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A DEGREE OF NONLOCAL CONNECTEDNESS

JANUSZ J. CHARATONIK AND W�LODZIMIERZ J. CHARATONIK

ABSTRACT. To any continuum X we assign an ordinal
number (or the symbol ∞) s(X), called the degree of nonlocal
connectedness of X. We show that (1) the degree cannot
be increased under continuous surjections; (2) for hereditarily
unicoherent continua X, the degree of a subcontinuum of X is
less than or equal to s(X); (3) s(C(X)) ≤ s(X), where C(X)
denotes the hyperspace of subcontinua of a continuum X. We
also investigate the degrees of Cartesian products and inverse
limits. As an application we construct an uncountable family
of metric continua X homeomorphic to C(X).

Introduction. The idea of using ordinal numbers as a “measure” of
some local or global properties of (compact) spaces is not new. Usually
these properties are related to (non-)connectedness, and the defined
“measure” can be used as a tool in studying various other properties of
investigated spaces, both structural (internal) and mapping (external)
ones. For example, Iliadis in [14] defines the notion of a normal
sequence for hereditarily decomposable and hereditarily unicoherent
metric continua (i.e., for λ-dendroids) as follows. Let X be such a
continuum. A continuum H ⊂ X is said to be in I(X) if, given any
decomposition of X into finitely many subcontinua, H is contained
in one element of the decomposition. Let Σ = {Hα : α < λ} be a
transfinite sequence of subcontinua of X, where λ is some countable
ordinal number. Then Σ is called a normal sequence if (i) H0 = X,
(ii) Hβ = I(Hα) for ordinals β = α + 1, (iii) Hβ = ∩{Hα : α < β}
for limit ordinals β, and (iv) for each α < λ the continuum Hα is
nondegenerate. The least upper bound (or minimum) k(X) of the
lengths of all normal sequences in X is called the depth of X. The
concept was used to study various phenomena in λ-dendroids. For its
modification, see [31].
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A similar idea was applied by Mohler [24] to define the notion of
the depth of tranches in λ-dendroids, and earlier by the first-named
author in [3] to establish the degree of nonlocal connectedness (for
hereditarily unicoherent metric continua) and by Lelek in defining the
nonconnectivity index of a space at a point [20, p. 360]. Note that the
concepts introduced in [3], [14], [24] or in [31] can be applied not to all
continua, but to hereditarily unicoherent ones or to λ-dendroids only,
and these in [14], [24] and in [31] are global ones in the sense that
they describe the structure of a continuum in the whole, not locally.
The concept introduced by Lelek in [20] can be applied to all separable
metric spaces, but again its nature is rather global than local. For
compact metric spaces, a very interesting approach to define a suitable
concept of a “measure” of nonlocal connectedness was made by Prajs
in [28]. Unfortunately, no proofs of its properties are given in that
paper and, until now, the author has not published his results in full.
We would like to stress that some ideas of the present paper are taken
from the mentioned paper [28] or from its unpublished full version.

The same concept of a degree of nonlocal connectedness was also
studied by Katsuura in [16], who used the notion to show the nonexis-
tence of Peano mappings (i.e., continuous surjections from a continuum
onto its square) for some continua.

The aim of this paper is to present a concept which is an extension
of the degree of nonlocal connectedness defined in [3]; it applies to the
much wider class of all Hausdorff continua, has many nice properties,
and seems to be a good tool in studying various properties of these
spaces.

Preliminaries. A space means a topological Hausdorff space, and a
mapping means a continuous transformation.

We denote by Ord the class of all ordinal numbers, by Lim the
subclass of Ord composed of all limit ordinals and by N ⊂ Ord the set
of all finite ordinals. The symbol ω1 denotes the first uncountable
ordinal. For a given ordinal number β, we define its predecessor
pred (β) by

pred (β) =
{

α if β = α + 1,
β if β ∈ Lim.

Any ordinal number α is understood as the set of all ordinals less than
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α, equipped with the order topology, if we consider α as a topological
space. Then α is a nondegenerate compact space if and only if α /∈ Lim.

Let X and Y be two disjoint spaces, A ⊂ X and f : A → Y a
mapping. In the disjoint union X ⊕Y generate an equivalence relation
	 by a 	 f(a) for each a ∈ A. The quotient space (X ⊕ Y )/ 	 is
denoted by X ∪f Y (see [6, p. 127]).

A continuum denotes a compact connected space. A continuum
X containing two points a and b is called an arc (from a to b,
or with endpoints a and b), provided that each point of X \ {a, b}
separates a and b in X. A continuum X is said to be arcwise
connected provided that for every two points a and b of X there is
an arc from a to b contained in X. A continuum X is said to be
hereditarily unicoherent provided that the intersection of every two of
its subcontinua is connected. A hereditarily unicoherent and arcwise
connected continuum is called an arboroid. A metrizable arboroid is
named a dendroid.

Two special dendroids will be used in the paper. We denote by FH the
harmonic fan, i.e., the cone over the closure of the harmonic sequence
{1/n : n ∈ N} (or, equivalently, the cone over ω + 1), and by FC the
Cantor fan, i.e., the cone over the Cantor ternary set C ⊂ [0, 1].

The concept of local connectedness of a space at a given point is a
crucial one in further considerations. Since this term is not uniquely
defined, and some authors use this name in various ways, it is necessary
to start with some definitions concerning the concept. Following
Engelking [8, p. 373], Kuratowski [18, p. 227] and Whyburn [33, p.
18], a space X is said to be locally connected at a point p ∈ X provided
that every neighborhood of p contains a connected neighborhood of p.
Note that the same concept is called “connectedness im kleinen” at p
by some authors, e.g., in [12, p. 113], [27, p. 75] and in [11], or “weak
local connectedness” in [34], while the term “local connectedness at a
point” is defined in another way (by having a local basis consisting of
connected (open) sets; see, e.g., [6, p.113]). The reader is referred to
[4], where relations between these concepts are discussed and further
references are given. In particular, it is well known that if the condition
holds at each point of a continuum, then the two concepts coincide (see,
e.g., [27, p. 84]).



1208 J.J. CHARATONIK AND W.J. CHARATONIK

1. General properties. For a given compact space X we denote
by L(X) the set of all points of X at which the space X is locally
connected, and we put N(X) = X \ L(X). Note that, in general,
N(X) need not be closed. The following result is known (see [9,
p. 28]).

Fact 1.1. For each compact space X and mapping f defined on X,
the inclusion N(f(X)) ⊂ f(N(X)) holds.

In the next fact the first conclusion is an easy observation, the second
one is shown in [9, p. 28], and the third one is in [33, p. 19].

Fact 1.2. If A and B are compact spaces, then

(1.2.1) N(A ∪B) ⊂ N(A) ∪N(B);

(1.2.2) N(A×B) = (N(A)×B) ∪ (A×N(B));

(1.2.3) if A is a nonlocally connected continuum, then N(A) is nonde-
generate.

Definition 1.3. Let a continuum X and an ordinal number λ be
given. A sequence of continua {Xα : α ≤ λ} is said to be good, and
λ is called the length of the sequence, if the following conditions are
satisfied.

(1.3.1) X0 = X;

(1.3.2) Xα+1 ⊂ Xα for each ordinal α < λ;

(1.3.3) N(Xα) ⊂ Xα+1 for each ordinal α < λ;

(1.3.4) Xβ = ∩{Xα : α < β} for each limit ordinal β ≤ λ;

(1.3.5) Xλ is a one-point set if λ ∈ Lim or the empty set if λ /∈ Lim.

For a given continuum X define s(X) as the smallest ordinal number
λ such that there is a good sequence of subcontinua of X of length λ
if such a sequence exists, and s(X) =∞ otherwise. We agree that any
ordinal number is less than the symbol ∞ and that pred (∞) =∞.
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Some properties of the number s(X) will be stated.

Proposition 1.4. For each continuum X and for each mapping
f : X → f(X) if {Xα : α ≤ λ} is a good sequence in X, then
{f(Xα) : α ≤ λ} is a good sequence in f(X).

Proof. Conditions (1.3.1), (1.3.2), (1.3.4) and (1.3.5) are evidently
satisfied, and (1.3.3) is just Fact 1.1.

As an immediate consequence of the above proposition, we get the
next result.

Theorem 1.5. For each continuum X and for each mapping f :
X → f(X) the inequality s(f(X)) ≤ s(X) holds.

In [3] the degree of nonlocal connectedness τ (H) is defined of a
hereditarily unicoherent metric continuum H, and a number of its
properties are proved. Later Mohler in [24, p. 345] extended the
definition and basic properties of the notion to arbitrary Hausdorff
(not necessarily metric) hereditarily unicoherent continua. To compare
the two concepts, τ (H) and s(H), we recall the definition of the former
one.

For a subset S of a continuum X, let I(S) denote a subcontinuum of
X which is irreducible about S, i.e., such that S ⊂ I(S) and no proper
subcontinuum of I(S) contains S. It is known that the operation I
is unique in hereditarily unicoherent continua, and vice versa, see [3,
p. 187] and [23, p. 346] and that the following implications hold, see
[3, p. 188] and compare [23, p. 346].

Fact 1.6. (a) If a continuum X is hereditarily unicoherent, then the
condition S1 ⊂ S2 ⊂ X implies that I(S1) ⊂ I(S2).

(b) If continua S1 and S2 are hereditarily unicoherent, then the
condition S1 ⊂ S2 implies that N(S1) ⊂ N(S2).

For a hereditarily unicoherent continuum X, put J(X) = I(N(X))
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and define, for an ordinal number β > 0, J0(X) = X and

Jβ(X) =
{

J(Jα(X)) if β = α + 1,
∩{Jα(X) : α < β} if β = limα<β α.

The degree of nonlocal connectedness τ (X) of a hereditarily unicoher-
ent continuum X is defined as

τ (X) =
{
min{α : Jα+1(X) = ∅} if {α : Jα+1(X) = ∅} �= ∅,
∞ otherwise.

For properties of the degree τ , see [3, pp. 190 193] and [23,
pp. 345 347].

One can observe that, for a hereditarily unicoherent continuum X,
the sequence {Jα(X) : α ≤ s(X)} is a good one in X. This leads to
the following definition; the next lemma justifies the name used.

Definition 1.7. For a hereditarily unicoherent continuum X, the
sequence

{Jα(X) : α ≤ s(X)}
is called the best sequence in X.

Lemma 1.8. If a continuum X is hereditarily unicoherent, then for
each good sequence {Xα : α ≤ β} in X, we have Jα(X) ⊂ Xα.

Proof. We will proceed by induction. For α = 0, we have J0(X) =
X0 = X by the definitions. Assume that Jα(X) ⊂ Xα for each α < γ.
If γ ∈ Lim, then

Jγ(X) =
⋂
{Jα(X) : α < γ} ⊂

⋂
{Xα : α < γ} = Xγ ,

and we are done. If γ /∈ Lim, then put δ = pred (γ). Therefore,
Jδ(X) ⊂ Xδ by the inductive assumption, and Fact 1.6(b) implies
that N(Jδ(X)) ⊂ N(Xδ), whence by Fact 1.6(a) and by (1.3.3) we get
Jδ+1(X) = I(N(Jδ(X))) ⊂ I(N(Xδ)) ⊂ Xδ+1. Since γ = δ + 1, we
have Jγ(X) ⊂ Xγ as needed.



NONLOCAL CONNECTEDNESS 1211

Corollary 1.9. For a hereditarily unicoherent continuum X, the
degree s(X) is the length of the best sequence.

In the next theorem, connections between the two degrees, τ and s,
are shown.

Theorem 1.10. If a continuum X is hereditarily unicoherent, then

τ (X) = pred (s(X)).

Proof. Let τ (X) = β, i.e., Jβ+1(X) = ∅. If Jβ(X) is a one-point
set, then by (1.2.3), β is a limit ordinal, {Jα(X) : α ≤ β} is the best
sequence in X, and consequently s(X) = β according to Corollary 1.9.
If Jβ(X) is nondegenerate, then {Jα(X) : α ≤ β + 1} is the best
sequence in X, whence s(X) = β + 1, as required. So the proof is
complete.

Proposition 1.11. If a continuum X is hereditarily unicoherent and
Y is a subcontinuum of X, then s(Y ) ≤ s(X).

Proof. Let {Xα : α ≤ la} be a good sequence in X. Consider the
sequence {Y ∩Xα : α ≤ λ}. We will show that it is good in Y . Indeed,
conditions (1.3.1), (1.3.2), (1.3.4) and (1.3.5) are obviously satisfied
and condition (1.3.3) holds by Fact 1.6(b). Applying the definition, we
complete the proof.

Remark 1.12. If we define ν(X) for an arbitrary continuum X by
the formula ν(X) = pred (s(X)), then ν generalizes the function τ
to arbitrary (not necessarily hereditarily unicoherent) continua, and
therefore it solves the problem posed in the second paragraph of
Remarks in [3, p. 192]. However, the next example shows that the
function s distinguishes more situations than the function ν.

Example 1.13. There are two hereditarily unicoherent continua X
and Y such that τ (X) = τ (Y ) = ω, while s(X) = ω + 1 and s(Y ) = ω.
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Proof. Let X be the cone over ωω + 1. One can verify that Jω(X) is
an arc and thus τ (X) = ω and s(X) = ω+1. To obtain the continuum
Y , shrink the arc Jω(X) ⊂ X to a point. Then Jω(Y ) is degenerate,
and therefore τ (Y ) = s(Y ) = ω.

2. Hyperspaces. Now we will study certain properties of the degree
s related to hyperspaces. Some definitions are in order first.

Given a space X, we denote by 2X the family of all nonempty
compact subsets of X and by C(X) the family of all nonempty compact
connected subsets of X. Thus C(X) ⊂ 2X . The families 2X and
C(X) equipped with the Vietoris topology (see, e.g., [25, p. 10] for the
definition) are called hyperspaces of X. The reader is referred to [15]
and to [25] for needed information on hyperspaces.

An order arc in the hyperspace either 2X or C(X) means an arc which
is also a chain with respect to the partial order on the hyperspace
induced by set inclusion. The following fact (for the metric case,
compare [25, p. 59]) is known. Its standard proof using the Kuratowski-
Zorn lemma is left to the reader.

Fact 2.1. Let a continuum X and sets A, B ∈ 2X be given. Then
the following two statements are equivalent.

(2.1.1) There is an order arc from A to B in 2X ;

(2.1.2) A ⊂ B and each component of B intersects A.

In particular, if A, B ∈ C(X), then there is an order arc from A to
B in C(X) if and only if A ⊂ B.

Theorem 2.2. For each continuum X, we have

s(2X) =



0 if X is a singleton;
1 if X is nondegenerate and locally connected;
∞ if X is not locally connected.

Proof. If X is a singleton, the equality follows from the definition.
In the second case, since the local connectedness of X is equivalent to
the one of the hyperspace 2X , see [22, p. 166], the conclusion follows
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as well. If the continuum X is not locally connected, then there is a
surjective mapping f : X → FH , where FH is the harmonic fan, see [1,
p. 107]. Then the mapping 2f : 2X → 2FH defined by 2f (A) = f(A)
for A ∈ 2X is a (continuous) surjection from 2X onto 2FH (compare
[22, p. 170]). Therefore, s(2X) ≥ s(2FH ) according to Theorem 1.5.
Since FH is a metric nonlocally connected continuum, the hyperspace
2FH can be mapped onto the Cantor fan FC , see [25, p. 94], and thus
we have s(2FH ) ≥ s(FC) again by Theorem 1.5. Then the conclusion
follows since s(FC) =∞.

Lemma 2.3. For each continuum X we have N(C(X)) ⊂ C(N(X)).

Proof. Let P be a nonempty subcontinuum of X which is not an
element of C(N(X)). Thus P has a point p of local connectedness of
X. It is known that if X is locally connected at p and a subcontinuum
P of X contains p, then the hyperspace C(X) is locally connected at P ,
see [7, p. 170]. Thereby, P is a point of local connectedness of C(X),
so P /∈ N(C(X)).

Proposition 2.4. Let X be a continuum. If {Xα : α ≤ λ} is a good
sequence in X, then {C(Xα) : α ≤ λ} is a good sequence in C(X).

Proof. Conditions (1.3.1), (1.3.2), (1.3.4) and (1.3.5) obviously hold
for {C(Xα) : α ≤ λ}, and (1.3.3) is a consequence of Lemma 2.3.
Therefore, the conclusion holds.

As a consequence of Proposition 2.4, we obtain the following result.

Theorem 2.5. For each continuum X, we have s(C(X)) ≤ s(X).

It is known that a continuum X is locally connected if and only if
the hyperspace C(X) is locally connected, i.e., s(X) = 1 if and only if
s(C(X)) = 1, see [25, p. 134]. Of course, we also have that s(X) = 0
if and only if s(C(X)) = 0. In the next results we will show that the
above statements and Theorem 2.5 are the only restrictions for possible
relations between s(X) and s(C(X)). To formulate the first of them,
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we recall two definitions and a statement.

An arboroid X is said to be smooth at the point p ∈ X provided
that, for each convergent net {xn : n ∈ D} of points of X, where D
is a set directed by a relation ≤, with x0 = lim xn, the net of the arcs
{pxn : n ∈ D} converges to the arc px0 (see [30, p. 564]).

Given a continuum X, a (continuous) selection on the hyperspace
C(X) is a mapping f : C(X) → X such that f(A) ∈ A for each
A ∈ c(X). Let an arboroid X be given which is smooth at a point
p ∈ X, and let f : C(X) → X be the least element mapping, see
[10, p. 217], i.e., a mapping that assigns to each subcontinuum A of
X the point f(A) = y ∈ A of X such that py ∩ A = {y}. Then f is
a continuous selection. Thus the following statement is true (for the
metric case, compare [32, p. 1043]).

Statement 2.6. Each smooth arboroid X admits a selection on
C(X).

Define

G = {0} ∪
{ 1
2k

: k ∈ N
}

,(2.7)

G = (G× [0, 1]) ∪ ([0, 1]× {1}).(2.8)

The continuum G is called the geometric comb.

Proposition 2.9. For each ordinal number α there is a smooth
arboroid X(α), metrizable if α < ω1, such that s(X(α)) = s(C(X(α)))
= α.

Proof. We will proceed by transfinite induction. Let X(0) be a one-
point set {p(0)}, and assume that we have defined, for an ordinal α, an
arboroid X(α) smooth at a point p(α). To define X(α + 1), consider
two cases.

Case 1. α /∈ Lim. Let A = ({p(α)}×G)∪ (X(α)×{0}) ⊂ X(α)×G.
Define a mapping f : A → G by f(〈p(α), t〉) = 〈t, 0〉 for t ∈ G, and
f(〈x, 0〉) = 〈0, 0〉 for x ∈ X(α). Finally, put X(α+1) = (X(α)×G)∪f G
and p(α + 1) = 〈0, 1〉 ∈ G ⊂ X(α + 1), and note that X(α + 1) is an
arboroid which is smooth at p(α + 1).
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Assuming s(X(α)) = α, we will show that s(X(α + 1)) = α + 1.
Let {Xγ(α) : γ ∈ {0, . . . , α}} be the best sequence in the continuum
X(α). Denote by Yγ the (unique) continuum irreducible with respect
to containing (Xγ(α) × G) ∪f G for each λ ∈ {0, . . . , pred (α)}. Put
Yα = {0} × [0, 1] ⊂ G ⊂ X(α + 1) and Yα+1 = ∅. One can verify that
{Yγ : γ ∈ {0, . . . , α + 1}} is the best sequence in X(α + 1), whence it
follows by Corollary 1.9 that s(X(α + 1)) = α + 1.

Case 2. α ∈ Lim. In the space X(α)×{0, 1}, take A = {p(α)}×{0, 1}
and define f : A → [0, 1] by f(〈p(α), t〉) = t for t ∈ {0, 1}. Then put
X(α + 1) = (X(α) × {0, 1}) ∪f [0, 1]. In other words, X(α + 1) is
the disjoint union of two copies of X(α) joined by the segment [0, 1]
attached at endpoints of [0, 1] to the corresponding points p(α). It
follows that the constructed continuum is an arboroid which is smooth
at the point p(α + 1) = 〈p(α), 0〉.
As previously, let {Xγ(α) : γ ∈ {0, . . . , α}} be the best sequence

in X(α), and define Yγ as the (unique) continuum irreducible with
respect to containing (Xγ(α) × {0, 1} for γ ∈ {0, . . . , α}. Since α is a
limit ordinal, Yα = [0, 1] ⊂ X(α + 1), and we may put Yα+1 = ∅ to
obtain the best sequence {Yγ : γ ∈ {0, . . . , α + 1}}. This shows, again
by Corollary 1.9, that s(X(α + 1)) = α + 1.

Assume β ∈ Lim and that, for each α < β, we have defined an
arboroid X(α) smooth at a point p(α). We will construct X(β).
To this aim, consider the union X(β) = ∪{X(α) : α < β} with
X(α)∩X(α′) = {p(α)} = {p(α′)} = {p(β)}. We will define a compact
topology on X(β). Let U be a subset of X(β). Then U is said to be
open in X(β) if U ∩X(α) is open in X(α) for all α < β and one of the
two conditions holds for all but finitely many ordinals α < β:

(2.9.1) X(α) ⊂ U ;

(2.9.2) p(β) /∈ U and X(α) ∩ U = ∅.

In other words, X(β) is a compact one-point union of spaces X(α)
for α < β. In particular, it follows that X(β) is an arboroid which is
smooth at p(β).

If, for each α < β, the sequence {Xγ(α) : γ ∈ {0, . . . , α}} is the
best one in X(α), then putting Yγ = ∪{Xγ(α) : γ ∈ {0, . . . , α}} and
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Yβ = {p(β)} we get the best sequence in X(β) of length β. According
to Corollary 1.9, this shows that s(X(β)) = β. This finishes the proof
that s(X(α)) = α.

To see that s(X(α)) = s(C(X(α))), note that the inequality s(X) ≤
s(C(X)) is a consequence of Statement 2.6 and Theorem 1.5. The
reverse one is just Theorem 2.5.

To see that the continuum X(α) is metrizable for α < ω1, it is enough
to observe that then it is second countable by its construction. Thus its
metrizability follows from its compactness, see [8, p. 260]. The proof
is finished.

Admit the following notation. In the plane R2, let I = {〈0, y〉 : y ∈
[−1, 1]}, p = 〈0,−1〉 and q = 〈1, sin 1〉, and let S be the sin(1/x)-curve,
i.e.,

(2.10) S = I ∪ {〈x, sin(1/x)〉 ∈ R2 : x ∈ (0, 1]}.

Thus S is a continuum irreducible from p to q.

The next example is related to Theorem 2.5 and Proposition 2.9. It
shows that the inequality in Theorem 2.5 cannot be replaced by the
equality, and therefore the equality in the conclusion of Proposition 2.9
need not be true in general.

Example 2.11. There exists a continuum X such that s(C(X)) = 2,
while s(X) =∞.

Proof. Let X0 = S be the sin(1/x)-curve, and let X2 be the image
of X0 under the symmetry with respect to the straight line x = 1.
Put X = X0 ∪ X2, and denote by I0 and I2 the two limit segments
of X, i.e., Ik = {k} × [−1, 1] for k ∈ {0, 2}. Then, by the definition,
we have s(X) = ∞. Further, N(C(X)) ⊂ C(I0 ∪ I2) = C(I0) ∪ C(I2)
according to Lemma 2.3. For k ∈ {0, 2}, let Jk be an order arc from
Ik to X in C(X). Put P = C(I0) ∪ J0 ∪ J2 ∪ C(I2). Since C(I0)
and C(I2) are locally connected, the continuum P is locally connected,
and thus the sequence {C(X),P, ∅} is a good one in C(X), whence
it follows that s(C(X)) ≤ 2. Since C(X) is not locally connected, we
have s(C(X)) = 2.
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Proposition 2.12. For each ordinal number β ≥ 2, there is a
hereditarily unicoherent continuum X(β), metrizable if β < ω1, such
that s(X(β)) = β and s(C(X(β))) = 2.

Proof. We proceed by transfinite induction. Let X(2) = S be the
sin(1/x)-curve. Assume that we have defined, for some α ≥ 2, a
hereditarily unicoherent continuum X(α) satisfying s(X(α)) = α and
s(C(X(α))) = 2. Let {Xγ(α) : γ ∈ {0, . . . , α}} be the best sequence in
X(α). Then Xpred (α)(a) is a locally connected (possibly degenerate)
continuum. Let p(α) ∈ Xpred (α)(α). To define X(α + 1) we consider
two cases.

Case 1. α /∈ Lim. Define X(α+1) = S ∪X(α) with the points q ∈ S
and p(α) ∈ X(α) identified, i.e., with S ∩X(α) = {q} = {p(α)}. Then
X(α + 1) is a hereditarily unicoherent continuum. Putting

Yγ = S ∪Xγ(α) for γ ≤ pred (α),
Yα = I ⊂ S and Yα+1 = ∅

we get the best sequence in X(α+1) of length α+1, whence by Corollary
1.9 it follows that s(X(α + 1)) = α + 1.

Now we will show that s(C(X(α + 1))) = 2. Let {C(X(α)),P, ∅}
be a good sequence in C(X(α)), where P is a locally connected
subcontinuum of C(X(α)). Choose P ∈ P and let A and B be
two order arcs in C(X(α + 1)): the former from P to X(α + 1)
and the latter from I also to X(α + 1). Thus the continuum Q =
P ∪A∪ B ∪C(I) is a locally connected subcontinuum of C(X(α+ 1))
containing the set N(C(X(α+1))) = N(C(X(α)))∪(C(I)\{I}). Thus
the sequence {C(X(α+1)),Q, ∅} is good in C(X(α+1)). This shows
that s(C(X(α + 1))) ≤ 2. Since C(X(α + 1)) is not locally connected,
we have s(C(X(α+1))) ≥ 2, whence s(C(X(α+1))) = 2, as required.

Case 2. α ∈ Lim. We proceed exactly as in Case 2 in the proof of
Proposition 2.9. We need only to show that s(C(X(α + 1))) = 2. To
this end, let {C(X(α)),P, ∅} be a good sequence in C(X(α)). Choose
P ∈ P and consider, for i ∈ {0, 1} an order arc Ai from P × {i} to
X(α + 1) in C(X(α + 1)). Then the sequence{

C(X(α+1)), {P×{0} : P ∈ P} ∪ A0 ∪ A1 ∪ {P×{1} : P ∈ P}, ∅}
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is good in C(X(α + 1)). This shows that s(C(X(α + 1))) = 2.

Now assume that β ∈ Lim and that, for each α < β, we have defined
a hereditarily unicoherent continuum X(α) satisfying s(X(α)) = α and
s(C(X(α))) = 2. Let {Xγ(α) : γ ∈ {0, . . . , α}} be the best sequence
in X(α), and let p(α) ∈ Xpred (α)(α). Define, like in the corresponding
part of the proof of Proposition 2.9, the space X(β) as the compact one-
point union of the continua X(α) for α < β. Thus it is a hereditarily
unicoherent continuum. Further, s(X(β)) = β by an argument similar
to that used in the proof of Proposition 2.9.

To show s(C(X(β))) = 2, take, for each α < β, a good sequence
{C(X(α)),Pα, ∅} in C(X(α)). Thus Pα is a locally connected subcon-
tinuum of C(X(α)) containing the set N(C(X(α))). For each α < β,
let Pα be any element of Pα, and let Aα and Bα be two order arcs
in C(X(α)), the former from Pα, and the latter from the singleton
{p(α)} = {p(β)}, both to X(α). Put P = ∪{Pα ∪ Aα ∪ Bα : α < β}.
By the definition of the topology in X(β) the set P is compact. Since
p(β) ∈ Bα for each α < β, the set P is connected, so it is a continuum.
Observe further that P is locally connected at {p(β)} and, by the in-
ductive assumption, at any other point. Thus it is locally connected.
Finally note that if p(β) ∈ Q ∈ C(X(β)), then (by [11, p. 391]) Q does
not belong to N(C(X(β))), whence N(C(X(β))) = ∪{N(C(X(α))) :
α < β}. Thus we have N(C(X(β))) ⊂ P, and thereby {C(X(β)),P, ∅}
is a good sequence in C(X(β)). The proof is complete.

Proposition 2.13. For every two ordinals α and β satisfying
2 ≤ α ≤ β, there is a hereditarily unicoherent continuum X(α, β),
metrizable if β < ω1, such that s(X(α, β)) = β and s(C(X(α, β))) = α.

Proof. Let X(α) be an arboroid as in Proposition 2.9, i.e., smooth at a
point p(α) and such that s(X(α)) = s(C(X(a))) = α. Further, let Y (β)
be a hereditarily unicoherent continuum as in Proposition 2.12, i.e.,
such that s(Y (β)) = β and s(C(Y (β))) = 2, and let q(β) ∈ Ypred (β)(β).
Define X(α, β) = X(α)∪Y (β) with the points p(α) and q(β) identified,
i.e., with X(α) ∩ Y (β) = {p(α)} = {q(β)}.
If {Xγ(α) : γ ∈ {0, . . . , α}} and {Yγ(β) : γ ∈ {0, . . . , β}} are the

best sequences in X(α) and in Y (β), respectively, then the sequence
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{Zγ : γ ∈ {0, . . . , β}} defined by

Zγ =
{

I(Xγ(α) ∪ Yγ(β)) if γ ≤ α,
Y (β) if α < γ ≤ β,

is the best one of length β in X(α, β). Therefore s(X(α, β)) = β
according to Corollary 1.9.

Define a retraction R : C(X(α, β))→ C(X(α)) by R(P ) = P ∩X(α)
for each P ∈ C(X(α, β)). One can verify that R is continuous.
Therefore, s(C(X(α, β))) ≥ s(C(X(α))) = α by Theorem 1.5. To show
the other inequality, let {Xγ : γ ∈ {0, . . . , α}} be a good sequence in
C(X(α)), and let {C(Y (β)),P, ∅} be a good sequence in C(Y (β)).
Arguing as in the corresponding part of the proof of Proposition 2.12,
we can show that

(2.13.1) N(C(X(α, β))) = N(C(X(α))) ∪N(C(Y (β))).

Let P ∈ P. Choose three order arcs: A from P to Y (β), B
from {q(β)} = {p(α)} also to Y (β), both in C(Y (β)), and C from
{p(α)} = {q(β)} to an element of X1 in C(X(α)). Define

Y0 = C(X(α, β)), Y1 = P ∪ A ∪ B ∪ C ∪ X1

and Yγ = Xγ for γ ∈ {2, . . . , α}}.

Since P, A, B and C are locally connected continua, we infer from
(2.13.1) that the sequence {Yγ : γ ∈ {0, . . . , α}} is a good one in
C(X(α, β)). This shows that s(C(X(α, β))) ≤ α, and consequently it
equals α, as required. The proof is finished.

3. Cartesian products. Now we will discuss the degree of nonlocal
connectedness for the Cartesian products of continua. To do this let
us recall the concept of the natural sum α(+)β of ordinal numbers α
and β.

Let
α = ωξ1p1 + ωξ2p2 + · · ·+ ωξhph,

β = ωξ1q1 + ωξ2q2 + · · ·+ ωξhqh,
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where ξ1 > ξ2 > · · · > ξh and where pi, qi, for i ∈ {1, 2, . . . , h}, are
natural numbers, some of them possibly zeros. Then the natural sum
is defined by (see [19, p. 253])

α(+)β = ωξ1(p1 + q1) + ωξ2(p2 + q2) + · · ·+ ωξh(ph + qh).

The following two lemmas will be useful in the sequel.

Lemma 3.1. Let β ∈ Lim, and to each ordinal number α < β let two
ordinal numbers α1 and α2 be assigned such that α = α1(+)α2. Then

sup{α1 : α < β}(+) sup{α2 : α < β} ≥ β.

Proof. Put γ = sup{α1 : α < β}(+) sup{α2 : α < β} and suppose on
the contrary that γ < β. Let δ = γ + 1 < β. Then γ ≥ δ1(+)δ2 = δ, a
contradiction.

Lemma 3.2. Let ordinal numbers α and β be given with β = β1(+)β2

and α < β. Then there exist α1 and α2 such that

(3.2.1) α1 ≤ β1, α2 ≤ β2, and α = α1(+)α2.

Proof. Consider three cases.

Case 1. α < β1. Define α1 = α and α2 = 0. Then conditions (3.2.1)
obviously hold.

Case 2. α < β2. This case can be treated analogously.

Case 3. α ≥ β1 and α ≥ β2. Put

β1 = ωξ1p1 + ωξ2p2 + · · ·+ ωξhph,

β2 = ωξ1q1 + ωξ2q2 + · · ·+ ωξhqh,

α = ωξ1r1 + ωξ2r2 + · · ·+ ωξhrh,
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where ξ1 > ξ2 > · · · > ξh and pi, qi, ri ∈ N for i ∈ {1, 2, . . . , h}, with
pi > 0 or qi > 0. Let k ∈ {1, 2, . . . , h} be the smallest index such
that rk < pk + qk. Then, by the case considered, we have rk ≥ pk and
rk ≥ qk, and we may assume pk > 0. Define

α1 = ωξ1p1 · · ·+ ωξk−1pk−1 + ωξk(pk−1) + ωξk+1rk+1 + · · ·+ ωξhrh

and
α2 = ωξk(rk − pk + 1).

Thus rk − pk > 0, so α1 and α2 are well defined, and conditions (3.2.1)
obviously hold.

The proof is complete.

Proposition 3.3. Let

X = {Xα : α ≤ λX} and Y = {Yα : α ≤ λY }

be good sequences for continua X and Y , respectively, and let

λ =
{

λX(+)λY if XλX
�= ∅ �= YλY

,
pred (λX)(+)pred (λY )(+)1 otherwise.

Then the sequence Z = {Zα : α ≤ λ} defined by

(3.3.1)
Zα = ∪{XαX

× YαY
: α = αX(+)αY with αX ≤ λX and αY ≤ λY }

is good in the product X × Y .

Proof. First we have to show that each of the sets Zα defined by
(3.3.1) is a continuum. To this goal it is enough to note that if
XαX

× YαY
and Xα′

X
× Yα′

Y
are nonempty uniands of the union in the

right member of (3.3.1), then Xmax{αX ,α′
X
}×Ymax{αY ,α′

Y
} is a nonempty

subset of (XαX
× YαY

) ∩ (Xα′
X
× Yα′

Y
).

Second, note (see [19, p. 253]) that

(3.3.2) the union in the right member of the formula (3.3.1) has
finitely many uniands.
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Assuming that the conditions (1.3.1) (1.3.5) hold for the sequences
X and Y , we will verify them for the sequence Z.
Putting α = 0 in (3.3.1), we see that Z0 = X0 × Y0, so (1.3.1) is

satisfied.

To show (1.3.2) for Z, take a point 〈x, y〉 ∈ Zα+1. Then there are
ordinal numbers αX ≤ λX and αY ≤ λY such that αX(+)αY = α + 1
and that 〈x, y〉 ∈ XαX

× YαY
. Thus either αX or αY , say αX , is not

a limit ordinal. Put αX = α′
X + 1. Then XαX

⊂ Xα′
X

by (1.3.2) for
X , so 〈x, y〉 ∈ Xα′

X
× YαY

. Note that α′
X(+)αY = α, whence it follows

that Xα′
X
× YαY

⊂ Zα. Thus, 〈x, y〉 ∈ Zα as needed, and so (1.3.2) for
Z is shown.

To verify (1.3.3) for Z, take a point 〈x, y〉 ∈ N(Zα). Then by Fact
1.2.1 and (3.3.1), there are ordinal numbers αX ≤ λX and αY ≤ λY

such that αX(+)αY = α and 〈x, y〉 ∈ N(XαX
× YαY

). Further,
N(XαX

× YαY
) = (N(XαX

) × YαY
) ∪ (XαX

× N(YαY
)) by Fact 1.2.2.

Since (αX + 1)(+)αY = αX(+)(αY + 1) = (αX(+)αY )(+)1 = α + 1,
the conclusion follows.

Now we will show that (1.3.4) holds for Z, i.e., that
(3.3.3) Zβ =

⋂
{Zα : α < β} for each β ∈ Lim with β ≤ λ.

First, let 〈x, y〉 ∈ Zβ . Then there are ordinal numbers βX ≤ λX and
βY ≤ λY such that βX(+)βY = β and 〈x, y〉 ∈ XβX

× YβY
. Let α < β.

By Lemma 3.2 there are ordinal numbers αX and αY such that

αX ≤ βX , αY ≤ βY and αX(+)αY = α.

Thus XβX
× YβY

⊂ XαX
× YαY

⊂ Zα, whence 〈x, y〉 ∈ Zβ , as needed.
So one inclusion in the equality (3.3.3) is shown.

To prove the other one, let 〈x, y〉 belong to the intersection in the
right member of (3.3.3). Then, by the definition (3.3.1) of Zα, for each
α < β there are ordinal numbers αX and αY such that αX(+)αY = α
and 〈x, y〉 ∈ XαX

× YαY
. Put

βX = sup{αX : α < β} and βY = sup{αY : α < β}.
By Lemma 3.1 we have βX(+)βY ≥ β, and by Lemma 3.2 there are
ordinal numbers β′

X and β′
Y such that

β′
X ≤ βX , β′

Y ≤ βY and β′
X(+)β′

Y = β.
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Therefore, 〈x, y〉 ∈ XβX
× YβY

⊂ Xβ′
X
× Yβ′

Y
⊂ Zβ . So the other

inclusion is shown and thus the equality (3.3.3) holds.

Finally we have to verify condition (1.3.5) for Z. If λX ∈ Lim and
λY ∈ Lim, then Zλ = XλX

×YλY
is a one-point set, and λ = λX(+)λY

is a limit ordinal.

So assume that one of λX and λY , say λX , is not in Lim. Then
λX = pred (λX)(+)1. Let ordinal numbers α and β be such that
α ≤ λX , β ≤ λY and α(+)β = λ = pred (λX)(+)pred (λY )(+)1 =
λX(+)pred (λY ). Since α ≤ λX , we have λX(+)pred (λY ) ≤ λX(+)β.
Further, since the natural sum is an increasing function with respect
to each of the summands (see [19, p. 253]), we get pred (λY ) ≤ β,
whence either β = pred (λY ) or β = pred (λY )(+)1. Thus we have
either Zλ = Xpred (λX) × Ypred (λY )(+)1 ∪ Xpred (λX)(+)1 × Ypred (λY ) if
λY /∈ Lim or Zλ = Xpred (λX)(+)1 × Ypred (λY ) if λY ∈ Lim. Since
Xpred (λX)(+)1 = Ypred (λY )(+)1 = ∅, we have Zλ = ∅. The proof is
complete.

Proposition 3.3 implies the following results.

Theorem 3.4. For every two continua X and Y , we have

s(X×Y ) ≤
{

s(X)(+)s(Y ) if s(X), s(Y ) ∈ Lim,
pred (s(X))(+)pred (s(Y ))(+)1 otherwise.

Corollary 3.5. For every two continua X and Y , we have

ν(X × Y ) ≤ ν(X)(+)ν(Y ).

It would be interesting to know whether Theorem 3.4 is the best
possible. In other words, we have the following question.

Question 3.6. For arbitrary ordinal numbers α and β, do continua
X and Y exist satisfying s(X) = α, s(Y ) = β and

s(X × Y ) =
{

α(+)β if α, β ∈ Lim,
pred (α)(+)pred (β)(+)1 otherwise?
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Proposition 3.7. For every two continua X and Y with s(X), s(Y )∈
N \ {0, 1} we have s(X × Y ) ≥ s(X) + 1.

Proof. Let k = s(X × Y ), and let {X × Y = Z0, . . . , Zk} be
a good sequence in X × Y . Denote by π : X × Y → X the
projection onto the first factor. Note that, by Proposition 1.4, the
sequence {π(Z0), . . . , π(Zk)} is a good one in X. Further, observe that
Z1 ⊃ N(Z0) = (N(X)× Y ) ∪ (X × N(Y )) according to Fact 1.2.2, so
π(Z1) = X. Thus the sequence {π(Z1), . . . , π(Zk)} is a good one in X,
and therefore s(X) ≤ k − 1, whence k ≥ s(X) + 1, as required.

It is shown in [9, p. 29] that if a continuum X is not locally connected
and the set N(X) is contained in a locally connected subcontinuum of
X, i.e., if s(X) = 2, then X ×X is not a continuous image of X. The
following corollary, which follows from Proposition 3.7 and Theorem
1.5, generalizes this result (compare also [16, p. 1140]).

Corollary 3.8. For each continuum X, if s(X) = n ∈ N \ {0, 1},
then there is no mapping from X onto X ×X.

One can ask if continua X and Y exist such that the inequality in
Theorem 3.4 is strict. In the next proposition we present a result from
which a positive answer to this question follows.

For a space X, we denote by ∆(X) the diagonal of its Cartesian
square, i.e., ∆(X) = {〈x, x〉 : x ∈ X}.

Proposition 3.9. For each natural number n ∈ N\{0, 1}, there is a
metric hereditarily unicoherent continuum X such that s(X) = n and
s(X ×X) = n + 1.

Proof. For k ∈ N, put

Ik = {k} × [−1, 1] and Lk =
{〈

x, sin
1

x−k

〉
∈ R2 : x ∈ (k, k+1]

}
,

and note that Ik ∪Lk is homeomorphic to the sin(1/x)-curve S. Define

X = In ∪
⋃ {

Ik ∪ Lk : k ∈ {1, . . . , n− 1}}.
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Thus X is a hereditarily unicoherent (plane) continuum. Note that
the sequence {X0, X1, . . . , Xn} defined by

Xj = In−j ∪
⋃ {

Ik ∪ Lk : k ∈ {1, . . . , n−j−1}}
for j ∈ {0, . . . , n−2},

Xn−1 = I1 and Xn = ∅, is the best one in X. Thus by Corollary 1.9
we get s(X) = n.

For j ∈ {0, . . . , n − 2} define Mj = I1 ∪ · · · ∪ In−j and Mn = ∅ and
note that

Mj = Mj+1 ∪ In−j ;(3.9.1)
N(Xj) = Mj+1.(3.9.2)

Now we will define a good sequence {Y0, . . . , Yn+1} in X × X. Put
Y0 = X ×X, Yn+1 = ∅, and for j ∈ {1, . . . , n}, let

(3.9.3)
Yj = (Xj−1 ×Mj) ∪ (Mj ×Xj−1) ∪∆(Xj−1)
∪ (In−j+1 × In−j+1).

Then conditions (1.3.1), (1.3.2) and (1.3.5) are obviously satisfied,
and (1.3.4) does not apply. We will verify (1.3.3), which means
that N(Yk) ⊂ Yk+1 for k ∈ {0, . . . , n}. If k = 0, the inclusion
is a consequence of the definitions and of Fact 1.2.2. So assume
k ∈ {1, . . . , n− 1}. Then

N(Yk) ⊂ (N(Xk−1)×Mk) ∪ (Mk×N(Xk−1) ∪N(∆(Xk−1))
by Fact 1.2

= Mk ×Mk by (3.9.2)
⊂ (Mk+1 ∪ In−k)× (Mk+1 ∪ In−k) by (3.9.1)
⊂ (Xk×Mk+1) ∪ (Mk+1×Xk) ∪∆(Xk) ∪ (In−k×In−k)
= Yk+1 by (3.9.3).

For k = n, we have N(Yn) = N(I1 × I1) = ∅ = Yn+1. So (1.3.3) holds,
and we have proved that the sequence {Y0, . . . , Yn+1} is a good one in
X × X. Therefore s(X × X) ≤ n + 1. The opposite inequality is just
Proposition 3.7. The proof is complete.
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Now we will pass to infinite Cartesian products. We denote by J an
arbitrary set of indices, by X =

∏{Xi : i ∈ J } the Cartesian product
of the spaces Xi, and by πi : X → Xi the natural projection of the
product onto the ithe factor Xi for each i ∈ J . For shortness we put
xi = πi(x).

The following lemma is an extension of statement (4) in [9, p. 28] for
continua. Recall that L(X) denotes the set of all points of a continuum
X at which X is locally connected.

Lemma 3.10. Let an arbitrary family of continua Xi be given, where
i ∈ J . Then

(3.10.1) L
(∏

{Xi : i ∈ J }
)
=

∏
{L(Xi) : i ∈ J }.

Proof. Let x be a point of the left member of equation (3.10.1). For
any fixed j ∈ J we will show that xj ∈ L(Xj). Let Uj be an open set
in Xj which contains xj . For each i ∈ J , define

Ui =
{

Uj for i = j,
Xi for i �= j,

and put U =
∏{Ui : i ∈ J }. Then U is open in X and x ∈ U . Since

x is in the left member of equality (3.10.1), a connected set V exists
such that x ∈ intV ⊂ U . Put V = πj(V). Since πj is open, we have
xj ∈ intV ⊂ U , whence xj ∈ L(Xj). Therefore, x is in the right
member of equality (3.10.1), and one inclusion is shown. The other one
is proved in [18, p. 229]. The proof is complete.

Theorem 3.11. Let J be an infinite set and, for each i ∈ J , let Xi

be a nonlocally connected continuum. Then s(
∏{Xi : i ∈ J }) =∞.

Proof. Put X =
∏{Xi : i ∈ J }. It is enough to prove that the set

N(X) is dense in X. To this aim for each i ∈ J , fix a point ai ∈ N(Xi).
Let U be a basic open subset of X, i.e., U =

∏{Ui : i ∈ J }, where
Ui = Xi for all but finitely many indices i ∈ J . Fix j ∈ J such
that Uj = Xj . Then a point x = {xi : i ∈ J } ∈ U exists such that
xj ∈ N(Xj). By Lemma 3.10 we have x ∈ U ∩N(X) as needed.
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Corollary 3.12. For each continuum X, we have

s(Xℵ0) =



0 if X is a singleton;
1 if X is nondegenerate and locally connected;
∞ if X is not locally connected.

4. Inverse limits. Suppose that for every σ ∈ Σ, where Σ is a set
directed by a relation ≤, we have a topological space Xσ, and for every
σ, τ ∈ Σ with σ ≤ τ , a mapping fτ

σ : Xτ → Xσ is defined such that the
following two conditions are satisfied:

(i) fτ
σ ◦ fv

τ = fv
σ for any σ, τ, v ∈ Σ satisfying σ ≤ τ ≤ v,

(ii) fσ
σ is the identity on Xσ for each σ ∈ Σ.

Then the family S = {Xσ, fτ
σ ,Σ} is called an inverse system of spaces

Xσ with bonding mappings fτ
σ . An inverse system S = {Xn, fm

n ,N},
where N is the set of all positive integers directed by its natural order,
is called an inverse sequence.

Let S = {Xσ, fτ
σ ,Σ} be an inverse system. An element p = 〈pσ〉

of the Cartesian product Π{Xσ : σ ∈ Σ} such that fτ
σ (pτ ) = pσ for

any σ, τ ∈ Σ with σ ≤ τ is called a thread of S, and the subspace of
Π{Xσ : σ ∈ Σ} consisting of all threads of S is called the limit of the
inverse system S and is denoted by X = lim←−{Xσ, fτ

σ ,Σ}. Further, we
denote by fσ : X → Xσ the projection from the inverse limit space into
the sth factor space. Then pσ = fσ(p) ∈ Xσ for each s ∈ Σ.

The sets of the form f−1
σ (Uσ), where Uσ is an open subset of Xσ,

called basic open sets, constitute a base in X. The reader is referred to
Engelking’s monograph [8] for more information on inverse systems.

We start with the following statement which is a consequence of
Theorem 1.5.

Statement 4.1. For a given inverse system S = {Xσ, fτ
σ ,Σ} of

continua Xσ with surjective bonding mappings fτ
σ , we have

s(lim←−S) ≥ sup{s(Xσ) : σ ∈ Σ}.

It is known that the inverse limit of locally connected continua
with monotone surjective bonding mappings is a locally connected
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continuum, see [2, p. 241]. The next two examples show that the
degree s can increase under the inverse limit operation with monotone
or even monotone and open surjective bonding mappings.

Example 4.2. There is an inverse sequence S = {Xn, fm
n ,N} of

continua Xn with monotone surjective bonding mappings fm
n satisfying

s(Xn) = 2 for each n ∈ N, while s(lim←−S) = 3.

Proof. Let X0 be the geometric comb, i.e., X0 = G, see (2.8). Given
m ∈ N \ {0}, define

Am =
([ 1

2m−1
,

1
2m−1

+
1
2m

]
× {0}

)

∪
({ 1

2m−1

}
×

[
− 1

2m
, 0

])

∪
⋃{({ 1

2m−1
+

1
2j+m−1

}
×

[
− 1

2m
, 0

])
: j ∈ N \ {0}

}
.

Note that Am is homeomorphic to X0 for each m ∈ N\{0}, and put,
for each n ∈ N \ {0},

Xn = X0 ∪
⋃
{Am : m ∈ {1, . . . , n}}.

Observe that Xn is a continuum for each n ∈ N, and that

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · .

For each N ∈ N, define fn+1
n : Xn+1 → Xn as the retraction

satisfying fn+1
n (An+1) = {〈(1/2m−1), 0〉}. Then fn+1

n is a monotone
surjection. Applying the Anderson-Choquet theorem (see [27, p. 23])
to the inverse sequence S = {Xn, fm

n ,N}, we see that X = lim←−S is
homeomorphic to ∪{Xn : n ∈ N}. One can observe that s(XN ) = 2
for each n ∈ N, and that s(lim←−S) = 3, as required.

Example 4.3. There is an inverse sequence S = {Xn, fm
n ,N} of

continua Xn with monotone and open surjective bonding mappings fm
n

satisfying s(Xn) < ω for each n ∈ N, while s(lim←−S) =∞.



NONLOCAL CONNECTEDNESS 1229

Proof. Let G be the geometric comb defined by (2.8) and put
Xn = Gn for each n ∈ N. Let fm

n : Xm → Xn for n ≤ m be the natural
projection. Thus fm

n is monotone and open. Note that s(G) = 2,
whence s(Xn) < ω for each n ∈ N according to Theorem 3.4. On the
other hand, X = lim←−S is homeomorphic to

∏{Gn : n ∈ N}, where
each Gn = G and thus s(X) =∞ by Corollary 3.12.

5. Applications. Note that we already have shown some applica-
tions of the degree s to the nonexistence of so-called Peano mappings
for some continua in Corollary 3.8. Two other applications are pre-
sented below. The first concerns continuously homogeneous continua;
we present an answer to a question asked by Cook in [5, p. 388]. In the
second we construct an uncountable family of distinct metric continua
X having the property that the hyperspace C(X) is homeomorphic
to X.

5a. Continuously homogeneous continua. A continuum X is
said to be continuously homogeneous provided that, for every two points
x, y ∈ X, a surjective mapping f : X → X exists such that f(x) = y.
If f is a homeomorphism, then X is said to be homogeneous. Two
continua X and Y are said to be continuously equivalent provided that
there are surjective mappings from X onto Y and from Y onto X.

Proposition 5.1. For each homogeneous continuum X, we have

s(X) =




0 if X is a singleton;
1 if X is nondegenerate and locally connected;
∞ if X is not locally connected.

Proof. If N(X) �= ∅, then N(X) = X by homogeneity of X, and
thus there is no good sequence in X. So s(X) =∞.

Proposition 5.2. Every two continuously equivalent continua have
the same degree of nonlocal connectedness.

Proof. Indeed, let continua X and Y be continuously equivalent.
According to Theorem 1.5, since there is a mapping from X onto Y ,
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we have s(Y ) ≤ s(X), and since there is a mapping from Y onto X, we
have s(X) ≤ s(Y ). Thus s(X) = s(Y ) as required.

Cook asks in [5, p. 388] whether for each continuously homogeneous
continuum X there exists a homogeneous continuum Y such that X
and Y are continuously equivalent. Prajs in his comments to the above
question states that the answer is negative, using a result of Krupski on
continuous homogeneity of the harmonic fan (see [17, p. 346]). Below
we present a full argument.

Theorem 5.3. Let a nonlocally connected continuum X be contin-
uously homogeneous, and let s(X) < ∞. Then X is not continuously
equivalent to any homogeneous continuum.

Proof. Since X is not locally connected, we have s(X) > 1. Assume
on the contrary that X is continuously equivalent to a homogeneous
continuum Y . Therefore, by Proposition 5.2, we have 1 < s(X) = s(Y ),
and s(Y ) ≤ 1 according to Proposition 5.1. The contradiction finishes
the proof.

Let G be the set defined by (2.7), and let F be the cone over G,
i.e., F = (G × [0, 1])/(G × {0}). Thus F is homeomorphic to the
harmonic fan. It is known that F is continuously homogeneous, see
[17, p. 346]. Since s(F ) = 2, all assumptions of Theorem 5.3 are
satisfied with X = F , and we get the following corollary.

Corollary 5.4. The harmonic fan is not continuously equivalent to
any homogeneous continuum.

5b. Continua homeomorphic to their hyperspaces. Given a
continuum X, the concept of the hyperspace C(X) can be extended
in the following way. Let C0(X) = X, and for each n ∈ N, put
Cn+1(X) = C(Cn(X)). Further, let ∪ : C2(X) → C(X) be the union
mapping, i.e., for each element E ∈ C2(X) the value ∪(E) is defined as
the union of all members of E . See [25, pp. 102, 100] for correctness
and continuity of ∪, respectively.
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Proposition 5.5. For an arbitrary continuum X, the union mapping
∪ : C2(X)→ C(X) is monotone.

Proof. Let P ∈ C(X). We have to show that ∪−1(P ) is connected.
We will prove more, namely that it is arcwise connected, by showing
that any element P ∈ ∪−1(P ) can be joined to C(P ) ∈ ∪−1(P )
by an order arc contained in ∪−1(P ). Indeed, since P ⊂ C(P ),
there is an order arc from P to C(P ) in C2(X), see Fact 2.1. Since
∪(P) = ∪(C(P )) = P , the arc is contained in ∪−1(P ), as needed. The
proof is complete.

It is known that the inverse limit of locally connected continua with
monotone bonding mappings is locally connected, see [2, p. 241]. In
the sequel we will need a local version of this result. Although we will
use the version for inverse sequences only, we will show it in a more
general form for inverse systems. Recall that L(X) denotes the set of
all points of a continuum X at which X is locally connected.

Proposition 5.6. Let S = {Xσ, fτ
σ ,Σ} be an inverse system of

continua Xσ with surjective monotone bonding mappings fτ
σ , and let

X = lim←−S be its limit. If x = {xσ : σ ∈ Σ} is a thread satisfying
xσ ∈ L(Xσ) for each σ ∈ Σ, then x ∈ L(X).

Proof. Let U ⊂ X be a basic open set with x ∈ U . Thus there is an
index σ0 ∈ Σ such that U = f−1

σ0
(Uσ0), where Uσ0 is an open subset of

Xσ0 such that xσ0 ∈ intVσ0 ⊂ Uσ0 , whence taking preimages under the
projection fσ0 we have

x ∈ f−1
σ0

(xσ0) ⊂ f−1
σ0

(intVσ0) ⊂ f−1
σ0

(Vσ0) ⊂ f−1
σ0

(Uσ0) = U.

Since the projections fσ are monotone, see [2, p. 241], the set V =
f−1

σ0
(Vσ0) is a continuum containing the point x in its interior (because

f−1
σ0

(intVσ0) is open), and contained in U , as needed. Thus x ∈ L(X).

In the next proposition we shall use the concept of an induced
mapping. We recall its definition. Given two continua X and Y and
a mapping f : X → Y , we denote by C(f) : C(X) → C(Y ) the
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mapping induced by f , i.e., defined by the condition C(f)(A) = f(A)
for each A ∈ C(X). More generally, for n ∈ N, we define inductively
Cn(f) : Cn(X)→ Cn(Y ) by: C0(f) = f and Cn+1(f) = C(Cn(f)).

If the mapping f is a surjection, then C(f) does not have to be
surjective, unless f is weakly confluent, that is, provided that for each
subcontinuum Q of Y some component of f−1(Q) is mapped onto Q
under f , see [25, p. 24].

The idea of the proof of the next proposition is taken from [21,
p. 325], where the hyperspaces of all nonempty closed subsets and the
corresponding induced mappings were discussed.

Proposition 5.7. For an arbitrary continuum X, consider an
inverse sequence S = {Cn(X), fm

n ,N\{0}}, where for each n ∈ N\{0}
the bonding mapping fn+1

n : Cn+1(X) = C(Cn(X)) → Cn(X) is the
induced union mapping, i.e., fn+1

n = Cn−1(∪). If Y = lim←−S, then
C(Y ) is homeomorphic to Y .

Proof. The mapping f2
1 = ∪ is monotone according to Proposition

5.5. Since monotoneity of a mapping between continua implies (even
is equivalent to) monotoneity of the induced mapping between hyper-
spaces of subcontinua (see [25, p. 204]; compare [26, p. 750] and [13,
p. 241]), the bonding mappings in S are monotone, thus obviously
weakly confluent, hence onto by the above-mentioned argument. Ap-
plying the functor C both to the spaces and to the bonding mappings
of the sequence S, we get a new inverse sequence C(S) of continua with
monotone onto (induced) bonding mappings. Using a homeomorphism
between C(Y ) and lim←−C(S), see [25, pp. 171, 174], we see that C(Y )
is homeomorphic to Y , as required.

Theorem 5.8. For each ordinal number β, there exists a continuum
Y , metrizable if β < ω1, such that s(Y ) = β and that C(Y ) is
homeomorphic to Y .

Proof. Let X = X(β) be the smooth arboroid defined in Propo-
sition 2.9, and let Y = lim←−S, where S is the inverse sequence as in
Proposition 5.7. Then C(Y ) is homeomorphic to Y . Using the pro-
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jection from the inverse limit Y onto the first factor C(X) of S, by
Theorem 1.5 we have β = s(C(X)) ≤ s(Y ).

To show the inequality s(Y ) ≤ β, we need to construct a good
sequence of length β in Y . Let {Xα : α ≤ β} be a good se-
quence in X. For each α ≤ β, consider the inverse sequence S(α) =
{Cn(Xα), fm

n |Cm(Xα),N \ {0}} and let Yα = lim←−S(α). We will show
that the sequence Y = {Yα : α ≤ β} is good in Y , i.e., that conditions
(1.3.1) (1.3.5) are satisfied for Y .
Conditions (1.3.1) and (1.3.2) are obvious. (1.3.4) follows from

commutativity of the inverse limit operation with the intersection of
a decreasing transfinite sequence of continua. Condition (1.3.5) follows
from the fact that C(∅) = ∅ and that C({x}) = {{x}}. It remains to
show (1.3.3). Fix γ < β. Take a thread y = {yn : n ∈ N\{0}} ∈ N(Yγ).
By Proposition 5.6 and Lemma 2.3, we have y1 ∈ N(C(Xγ)). Since the
sequence Z = {C(Xα) : α ≤ β} is good in C(X) by Proposition 2.4, we
infer from condition (1.3.3) for Z that y1 ∈ C(Xγ+1) and, consequently,
y ∈ Yγ+1, as needed.

This shows that s(Y ) ≤ β. Finally, since the limit of a countable
inverse system of metric spaces is metric, the metrizability of Y in the
case β < ω1 follows. The proof is then complete.

Corollary 5.9. There exists an uncountable family of metrizable
continua Y having the property that C(Y ) is homeomorphic to Y .

5c. Continuous images of the harmonic fan. Recall once more
that local connectedness of continua is preserved under the inverse
limit operation provided that the bonding mappings are monotone
surjections, [2, p. 241]. In the metric case being locally connected
is equivalent to being a continuous image of the closed unit interval.
Therefore, it is natural to ask if this theorem can be generalized to the
statement that the property of being a continuous image of a continuum
X is preserved by the inverse limit operation (for inverse sequences),
provided that the bonding mappings are monotone surjections. In the
hierarachy of continua with the quasi-order ≤ defined by

X ≤ Y if there is a surjective mapping of Y onto X,

the class of locally connected continua is the least element. By a
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theorem of Bellamy [1, p. 107] there is exactly one class H located in
this hierarchy just above the class of locally connected metric continua.
This class is composed of elements continuously equivalent to the
harmonic fan, i.e., of such continua which are images and preimages
of the harmonic fan. Another interesting property of the class H is
shown in [29].

We will show that being in the class H is not preserved by limits
of inverse sequences of continua with monotone surjective bonding
mappings.

Example 5.10. There is an inverse sequence S = {Xn, fm
n ,N}

of continua Xn with monotone surjective bonding mappings fm
n such

that Xn is a continuous image of the harmonic fan FH for each positive
integer n, while lim←−S is not.

Proof. Let continua Xn and mappings fm
n be as in Example 4.2. Since

s(lim←−S) = 3 and s(FH) = 2, we see by Theorem 1.5 that lim←−S /∈ H.

To see that each Xn is a continuous image of FH , we need an
auxiliary construction. Denote by FnH

the one-point union of n copies
of FH with all the vertices identified. Let H be the closure of the
harmonic sequence {1/n : n ∈ N}. Note that FH is homeomorphic
to (H × [0, 1])/(H × {0}) and that F2H is homeomorphic to (H ×
[−1, 1])/(H × {0}). For 〈c, t〉 ∈ FH , define

g(〈c, t〉) =



〈c, 2t〉 if t ∈

[
0,

1
2

]
,

〈c, 3− 4t〉 if t ∈
[1
2

, 1
]
.

Thus, g maps FH onto F2H . Repeating this procedure finitely many
times, we can find a surjective mapping from FH onto FnH for each
n ∈ N \ {0}.
Now we will describe, for each n ∈ N, a surjective mapping f :

F(n+1)H → Xn. Map homeomorphically the set of end points of the first
harmonic fan in F(n+1)H onto the set of end points of X0. Next map,
also homeomorphically, the set of end points of the ith harmonic fan in
F(n+1)H onto the set of end points Ai−1 ⊂ Xn for i ∈ {2, . . . , n+1}. If v
is the vertex of F(n+1)H , let f(v) = 〈0, 1〉 ∈ X0 ⊂ Xn. Thus f is defined
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on the set E of end points of F(n+1)H and on the vertex v. Using the
coordinates in F(n+1)H = (E×[0, 1])/(E×{0}) we define f(〈c, t〉) ∈ Xn

as the point in the arc f(v)f(〈c, 1〉) such that the length of the subarc
f(v)f(〈c, t〉) equals t times the length of the arc f(v)f(〈c, 1〉). One can
verify that f is continuous.

The composition of g and f maps FH onto Xn. This finishes the
proof.
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