WILLMORE TORI IN A WIDE FAMILY OF CONFORMAL STRUCTURES ON ODD DIMENSIONAL SPHERES

J.L. CABRERIZO AND M. FERNÁNDEZ

ABSTRACT. We obtain a variable reduction principle for the Willmore variational problem in an ample class of conformal structures on S^{2n+1} . This variational problem is transformed into another one, associated with an elastic-energy functional with potential, on spaces of curves in $\mathbb{C}P^n$. Then, we give a simple method to construct Willmore tori in certain conformal structures on S^{2n+1} . Moreover, we exhibit some families of Willmore tori for the standard conformal class on S^3 and S^7 .

1. Introduction. Let S^{2n+1} be the unit sphere in \mathbb{C}^{n+1} endowed with the standard metric \bar{g} . The unit circle S^1 acts naturally on \mathbf{S}^{2n+1} to produce $\mathbf{C}P^n$ as orbit space. The canonical projection $\pi: (\mathbf{S}^{2n+1}, \bar{g}) \to (\mathbf{C}P^n, g)$ is a Riemannian submersion, where gdenotes the Fubini-study metric of constant holomorphic sectional curvature 4. A vertical, unit global vector field V is defined on \mathbf{S}^{2n+1} by V(z)=iz, for all $z\in\mathbf{S}^{2n+1}$. The horizontal distribution $\mathcal H$ is defined to be the \bar{g} -orthogonal complementary to the orbits. As usual, overbars will denote horizontal lifts of the corresponding objects in a Riemannian submersion (see [6], [13] for details about notation and terminology). In particular, the Levi-Civita connections $\bar{\nabla}$ and ∇ of \bar{g} and g, respectively, are related via the following well-known formulae:

(1.1)
$$\bar{\nabla}_{\bar{X}}\bar{Y} = \overline{\nabla_X Y} - \bar{g}(i\bar{X}, \bar{Y})V,$$

$$(1.2) \bar{\nabla}_{\bar{X}}V = \bar{\nabla}_V\bar{X} = i\bar{X},$$

$$(1.3) \bar{\nabla}_V V = 0.$$

Remark 1. (i) It should be noticed that the last formula shows the geodesic nature of the orbits in $(\mathbf{S}^{2n+1}, \bar{q})$. (ii) Since π may also be

Received by the editors on November 24, 1998.

¹⁹⁹¹ AMS Mathematics Subject Classification. 53C40, 53A05.

Key words and phrases. Willmore torus, Kaluza-Klein metric, conformal structure, ϕ -elastic curve.

regarded as the projection of a principal fiber bundle with structure group \mathbf{S}^1 and \mathcal{H} is \mathbf{S}^1 -invariant, it defines a principal connection whose connection 1-form will be denoted by ω . (iii) We can use the nice argument of Pinkall (see [15]), to show that an immersed surface M in \mathbf{S}^{2n+1} is \mathbf{S}^1 -invariant if and only if $M = M_{\gamma} = \pi^{-1}(\gamma)$ for some immersed curve γ in $\mathbf{C}P^n$. In particular, if γ is closed, then M_{γ} is a torus, which is embedded if γ is free of self-intersections in $\mathbf{C}P^n$.

Let h be a Riemannian metric on $\mathbb{C}P^n$ and u a positive smooth function on $\mathbb{C}P^n$. We define

(1.4)
$$\bar{h}_u = \pi^*(h) + \varepsilon(u \circ \pi)^2 \omega^*(dt^2),$$

where dt^2 is the usual metric on \mathbf{S}^1 and $\varepsilon = \pm 1$. It is clear that \bar{h}_u is a metric on \mathbf{S}^{2n+1} , which is Riemannian or Lorentzian according to whether ε is +1 or -1, respectively. These metrics are called the generalized Kaluza-Klein metrics on \mathbf{S}^{2n+1} ([9]).

It is not difficult to see that the \mathbf{S}^1 -action on \mathbf{S}^{2n+1} is made up through isometries of $(\mathbf{S}^{2n+1}, \bar{h}_u)$. Furthermore, $\pi: (\mathbf{S}^{2n+1}, \bar{h}_u) \to (\mathbf{C}P^n, h)$ is a pseudo-Riemannian submersion, which has geodesic fibers if and only if u is constant. In this case the scalar curvature of $(\mathbf{S}^{2n+1}, \bar{h}_u)$ is constant. Moreover, if γ is a curve with curvature function k in $(\mathbf{C}P^n, h)$, then the mean curvature function α of M_{γ} in $(\mathbf{S}^{2n+1}, \bar{h}_u)$ satisfies [1]:

$$\alpha^2 = \frac{1}{4}(k^2 \circ \pi).$$

Let \mathcal{N} be the space of immersions of a genus one compact surface N in \mathbf{S}^{2n+1} . For any semi-Riemannian metric \widetilde{h} on \mathbf{S}^{2n+1} , we have the Willmore functional $\mathcal{W}: \mathcal{N} \to \mathbf{R}$ defined by

(1.6)
$$\mathcal{W}(\varphi) = \int_{N} (\alpha^2 + S) \, dv,$$

where α is the mean curvature function of φ , S is the sectional curvature function of $(\mathbf{S}^{2n+1}, \widetilde{h})$ along φ and dv is the volume element of $\varphi^*(\widetilde{h})$ on N. The critical points of this functional are the so-called *Willmore tori*. This functional is an invariant under conformal changes of the

ambient metric \tilde{h} ([7]). Therefore, if $C(\bar{h}_u)$ denotes the conformal class associated to \bar{h}_u , it is natural to pose the following problem:

Studying the existence and characterization of \mathbf{S}^1 -invariant Willmore tori in $(\mathbf{S}^{2n+1}, \mathcal{C}(\bar{h}_n))$.

Some particular answers to this problem have been obtained in [1], [5], [15]. On the other hand, we consider the total squared curvature functional acting on closed curves (or curves satisfying given first order boundary data) in a Riemannian manifold (M, g). The extremal points of this functional are called free elastic curves in (M, g) (see [10], [11], [12]). In this note we show that the existence of Willmore tori in $(\mathbf{S}^{2n+1}, \mathcal{C}(\bar{h}_u))$ which are invariant under the natural \mathbf{S}^1 -action on \mathbf{S}^{2n+1} is equivalent to the existence of critical points of the functional

(1.7)
$$\mathcal{F}(\gamma) = \int_{\gamma} (k^2 + \phi(\gamma')) \, ds,$$

acting on closed curves γ in $(\mathbf{C}P^n, (1/u^2)h)$, where k is the curvature function of γ and $\phi(\gamma') = 4\varepsilon (g(\gamma', \gamma'))^2$ works as a potential. A ϕ -elastic curve is a critical point of (1.7). Then, we will use the Euler-Lagrange equation associated with the functional (1.7), to construct Willmore tori in a wide family of conformal structures on \mathbf{S}^{2n+1} (see Corollary 3.1). In particular, we obtain families of Willmore tori in $(\mathbf{S}^3, \mathcal{C}(\bar{q}))$ and $(\mathbf{S}^7, \mathcal{C}(\bar{q}))$ (see Corollaries 3.2 and 3.3).

2. The main theorem.

Theorem 2.1. $M_{\gamma} = \pi^{-1}(\gamma)$ is a Willmore torus in $(\mathbf{S}^{2n+1}, \mathcal{C}(\bar{h}_u))$ if and only if γ is a closed curve in $\mathbb{C}P^n$, which is a critical point of the following elastic-energy functional on $(\mathbb{C}P^n, (1/u^2)h)$:

(2.1)
$$\mathcal{F}(\gamma) = \int_{\gamma} (k^2 + \phi(\gamma')) \, ds,$$

where k is the curvature function of γ and $\phi(\gamma') = 4\varepsilon(g(\gamma', \gamma'))^2$.

Proof. Since the Willmore variational problem is invariant under conformal changes of the ambient space metric, we choose the following

metric in $C(\bar{h}_u)$:

(2.2)
$$\widetilde{h}_u = \frac{1}{(u \circ \pi)^2} \overline{h}_u = \pi^* \left(\frac{1}{u^2} h\right) + \varepsilon \omega^* (dt^2).$$

This choice has the following advantage: $\pi: (\mathbf{S}^{2n+1}, \widetilde{h}_u) \to (\mathcal{C}P^n, (1/u^2)h)$ has geodesic fibers.

It is clear that the Willmore functional is \mathbf{S}^1 -invariant, that is, $\mathcal{W}(e^{i\theta}\varphi) = \mathcal{W}(\varphi)$. We define the submanifold $\mathcal{N}_{\mathbf{S}^1}$ of \mathbf{S}^1 -invariant immersions which can be identified (see (iii) of Remark 1) with $M_{\gamma} = \{\pi^{-1}(\gamma) \mid \gamma \text{ is a closed curve immersed in } \mathbf{C}P^n\}$. Let Σ be the set of critical points of \mathcal{W} (Willmore tori), and denote by $\Sigma_{\mathbf{S}^1}$ the set of critical points of \mathcal{W} when restricted to $\mathcal{N}_{\mathbf{S}^1}$. Then we use the principle of symmetric criticality ([14]) to get

$$(2.3) \Sigma \cap \mathcal{N}_{\mathbf{S}^1} = \Sigma_{\mathbf{S}^1}.$$

Therefore, to obtain Willmore tori in $(\mathbf{S}^{2n+1}, \mathcal{C}(\bar{h}_u))$ which do not break the \mathbf{S}^1 -symmetry of the problem, we only need to compute \mathcal{W} on $\mathcal{N}_{\mathbf{S}^1}$ and then to proceed in due course.

To compute $\mathcal{W}(\pi^{-1}(\gamma))$, we parametrize γ by its arc length in $(\mathcal{C}P^n, (1/u^2)h)$ and observe that $T_p(M_\gamma)$ is a mixed section of $T_p(\mathbf{S}^{2n+1})$ for any $p \in M_\gamma$. Since $\widetilde{h}_u(V, V) = \varepsilon$, the term S in the integrand of \mathcal{W} is given by ([6]):

(2.4)
$$S = \varepsilon \widetilde{h}_u(\widetilde{D}_{\bar{X}}^u V, \widetilde{D}_{\bar{X}}^u V),$$

where \bar{X} is the horizontal lift of $X = \gamma'$ and \tilde{D}^u is the Levi-Civita connection of \tilde{h}_u . Take a local horizontal frame $\{\bar{X}, i\bar{X}, Y_2, iY_2, \dots, Y_n, iY_n\}$ along M_{γ} . Then we use (1.2) to get

$$\begin{split} \widetilde{D}_{\bar{X}}^u V &= -\frac{1}{2} \widetilde{h}_u([\bar{X}, i\bar{X}], V) i\bar{X} - \frac{1}{2} \sum \widetilde{h}_u([\bar{X}, Y_j], V) Y_j \\ &- \frac{1}{2} \sum \widetilde{h}_u([\bar{X}, iY_j], V) iY_j. \end{split}$$

To calculate the Lie brackets appearing in the last formula, we use (1.1) and then

(2.5)
$$\widetilde{D}_{\bar{X}}^{u}V = \varepsilon g(\gamma', \gamma')i\bar{X},$$

g being the Fubini-study metric in $\mathbb{C}P^n$.

Using (1.5), (2.3) and (2.4), we have

$$\mathcal{W}(\pi^{-1}(\gamma)) = \int_0^L \int_0^{2\pi} \left(\frac{1}{4}\kappa^2 + \varepsilon(g(\gamma', \gamma'))^2\right) ds dt$$
$$= \frac{\pi}{2} \int_0^L (\kappa^2 + \phi(\gamma')) ds,$$

where L is the length of γ in $(\mathbb{C}P^n, (1/u^2)h)$ and $\phi(\gamma') = 4\varepsilon(g(\gamma', \gamma'))^2$. This completes the proof of the theorem.

In particular, if n=1, we identify $\mathbb{C}P^1$ with \mathbb{S}^2 in the standard fashion to obtain the usual Hopf map $\pi: \mathbb{S}^3 \to \mathbb{S}^2$. On the other hand, as a consequence of the uniformization theorem for Riemann surfaces, we can choose in the conformal class of \bar{h}_u a metric

(2.6)
$$\bar{g}_u = \pi^*(g) + \varepsilon(u \circ \pi)^2 \omega^*(dt^2),$$

where g is the canonical metric of constant Gaussian curvature 4 in S^2 . So we have

Corollary 2.2. Let γ be a closed immersed curve in \mathbf{S}^2 . Then $M_{\gamma} = \pi^{-1}(\gamma)$ is a Willmore torus in $(\mathbf{S}^3, \mathcal{C}(\bar{g}_u))$ if and only if γ is a ϕ -elastica with potential $\phi(\gamma') = 4\varepsilon(g(\gamma', \gamma'))^2$ in $(\mathbf{S}^2, (1/u^2)g)$.

3. Further discussions and applications. Let γ be a ϕ -elastical in $(\mathcal{C}P^n, (1/u^2)h)$. The potential ϕ is a smooth function, defined on the unit tangent vector bundle of $(\mathcal{C}P^n, (1/u^2)h)$. It is clear that ϕ is a basic function on that bundle, i.e., a function on $\mathcal{C}P^n$ if and only if h is chosen in the conformal class of the Fubini-study metric g on $\mathcal{C}P^n$. In this case, without loss of generality, we can take h=g. For basic potentials, the Euler-Lagrange equations of ϕ -elasticae can be computed using Lemma 1.1 of [10] in a standard argument which involves some integration by parts. Then we have

$$(3.1) \ 2\widehat{\nabla}_T^3T + 3\widehat{\nabla}_T(\kappa^2T) + 2\widehat{R}(\widehat{\nabla}_TT,T)T + \widehat{\nabla}\phi - \phi\widehat{\nabla}_TT - T(\phi)T = 0,$$

where the elements appearing in this formula are taken in $(CP^n, (1/u^2)h)$, in particular \hat{R} is the Riemann curvature of this metric and $\phi = 4u^4$.

Let γ be a closed curve in $\mathbb{C}P^n$ and denote by η its unit normal vector field in $(\mathbb{C}P^n, g)$. Put \mathcal{F}_+^{γ} to name the space of positive smooth functions, f, on $\mathbb{C}P^n$ such that $\eta(f) = 0$ (along γ). We have

Corollary 3.1. Let γ be a geodesic in $(\mathbf{C}P^n, g)$ and $u \in \mathcal{F}_+^{\gamma}$. Then M_{γ} is a Willmore torus in $(\mathbf{S}^{2n+1}, \mathcal{C}(\bar{g}_u))$ which is conformally minimal in $(\mathbf{S}^{2n+1}, \bar{g}_u)$.

Proof. A direct computation shows that (3.1) can be written as

$$(3.2) 2\widehat{\nabla}_T^3 + 3\widehat{\nabla}_T(\kappa^2 T) + 2\widehat{R}(\widehat{\nabla}_T T, T)T - \phi^3 \nabla_{T^*} T^* = 0,$$

where T^* is the unit tangent of γ computed in $(\mathbb{C}P^n, g)$. Now it is obvious that if γ is a geodesic in $(\mathbb{C}P^n, g)$ and $u \in \mathcal{F}_+^{\gamma}$, then it is also a geodesic in $(\mathbb{C}P^n, (1/u^2)g)$ and so a ϕ -elastica in $(\mathbb{C}P^n, (1/u^2)g)$ with $\phi = 4u^4$. Now the statement follows from the main theorem. \square

Corollary 3.2. Let γ be any great circle in (\mathbf{S}^2, g) and $u \in \mathcal{F}_+^{\gamma}$. Then $M_{\gamma} = \pi^{-1}(\gamma)$ is a Willmore torus in $(\mathbf{S}^3, \mathcal{C}(\bar{g}_u))$.

It is obvious that minimal surfaces of the standard sphere (\mathbf{S}^m, \bar{g}) are Willmore. If we pay attention to the spectral behavior of the position vector of those surfaces in \mathbf{R}^{m+1} [16], then it seems natural to look for Willmore surfaces in (\mathbf{S}^m, \bar{g}) which can be constructed in \mathcal{R}^{m+1} using eigenfunctions of the Laplacian coming from exactly two different eigenvalues (2-type surfaces [8]). These surfaces have been completely classified in [3]. They are certain flat tori which fully yield in (\mathbf{S}^5, \bar{g}) or in (\mathbf{S}^7, \bar{g}) . Since the family of Willmore tori in (\mathbf{S}^5, \bar{g}) has been studied in [5], in this note we are going to deal with those surfaces in (\mathbf{S}^7, \bar{g}) .

It was shown in [3] that the map $Y: \mathbf{R}^2 \to \mathbf{C}^4$, given by

(3.3)
$$Y(s,t) = e^{it}(c_1 \cos As, c_1 \sin As, c_2 \cos Bs, c_2 \sin Bs),$$

with $c_1^2 + c_2^2 = 1$, defines an isometric immersion of a flat torus, say T, in (\mathbf{S}^7, \bar{g}) which is of 2-type when $A \neq B$ and Willmore for certain choices of (A, B) which involve the isometry type of that flat torus (see [3]). It is evident that these Willmore tori are \mathbf{S}^1 -invariant. Namely, if we put $\gamma(s) = \pi(c_1 \cos As, c_1 \sin As, c_2 \cos Bs, c_2 \sin Bs)$, then $T = \pi^{-1}(\gamma)$.

Furthermore, one can prove that $\gamma(s)$ is a helix which yields into a three-dimensional, Lagrangian and totally geodesic $\mathbf{R}P^3$ of $\mathbf{C}P^3$. It should be noticed that, according to our main theorem, the curves $\gamma(s)$ are closed helices, which are ϕ -elasticae (in this case elasticae, [10]) with $\phi = 4$ (because of its constancy, ϕ works as a Lagrange multiplier, [10]). Now we get Willmore tori in $(\mathbf{S}^7, \mathcal{C}(\bar{g}))$ by lifting closed helices, which are elasticae (with $\phi = 4$) in $(\mathcal{C}P^3, g)$. We can use a similar argument to that used in [2] and [4] to obtain a one-parameter family of elastic helices, $\phi = 4$, in $\mathbf{R}P^3$. In particular, this family contains a rational one-parameter subfamily of closed elastic helices. Now we regard $\mathbf{R}P^3$ as a Lagrangian and totally geodesic submanifold in $\mathbf{C}P^3$ to obtain, via our main theorem, the following family of Willmore tori in $(\mathbf{S}^7, \mathcal{C}(\bar{g}))$ which includes those of 2-type given in (3.3).

Corollary 3.3. A rational one-parameter family of Willmore tori exists in $(\mathbf{S}^7, \mathcal{C}(\bar{g}))$ which have nonzero constant mean curvature in (\mathbf{S}^7, \bar{g}) . Moreover, they yield fully in the seven sphere.

Remark 2. It should be noticed that the family of Willmore tori given in this corollary is different from that obtained in [3]. However, both families have a nonempty intersection made up by immersions defined in (3.3).

Acknowledgments. The authors would like to sincerely thank M. Barros for his valuable comments and suggestions.

REFERENCES

- 1. M. Barros, Willmore tori in non standard 3-spheres, Math. Proc. Cambridge Philos. Soc. 121 (1996), 321–324.
- 2. M. Barros, J.L. Cabrerizo and M. Fernández, Reduction of variables for Willmore-Chen submanifolds in seven spheres, Israel J. Math. 113 (1999), 29–43.
- **3.** M. Barros and B.Y. Chen, Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Japan **39** (1987), 627–648.
- **4.** M. Barros and O. Garay, Hopf submanifolds in S⁷ which are Willmore-Chen submanifolds, Math. Z. **228** (1998), 121–129.
- **5.** M. Barros, O. Garay and D.A. Singer, Elasticae with constant slant in \mathbb{CP}^2 and new examples of Willmore tori in \mathbb{S}^5 , Tôhoku Math. J. **51** (1999), 177–192.
 - 6. A.L. Besse, Einstein manifolds, Springer-Verlag, 1987.

- 7. B.Y. Chen, Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1979), 380–385.
- 8. ———, Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.
- 9. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Appl. Math. Mech. 16 (1967), 715–737.
- 10. J. Langer and D.A. Singer, *The total squared curvature of closed curves*, J. Differential Geom. 20 (1984), 1–22.
- 11. ——, Curves in the hyperbolic plane and the mean curvature of tori in 3-space, Bull. London Math. Soc. 16 (1984), 531–534.
- 12. —, Knotted elastic curves in \mathbb{R}^3 , J. London Math. Soc. 30 (1984), 512–520.
 - 13. B. O'Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.
- 14. R.S. Palais, Critical point theory and the minimax principle, in Global Analysis, Proc. Sympos. Pure Math. 15 (1970), 185–212.
 - **15.** U. Pinkall, *Hopf tori in S*³, Invent. Math. **81** (1985), 379–386.
- 16. T. Takahasi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.

DEPARTAMENTO DE GEOMETRÍA Y TOPOLOGÍA, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE SEVILLA, APDO. CORREOS 1160, 41080 SEVILLA, SPAIN *E-mail address:* jaraiz@cica.es

Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla, Apdo. Correos 1160, 41080 Sevilla, Spain $E\text{-}mail\ address:}$ mafernan@cica.es