a Lagrange multiplier,
[10]). Now we get Willmore tori in (S7, C(ḡ)) by lifting closed helices,
which are elasticae (with φ = 4) in (CP 3, g). We can use a similar
argument to that used in [2] and [4] to obtain a one-parameter family
of elastic helices, φ = 4, in RP 3. In particular, this family contains
a rational one-parameter subfamily of closed elastic helices. Now we
regard RP 3 as a Lagrangian and totally geodesic submanifold in CP 3

to obtain, via our main theorem, the following family of Willmore tori
in (S7, C(ḡ)) which includes those of 2-type given in (3.3).

Corollary 3.3. A rational one-parameter family of Willmore tori
exists in (S7, C(ḡ)) which have nonzero constant mean curvature in
(S7, ḡ). Moreover, they yield fully in the seven sphere.

Remark 2. It should be noticed that the family of Willmore tori given
in this corollary is different from that obtained in [3]. However, both
families have a nonempty intersection made up by immersions defined
in (3.3).
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