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IDEALS GENERATED BY PROJECTIONS
AND INDUCTIVE LIMIT C∗-ALGEBRAS

CORNEL PASNICU

ABSTRACT. We introduce two classes of inductive limit
C∗-algebras which generalize the AH algebras: the GAH
algebras (GAH stands for “generalized AH”) and a subclass of
it, the strong GAH algebras. We give necessary and sufficient
conditions for an ideal of a GAH algebra to be generated by
projections which, in particular, gives necessary and sufficient
conditions for a GAH algebra to have the ideal property,
i.e., any ideal is generated by projections. We prove that if
0 → I → A → B → 0 is an exact sequence of C∗-algebras such
that A is a GAH algebra, then A has the ideal property if and
only if I and B have the ideal property. We describe the lattice
of ideals generated by projections of a strong GAH algebra
and also the partially ordered set of the stably cofinite ideals
generated by projections of a strong GAH algebra A under the
additional assumption that the projections in M∞(A) satisfy
the Riesz decomposition property. These results generalize
some of our previous theorems involving AH algebras.

1. Introduction. A C∗-algebra has the ideal property if any ideal
is generated, as an ideal, by projections ([13]). In this paper, by
“ideal” we shall mean “closed, two-sided ideal”. An AH algebra is
the inductive limit of a sequence of C∗-algebras which are finite direct
sums of C∗-algebras of the form PC(X,Mn)P , where X is a connected,
finite CW complex and P is a projection in C(X,Mn) ([1]). The AH
algebras with the ideal property present interest since they include two
important classes of C∗-algebras: the simple AH algebras and the real
rank zero AH algebras ([4]), about which a lot of interesting results
have been proved in the last years. The study of the AH algebras with
the ideal property is related to a problem of Effros ([6]) (namely, find
suitable topological invariants for AH algebras), and also to Elliott’s
project on the classification of the separable, amenable C∗-algebras by
invariants including K-theory ([7]). The AH algebras with the ideal
property have been studied in [13], [9], [10], [11] and [12].
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In this paper we generalize some of our results concerning AH
algebras with the ideal property or ideals generated by projections in
a given AH algebra. For this purpose, we introduce two new classes
of inductive limit C∗-algebras: the GAH algebras (see Definition 2.1)
(GAH stands for “generalized AH”) and a subclass of it, the strong
GAH algebras (see Definition 2.11). Note that any AH algebra or
any inductive limit of a sequence of finite direct sums of unital, simple
C∗-algebras is a strong GAH algebra. Also, any inductive limit of a
sequence of C∗-algebras which are finite direct sums of C∗-algebras each
of which is either unital and simple, or unital and projectionless (i.e.,
there are no nontrivial projections in the algebra), is a GAH algebra.

We give several necessary and sufficient conditions for an ideal of a
GAH algebra to be generated by projections (see Theorem 2.2 and
Remark 2.3). In particular, this result gives necessary and sufficient
conditions for a GAH algebra A to have the ideal property, and one of
these conditions is that any ideal of A has a countable approximate unit
consisting of projections (see Corollary 2.4). Corollary 2.4 generalizes
in part [9, Theorem 3.1 and Remark 3.2 b)], where A is an AH algebra.

Answering a question of Pedersen, we showed in [11], jointly with
Dadarlat, that an extension of two C∗-algebras with the ideal property
does not necessarily have the ideal property. However, we prove that
if 0 → I → A → B → 0 is an exact sequence of C∗-algebras such
that A is a GAH algebra, then A has the ideal property if and only
if I and B have the ideal property (see Theorem 2.6). This theorem
generalizes [10, Theorem 3.1] where I, A and B are AH algebras and
[12, Theorem 7.2] where A is an AH algebra. Theorem 2.6 required a
completely new idea of proof, since the methods used in proving [10,
Theorem 3.1] and [12, Theorem 7.2] don’t work here.

On the other hand, we describe the lattice of ideals generated by
projections of a strong GAH algebra (see Theorem 2.13). We also
describe the partially ordered set of stably cofinite ideals generated
by projections of a strong GAH algebra A such that the projections
of M∞(A) (= the algebraic direct limit of matrix algebras Mn(A)
under the embeddings a �→ a ⊕ 0) satisfy the Riesz decomposition
property (i.e., if p, q1, q2 are projections in M∞(A) such that p is
Murray-von Neumann equivalent to a subprojection of q1 ⊕ q2, then
p = p1 ⊕ p2 for some projections pi ∈ M∞(A) with pi Murray-
von Neumann equivalent to a subprojection of qi, for i = 1, 2) (see
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Theorem 2.16). These two theorems taken together (see also [11,
Lemma 4.6]) generalize [11, Theorem 4.1], where the lattice of the ideals
generated by projections of an AH algebra has been considered. The
ideals generated by projections of an AH algebra played an important
role in the proof given by Dadarlat and Eilers in [5], leading to the
surprising fact that there are inductive limits of AH algebras which
are not AH algebras.

2. Results.

Definition 2.1. A C∗-algebra A is called a GAH algebra (GAH
stands for “generalized AH”) if A=lim−→ (An,Φn,m) (the ∗-homomorph-
isms Φn,m need not be either injective or unital), An = ⊕kn

i=1A
i
n for

n ∈ N, and for each n ∈ N and 1 ≤ i ≤ kn, we have

(1) Ai
n is a unital C∗-algebra.

(2) Any proper ideal of Ai
n has no nonzero projections.

It is useful to point out that even though a GAH algebra may be
nonunital, it must have a countable approximate unit of projections.

The proof of the next theorem uses techniques from [9] and [10].

Theorem 2.2. Let A = lim−→ (An,Φn,m) be a GAH algebra, where

An = ⊕kn

i=1A
i
n and each Ai

n is as in Definition 2.1. Let I be an ideal of
A. Then the following are equivalent:

(1) I is generated as an ideal by projections.

(2) I = lim−→ (In,Φn,m|In
) where each In is a direct sum of full blocks

of An.

(3) I has a countable approximate unit consisting of projections.

Proof. (1) ⇒ (2) and (1) ⇒ (3). By [2] it follows that I =
lim−→ (In,Φn,m|In

), where each In is an ideal of An. Let In = ⊕kn
i=1I

i
n ⊆

⊕kn
i=1A

i
n = An, n ∈ N. For any n ∈ N define a projection pn = ⊕kn

i=1p
i
n
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by

pi
n =

{
1Ai

n
if Ii

n = Ai
n,

0 if Ii
n 
= Ai

n.

Observe that for each n ∈ N, we have pn ∈ In and by hypothesis,
Φn,n+1(pn) ≤ pn+1. Define for any n ∈ N that Pn = Φn,∞(pn) where
Φn,∞ : An → A = lim−→ (Am,Φm,k) is the canonical homomorphism.

Obviously, (Pn)n≥1 is an increasing sequence of projections in I. We
want to prove first that (Pn)n≥1 is an approximate unit of I. To prove
this, since I is generated by projections, it will be enough to prove
that for an arbitrary fixed n ∈ N and for any a, b ∈ An and any
e = e∗ = e2 ∈ In we have

(∗) aeb · pn = pn · aeb = aeb.

Let a = ⊕kn
i=1a

i, b = ⊕kn
i=1b

i, e = ⊕kn
i=1e

i be the canonical decompo-
sitions of these elements in ⊕kn

i=1A
i
n. Fix an arbitrary 1 ≤ i ≤ kn. To

prove (∗) we have to show that

(∗∗) aieibi · pi
n = pi

n · aieibi = aieibi.

We have two cases:

(a) If pi
n = 1Ai

n
, then (∗∗) is obvious.

(b) If pi
n = 0, then Ii

n 
= Ai
n and then, by hypothesis, Ii

n has no
nonzero projections. Since ei = (ei)∗ = (ei)2 ∈ Ii

n, it follows that
ei = 0 and hence (∗∗) is satisfied.
Hence (Pn)n≥1 is an approximate unit of projections of I, and this

proves (1) implies (3). But then, obviously,

I = lim−→ (pnAnpn,Φn,m|pnAnpn
).

Observe that since pnAnpn = ⊕kn

i=1p
i
nA

i
np

i
n, the definition of pi

n

implies that pi
nA

i
np

i
n is 0 or Ai

n for any n and i. This ends the proof of
(1) implies (2).

The implication (3) ⇒ (1) is trivial, and the implication (2) ⇒ (1)
follows from the fact that a C∗-algebra which is an inductive limit of
unital C∗-algebras is generated by projections as an ideal.
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Remark 2.3. (i) It is easily seen that conditions (1), (2) and (3) in
Theorem 2.2 are also equivalent to the following two:

(4) For any integer n, any ε > 0 and any x ∈ An ∩ I, there is an
m > n and a projection p ∈ Am ∩ I such that

‖Φn,m(x)− pΦn,m(x)‖ ≤ ε.

(5) For any integer n, any ε > 0 and any x ∈ An ∩ I, there is an
m > n and a projection p ∈ Am ∩ I such that

‖Φn,m(x)− pΦn,m(x) p‖ ≤ ε.

(Above we used the notation Ak ∩ I = {y ∈ Ak : Φk,∞(y) ∈ I}).
(ii) Let I be an ideal of a GAH algebra A. Suppose that I is

generated by projections. Then I and A/I are also GAH algebras.
(This follows immediately from the implication (1) ⇒ (2) in the above
theorem).

(iii) The proof of the implication (1) ⇒ (2) of Theorem 2.2 in the case
when A is an AH algebra is contained in the proof of [10, Theorem
3.1]. The above equivalence (1) ⇔ (2) for AH algebras A was obtained
independently in [5].

Corollary 2.4. Let A = lim−→ (An,Φn,m) be a GAH algebra, where

An = ⊕kn
i=1A

i
n and each Ai

n is as in Definition 2.1. Then the following
are equivalent:

(1) A has the ideal property.

(2) Any ideal I of A is given by I = lim−→ (In,Φn,m|In
) where each In

is a direct sum of full blocks of An.

(3) Any ideal of A has a countable approximate unit of projections.

(4) For any ideal I of A we have: for any integer n, any ε > 0 and
any x ∈ An ∩ I, there is an m > n and a projection p ∈ Am ∩ I such
that

‖Φn,m(x)− pΦn,m(x)‖ ≤ ε.

(5) For any ideal I of A, we have: for any integer n, any ε > 0 and
any x ∈ An ∩ I there is an m > n and a projection p ∈ Am ∩ I such
that:

‖Φn,m(x)− pΦn,m(x) p‖ ≤ ε.
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Remark 2.5. The above corollary is a generalization of part of [9,
Theorem 3.1 and Remark 3.2 b)], where A is an AH algebra.

In [11] we constructed, jointly with Dadarlat, extensions of C∗-
algebras with the ideal property which don’t have the ideal property,
answering thus a question of Pedersen. However, the next theorem
shows that an extension of two C∗-algebras with the ideal property
which is a GAH algebra has the ideal property. Theorem 2.6 below
generalizes [10, Theorem 3.1] where it is proved that if 0 → I → A →
B → 0 is an exact sequence of AH algebras, then A has the ideal
property if and only if I and B have the ideal property; its proof,
which has to use a completely different idea, involves quasidiagonal
extensions. Theorem 2.6 also generalizes [12, Theorem 7.2].

Theorem 2.6. Let 0 → I
i→ A

π→ B → 0 be an exact sequence of
C∗-algebras. Suppose that A is a GAH algebra. Then the following are
equivalent:

(1) A has the ideal property.

(2) I and B have the ideal property.

The proof of this theorem needs some preparatory results. The first
one is a generalization of a joint result of Brown and Dadarlat (namely,
of [3, Proposition 11]). To state it, we need to recall the following
definition which goes back to Murphy and Salinas:

Definition 2.7. An extension of C∗-algebras

0 −→ I −→ A −→ B −→ 0

is called quasidiagonal if there is an approximate unit (pn)∞n=1 of I
consisting of projections such that

lim
n→∞ ‖apn − pna‖ = 0

for all a ∈ A.

Lemma 2.8. Let I be an ideal of a GAH algebra A. Suppose that J is
an ideal of I and that J has a countable approximate unit of projections.
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Then the extension

0 −→ J −→ I −→ I/J −→ 0

is quasidiagonal (here the map J → I is the canonical inclusion and
the map I → I/J is the canonical surjection).

Proof. The proof is a modification of the argument used in the
proof of [3, Proposition 11]. Suppose that A = lim−→ (An,Φn,m) where

An = ⊕kn
i=1A

i
n, n ∈ N, and each Ai

n is a unital C∗-algebra such
that any proper ideal has no nonzero projections. By [2], I =
lim−→ (In,Φn,m|In

) where In = ⊕kn
i=1I

i
n is an ideal of An = ⊕kn

i=1A
i
n and

J = lim−→ (Jn,Φn,m|Jn
) where Jn = ⊕kn

i=1J
i
n is an ideal of In = ⊕kn

i=1I
i
n

for any n ∈ N. Since J has a countable approximate unit of projec-
tions, by a standard approximation argument we may suppose, after
replacing (An)∞n=1 with a subsequence if needed, that there are projec-
tions pn ∈ Jn, n ∈ N, such that if Φn,∞ : An → lim−→ (Ak,Φk,m) is the
canonical homomorphism, n ∈ N, then we have

lim
n→∞ ‖Φn,∞(pn)j − j‖ = 0

for any j ∈ J .

Observe that by hypothesis, if J i
n 
= Ai

n, then pi
n = 0 (since pi

n is a
projection in J i

n).

We define now for any n ∈ N a projection qn in An such that
qn = ⊕kn

i=1q
i
n ∈ An = ⊕kn

i=1A
i
n, where

qi
n =

{
1Ai

n
if J i

n = Ai
n

0 if J i
n 
= Ai

n

for any 1 ≤ i ≤ kn. Observe that in fact qn ∈ Jn and pn ≤ qn,
Φn,n+1(qn) ≤ qn+1 for any n ∈ N.

For every n ∈ N and any x ∈ Jn we have

‖x(1− qn)‖2 = ‖(x(1− qn)x∗‖ ≤ ‖x(1− pn)x∗‖ = ‖x(1− pn)‖2.

Since also each qn is a central projection of In, it follows that

lim
n→∞ ‖Φn,∞(qn)j − j‖ = 0, ∀ j ∈ J
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and
lim

n→∞ ‖Φn,∞(qn)i− iΦn,∞(qn)‖ = 0, ∀ i ∈ I.

These equalities imply that the extension

0 −→ J −→ I −→ I/J −→ 0

is quasidiagonal, since Φn,∞(qn) ≤ Φn+1,∞(qn+1) for all n ∈ N.

Lemma 2.9 ([10, Lemma 3.9 (1)]). Let

0 −→ I −→ A −→ B −→ 0

be a quasidiagonal extension of C∗-algebras. Then any projection in B
lifts to a projection in A.

The following lemma is a remark of Dadarlat:

Lemma 2.10. Let

0 −→ I
i−→ A

π−→ B −→ 0

be an exact sequence of C∗-algebras such that any projection in B lifts
to a projection in A.

If I is generated as an ideal (of I) by projections and if B is generated
as an ideal (of B) by projections, then A is also generated as an ideal
(of A) by projections.

Proof. Let a ∈ A and ε > 0. By our hypothesis on B, it follows
that there are n ∈ N and x̃i, ỹi, ẽi ∈ B with ẽi a projection for any
1 ≤ i ≤ n such that

∥∥∥π(a)−
n∑

i=1

x̃iẽiỹi

∥∥∥ < ε/2.

Since π is surjective, there are xi, yi ∈ A such that π(xi) = x̃i,
π(yi) = ỹi, 1 ≤ i ≤ n. Using the fact that any projection in B lifts
to a projection of A, it follows that there is ei = e∗i = e2

i ∈ A such
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that π(ei) = ẽi for each 1 ≤ i ≤ n. By the definition of the norm in
A/i(I)(∼= B) it turns out that there is a c ∈ I such that

(1)
∥∥∥a− i(c)−

n∑
i=1

xieiyi

∥∥∥ < ε/2.

Since I is generated as an ideal (of I) by projections, it follows that
there are m ∈ N and uj , vj , fj = f∗

j = f2
j ∈ I, 1 ≤ j ≤ m, such that

(2)
∥∥∥i(c)−

m∑
j=1

i(uj)i(fj)i(vj)
∥∥∥ < ε/2

But (1) and (2) imply that

∥∥∥a−
m∑

j=1

i(uj)i(fj)i(vj)−
n∑

i=1

xieiyi

∥∥∥ < ε/2 + ε/2 = ε.

This ends the proof.

Proof of Theorem 2.6. As noticed in the proof of [10, Theorem 3.1],
the implication (1) ⇒ (2) is trivially true for any C∗-algebras, I, A and
B.

Now let us prove the implication (2) ⇒ (1). Assume that I and B
have the ideal property. Let J be an ideal of A. We shall prove that
J , as an ideal of A, is generated by projections. We may suppose that
i : I → A is the canonical inclusion and that π : A → B = A/I is the
canonical surjection. The extension

0 −→ I
i−→ A

π−→ B −→ 0

induces in a canonical way an extension

(∗) 0 −→ J ∩ I −→ J −→ J/J ∩ I −→ 0.

(Observe that by Remark 2.3 (ii) I and B are both GAH algebras).
Since J ∩ I is an ideal of I and I has the ideal property, it follows that
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J ∩ I is an ideal of the GAH algebra A generated by projections. By
Theorem 2.2 it follows that J ∩ I has a countable approximate unit
of projections. Hence, Lemma 2.8 implies that the extension (∗) is
quasidiagonal. Applying now Lemma 2.9, we find that any projection
in J/J ∩ I lifts to a projection in J . But since J/J ∩ I ∼= π(J) (=
an ideal of B) and B has the ideal property, it follows that J/J ∩ I
is generated as an ideal of B by projections. This easily implies that
J/J ∩I is generated as an ideal of J/J ∩I by projections. Finally, since
J ∩ I is generated as an ideal of J ∩ I by projections, by Lemma 2.10,
J is generated as an ideal of J , and hence also as an ideal of A by
projections. This ends the proof.

Definition 2.11. A C∗-algebra is called a strong GAH algebra if
A = lim−→ (An,Φn,m), An = ⊕kn

i=1A
i
n for n ∈ N and for each n ∈ N and

1 ≤ i ≤ kn, we have

(1) Ai
n is a unital C∗-algebra.

(2) For any m ∈ N, any proper ideal of Mm(Ai
n) has no nonzero

projections.

Remark 2.12. Let A be a strong GAH algebra. If B is an AF algebra,
then A⊗B is a strong GAH algebra.

In what follows we shall describe the partially ordered set of all the
ideals generated by projections of a strong GAH algebra.

Theorem 2.13. Let A be a strong GAH algebra. Then there is a
canonical lattice isomorphism:

{I | I is an ideal of A generated by projections}
∼→ {J | J is an ideal of D(A⊗K)}.

In the above theorem, we used the standard notation D(B), where
B is a C∗-algebra, to denote the abelian local semi-group of Murray-
von Neumann equivalence classes of projections in B, the addition of
two classes being defined when they have orthogonal representatives.
Also, an ideal in D(B) is a nonempty hereditary subset which is closed
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under addition, where defined. Above, K is the C∗-algebra of compact
operators on l2(N).

The proof of Theorem 2.13 will need the following result, which
generalizes [11, Lemma 4.5].

Lemma 2.14. Let A be a strong GAH algebra. Then there is a
canonical lattice isomorphism:

{I | I is an ideal of A generated by projections}
∼→ {J | J is an ideal of A⊗K generated by projections}.

Proof. It is similar to the proof of [11, Lemma 4.5] and uses the
equivalence (1) ⇔ (2) in Theorem 2.2 and Remark 2.12.

Proof of Theorem 2.13. By the proof of [11, Lemma 4.2] and by [11,
Remark 4.3], it follows that there is a canonical lattice isomorphism

{I | I is an ideal of A⊗K generated by projections}
∼→ {J | J is an ideal of D(A⊗K)}.

Now the proof follows, combining this fact with Lemma 2.14.

Let us recall the following:

Definition 2.15. An ideal I in a C∗-algebra A is said to be stably
cofinite if the C∗-algebra A/I is stable finite, i.e., if there do not exist
projections p, q ∈ M∞(A/I) such that p⊕ q ∼ q and p 
= 0.

Theorem 2.16. Let A be a strong GAH algebra such that the
projections in M∞(A) satisfy the Riesz decomposition property. Then
there is an order isomorphism:

{I | I is a stably confinite ideal of A generated by projections}
∼→ {J | J is an ideal of K0(A)}.
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More precisely, there are order-preserving inverse isomorphisms send-
ing each stably cofinite ideal I of A, generated by projections, to the
kernel of K0 of the quotient map A → A/I, and sending each ideal J
of K0(A) to the ideal of A, generated by those projections p ∈ A for
which [p] ∈ J . (Here, by an ideal of K0(A) we mean a subgroup H of
K0(A) such that H+ := H ∩ K0(A)+ is hereditary (i.e., if 0 ≤ g ≤ h
for some g ∈ K0(A) and h ∈ H+, then g ∈ H) and H = H+ −H+).

The proof of the above theorem will use the following:

Lemma 2.17. Let A be a strong GAH algebra and let I be an ideal
of A generated by projections. Then for any n ∈ N, all projections in
Mn(A/I) lift to projections in Mn(A).

Proof. By Theorem 2.2, Mn(I), which is an ideal of the strong GAH
algebra Mn(A) (see Remark 2.12), has a countable approximate unit
consisting of projections for any arbitrary, fixed n ∈ N. Then, by
Lemma 2.8, the extension:

0 −→ Mn(I) −→ Mn(A) −→ Mn(A/I) −→ 0

is quasidiagonal. Now a simple application of Lemma 2.9 (i.e., [10,
Lemma 3.9 (1)]) implies that all projections in Mn(A/I) lift to projec-
tions in Mn(A). This ends the proof.

Proof of Theorem 2.16. The proof uses the argument given in the
proof of Lemma 4.10 in [11]. This is possible, essentially, because of
the implication (1) ⇒ (3) in Theorem 2.2. Note that if I is an ideal of
A, and if i : I → A is the canonical inclusion and π : A → A/I is the
canonical surjection, then by the six-term exact sequence in K-theory,
kerK0(π) = K0(i)(K0(I)). Moreover, if I is generated by projections,
then by the implication (1) ⇒ (3) in Theorem 2.2, we have K0(I) =
K0(I)+ − K0(I)+ and hence, kerK0(π) = {[p]K0(A) − [q]K0(A) | p and
q are projections in M∞(I)}. Also, using Lemma 2.17 we can prove as
in the proof of [8, Lemma 10.8 (a)] that, if J is an ideal of K0(A), then
the ideal of A, generated by those projections p ∈ A for which [p] ∈ J ,
is stably cofinite.
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Remark 2.18. Theorem 2.13, together with Theorem 2.16, give a
generalization of [11, Theorem 4.1] (see also [11, Lemma 4.6]) where
the lattice of all the ideals generated by projections of an AH algebra
is described.
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