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SOME OF THE PROPERTIES OF
THE SEQUENCE OF POWERS

OF PRIME NUMBERS

LAURENŢIU PANAITOPOL

ABSTRACT. The study of the increasing sequence (qn)n≥1

of natural numbers that are powers of prime numbers (i.e.,
the numbers of the form pα, for every prime number p and
every integer α ≥ 1) shows us that there is a perfect similarity
between this one and the sequence (pn)n≥1 of prime numbers.
The Landau theorem (see [3]) and the Scherk theorem ([6])
have an equivalent for the numbers qn. We can show that the
sequence (qn)n≥1 is neither convex nor concave by using the
classical results on the distribution of primes.

1. Introduction. Let π∗(x) denote the number of all powers of
primes not exceeding x, i.e.,

(1)
π∗(x) = card {there exist | p prime and α ≥ 1 integers

such that n = pα ≤ x}.

The definition of Mangold’s function Λ and Chebyshev’s function Ψ
deals with these numbers.

Let (qn)n≥1 be the sequence of these numbers: q1 = 2, q2 = 3, q3 = 4,
q4 = 5, q5 = 7, q6 = 8, q7 = 9 . . . . It is obvious that the only sequence
of four consecutive numbers belonging to (qn)n≥1 is 2, 3, 4, 5.

Triples of consecutive numbers which are included in the (qn)n≥1

are 2, 3, 4; 3, 4, 5; 7, 8, 9. Indeed, for n > 2 such a triple is given by
qn−1 = 2k−1, qn = 2k, qn+1 = 2k+1 and, because one of these numbers
is a multiple of three, it is obvious that 2k − 1 = 3n or 2k + 1 = 3n.
The solutions of these equations are (2,1) or (3,2), and the assertion is
justified.
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But it is more complicated to find the pairs of natural consecutive
numbers of (qn)n≥1 which means solving the equation qn+1 − qn = 1.
This means 2k − pn = ±1 which are particular cases of the Catalan’s
equation xu − yv = 1.

Let u, v ≥ 2 and x, y be primes. In [7] it is shown that the equation
2u − pv = 1 does not have any solution and the equation 2u − pv = −1
has the only solution u = 3, p = 3, v = 2. So we find the pair (8, 9).

In the case of v = 1, we have p = 2k − 1 or p = 2k + 1. We do
not know if either one of these equations has infinitely many solutions
or not. The first one can be reduced to the existence of an infinity of
prime numbers of the form 2q − 1, q is prime. The second one refers to
the hypothesis that between the numbers of Fermat Fn = 22

n

+1 there
is an infinity of prime numbers. So we can find some of the properties
of (pn)n≥1 in the case of the sequence (qn)n≥1.

2. A property of Sherk type. In [6], Sherk has conjectured that
for every natural number n and a suitable choice of the signs + or −,
we have

(2) pn+1 = pn ± pn−1 ± · · · ± p1 + εn

where εn ∈ {0, 1}.
This conjecture is proved by Sierpinski [7]. In [4] some extra proper-

ties of (2) are given.

In connection with (2) we have the following.

Theorem 1. For every natural number n and a suitable choice of
the signs + or −, we have

(3) qn+1 = qn ± qn−1 ± · · · ± q1 + εn

where εn ∈ {0, 1}.

The proof is inspired by Sierpinski’s work but brings some important
changes.

It is well known that any interval (k, 2k), k > 1, contains a prime
number. It follows that such an interval contains a number of (qn)n≥1,
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so

(4) qn+1 < 2qn.

First we will prove the following:

Lemma 1. For every natural number n ≥ 4 and all integers k,
1 ≤ k ≤ qn+1 there is a suitable choice of the signs + or − such that

k = qn ± qn−1 ± · · ·+ ε′

where ε′ = ε′(n.k) ∈ {−1, 0, 1}.

Proof. We shall use induction. For n = 4, we have

1 = 5− 4− 3 + 2 + 1;
2 = 5− 4 + 3− 2;
3 = 5− 4 + 3− 2 + 1;
4 = 5 + 4− 3− 2;
5 = 5 + 4− 3− 2 + 1;
6 = 5− 4 + 3 + 2;
7 = 5− 4 + 3 + 2 + 1.

Let 0 ≤ k ≤ qn+2. It follows that

−qn+1 ≤ k − qn+1 ≤ qn+2 − qn+1 < qn+1,

hence
|k − qn+1| ≤ qn+1.

From the induction hypothesis, we have

|k − qn+1| = qn ± qn−1 ± · · · ± q1 + ε′.

We conclude that

k = qn+1 ± qn ± · · · ± q1 ± ε′.
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Proof of Theorem 1. According to Lemma 1,

qn+1 = qn ± qn−1 ± · · · ± q1 ± ε′.

In case ε′ ∈ {0, 1} there is nothing left to prove.
In case ε′ = −1, because qn+1 − q and qn+1 have different parity, and

using Lemma 1 for qn+1 − 1, we have

qn+1 − 1 = qn ± qn−1 ± · · · ± q1

hence

qn+1 = qn ± qn−1 ± · · · ± q1 + 1.

3. A property of Landau’s type. Let π(x) = card {p |
p prime, p ≤ x}. The formula

(5) π∗(x) = π(x) + π(
√

x) + · · ·+ π( k
√

x)

where k = [log x/ log 2] is clear.

It follows that π∗(x) ∼ π(x), qn ∼ pn, i.e., qn ∼ n log n. The following
inequality of Landau is an interesting property of the function π(x).

For all integers x, x ≥ 2, we have

(6) π(2x) ≤ 2π(x).

This inequality has been proved by Landau only for large enough x
and by Rosser and Schoenfeld in [3] for x ≥ 2.

We shall give a similar inequality for π∗(x).

Theorem 2. For all integers x, x ≥ 3, we have

π∗(2x) ≤ 2π∗(x).

For the proof of this theorem, it is necessary to establish some
preliminary results.
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Lemma 2. For x≥1000, we denote k=[log x/ log 2] and h = [ 3
√

x ].
We have

(7)
k∑

n=3

[ n
√

x ] ≤
h∑

i=3

[
log x

log i

]
.

Proof. For i ≥ 2, we have [ n
√

x ] = i if and only if (log x/ log(i+1))<
n ≤ (log x/ log i) which means

[
log x

log(i+ 1)

]
+ 1 ≤ n ≤

[
log x

log i

]
.

For every i = 2, 3, . . . , h, there are [log x/ log i] − [log x/ log(i + 1)]
values for n. We have

k∑
n=3

[ n
√

x ] =
h∑

i=2

i

([
log x

log i

]
−

[
log x

log(i+ 1)

])

= 2
[
log x

log 2

]
+

h∑
i=3

[
log x

log i

]
− h

[
log x

log(i+ 1)

]
.

Because
√

x ≥ h+ 1 > 3
√

x, we obtain [log x/ log(h+ 1)] = 2.

For x ≥ 1000, we have log x/ log 2 ≤ 3
√

x, and the assertion is justified.

Lemma 3. For n ≥ 9261, we have

(8) π∗(x) ≤ π(x) + π(
√

x) + 3 3
√

x.

Proof. For n ≥ 21, we can show by induction that

1
log 3

+
1

log 4
+ · · ·+ 1

log n
< 1.5

n

log n

or

(9)
[x]∑
i=3

1
log i

< 1.5
x

log x
for x ≥ 21.
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Because π(y) ≤ (2/3)y, using (5) we get

π∗(x) ≤ π(x) + π(
√

x) +
2
3

h∑
k=3

k
√

x.

Combining this inequality with (7) and (9), one gets

π∗(x) ≤ π(x) + π(
√

x) +
2
3

h∑
i=3

[
log x

log i

]

≤ π(x) + π(
√

x) + log x

h∑
i=3

1
log i

≤ π(x) + π( 3
√

x) +
2
3
1.5 log x

√
x

log3 √x

= π(x) + π( 3
√

x) + 3 3
√

x.

Proof of Theorem 2. In [5] we show that,

for x ≥ 4, π(x) <
x

log x − 1.12
(10)

for x ≥ 3299, π(x) >
x

log x − (28/29)
.(11)

In case x ≥ 9261 using Lemma 3 we have

π∗(x) <
x

log x − 1.12
+

√
x

log
√

x − 1.12
+ 3 3

√
x.

In this case 3
√

x ≤ (0.76
√

x)/(log
√

x − 1.12) and therefore

π∗(x) <
x

log x − 1.12
+

3.28
√

x

0.5 log x − 1.12
.

For x ≥ 4631, we have

π∗(2x) <
2x

log 2x − 1.12
+

3.28
√
2x

0.5 log 2x − 1.12
,
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that is

2π(x)−π∗(2x)

>
2x

log x − 0.965
− 2x
log 2x − 1.12

− 3.28
√
2x

0.5 log 2x − 1.12
,

for x ≥ 4631.

For 2π(x)− π∗(2x) > 0, it is enough to prove the inequality
√

x · √2 · 0.538
(log x − 0.965)(log x − 0.426)

>
6.56

log x − 1.547
.

If x ≥ 4631, we have (log x − 0.965)/(log x − 1.547) < 1.085 and

f(x) =
√

x − 9.34(log x − 0.426)

is an increasing function. Because f(6000) > 0, we have f(x) > 0 and
therefore, if x ≥ 6000,

(12) 2π(x) > π∗(2x).

It remains to study the cases when x < 6000. The author checked
this finite number of inequalities 2π∗(x) ≥ π∗(2x) using a computer.
After this check the proof is complete.

4. The study of the convexity or concavity of the sequence
(qn)n≥1. In [1], Erdös and Turan show that pn+1 − 2pn + pn−1 does
change sign for infinitely many values of n.

We shall prove such a property for (qn)n≥1.

Theorem 3. qn+1 − 2qn + qn−1 does change sign for an infinity of
values given to n.

For the proof, we do need

Lemma 4. We have

lim
n→∞ sup(qn+1 − qn) =∞(13)

lim
n→∞ inf

(
qn+1 − qn

log n

)
< 0.248.(14)
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Proof. Suppose that for n ≥ n0, qn+1 − qn ≤ M . It follows that
n∑

k=n0

(qn+1 − qn) ≤ M(n − n0 + 1).

Hence, qn+1 ≤ Mn+qn0 for all integers n ≥ n0, which is a contradiction
to the qn ∼ n logn and justifies (13).

In [2], Maier shows that limn→∞ inf(pn+1−pn)/(log pn) < 0.248. But
pn = qi and pn+1 = qj , j > i. It follows that (qi+1 − qi)/(log qi) ≤
(pn+1 − pn)/(log pn), so (14) is justified.

Proof of Theorem 3. We denote Qk = qk+1 − 2qk + qk−1. We have
Sn =

∑n
k=2 Qk = qn+1 − qn + 1 and therefore limn→∞ supQn =∞.

Hence, for infinitely many n, Qn ≥ 0. We have

S′
n =

n∑
k=2

kQk = (n+ 1)(qn+1 − qn)− qn + 1

= qn

(
(n+ 1)(qn+1 − qn)

qn
− 1

)
+ 1.

Combining qn ∼ n log qn and (14), it follows immediately that the

lim
n→∞ inf S′

n = −∞

and therefore Qn < 0 for infinitely many n.

We end by mentioning some

Open questions. I. Is there an infinity of numbers n for which
Qn = 0 ?

II. Is it true that limn→∞ sup(qn+1 − qn)/(log qn) =∞ ?

Question I for (pn)n≥1 has not been answered yet, but concerning the
second question, Erdös showed that limn→∞ sup(pn+1 − pn)/(log pn)
=∞.
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