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FACTOR MAPS, ENTROPY AND FIBER
CARDINALITY FOR MARKOV SHIFTS

DORIS FIEBIG

ABSTRACT. It is well known that a factor map be-
tween transitive shifts of finite type either preserves entropy
and is bounded-to-1 or it does not preserve entropy and is
uncountable-to-1. In this paper we elucidate the relation be-
tween entropy and fiber cardinality for factor maps between
transitive locally compact Markov shifts. We show that every
countable-to-1 factor map increases the Gurevic entropy while
every finite-to-1 factor map preserves Gurevic entropy. We
study finite-to-1 proper factor maps and show that they ad-
ditionally preserve positive and strongly positive recurrence.
Then we investigate finite-to-1 proper factor maps between
Markov shifts which have an expansive 1-point compactifica-
tion. We conclude the paper with some examples showing that
properly finite-to-1 and properly countable-to-1 factor maps
exist between synchronized systems.

Introduction. Shifts of finite type (SFT), [19], [20], can be general-
ized in two ways. One can keep the compactness of the shift space but
relax the Markov property which leads to synchronized systems and
coded systems, [1], [5], [10], [13], [14]. Or one can keep the Markov
property and relax the compactness which leads to locally compact
Markov shifts, [6] [9], [12] [15], [19], [20]. Markov shifts and coded
systems are strongly related. We quote two results to illuminate this
relation. Coded systems are those compact subshifts which are the sur-
jective factors of transitive Markov shifts [14], and a subshift compact-
ification of a transitive locally compact Markov shift is always coded
[13].

In this paper we study factor maps between locally compact Markov
shifts and complete the results on factor maps between coded and
synchronized systems obtained in [5].

A subshift is a shift invariant subset S of NZ, endowed with the
product topology of the discrete topology on N = {1, 2, . . . }, together
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with the left shift map. To reduce notation we use the same symbol
for the space and the shift map; which one is meant will always be
clear from context. The topology on S is generated by the cylinder
sets i[x0 . . . xn] := {y ∈ S | yi = x0, . . . , yi+n = xn}. For a point
x = (xi)i∈Z ∈ S and integers n ≤ m, we use the notation x[n,m]
to denote the subblock xnxn+1 . . . xm−1xm of x, x[n,∞) to denote the
right infinite ray xnxn+1 . . . , and finally x(−∞,m] to denote the left
infinite ray . . . xm−1xm.

Two subshifts are conjugate if there is a homeomorphism f : S → T
which commutes with the shift maps. Any subshift T of NZ which is
conjugate to S is called a presentation of S. A locally compact subshift
is a subshift S where the space S is locally compact.

A Markov shift S is (by definition) a subshift which is conjugate to
the set SG of bi-infinite walks on the edges of a countable directed
graph, G, with the left shift transformation acting on SG. The subshift
SG is called a graph presentation of S. We consider only nondegenerate
graphs G. The Markov shift S is locally compact if and only if G has
finite in- and out-degree (at most finitely many in-coming and out-
going edges at every vertex); for a discussion of the relation between
the possible degrees of G and entropy, see [9]. The Markov shift is
compact if and only if G is a finite graph if and only if it is a shift of
finite type (SFT). Transitivity of S means strongly connectedness of G.

Standing assumption. Since we consider in this paper with very
few exceptions (Lemma 1.1, Corollary 1.5, Examples 1.6 and 1.7) only
locally compact transitive Markov shifts, if not stated otherwise, we
always mean by “Markov shift” a locally compact transitive Markov
shift.

The 1-point compactification S0 of a locally compact subshift S is the
compact metric dynamical system which consists of the Alexandroff 1-
point compactification of the shift space together with the extended
shift map, [11]. The Gurevic entropy of S, hG(S) is defined to be the
topological entropy htop(S0), [16]. If S is compact, then the Gurevic
entropy coincides with the topological entropy, hG(S) = htop(S). The
Gurevic entropy hG(S) can be computed for a Markov shift S by loop
counting, that is, if SG is any graph presentation for S, v is any
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vertex in G and Cv(n) is the number of loops of length n at vertex
v, then hG(S) = lim supn 1/n logCv(n), (we always put log 0 := 0 in
this paper) [16], [17], [19]. Furthermore, hG(S) = sup{hG(T ) | T ⊂
S, T is an SFT}.
We study the relation between entropies of the domain and range

shifts and the fiber cardinalities of a factor map. Let S, T be subshifts.
By a factor map f : S → T we mean a continuous shift commuting
onto map. We call a factor map entropy preserving if hG(S) = hG(T ).
The map f is entropy decreasing (entropy increasing) if and only if
hG(S) ≥ hG(T ) (hG(S) ≤ hG(T )). Let f : S → T be a factor map. We
call the preimage set f−1y of a point y ∈ T the fiber of f over y. We
say f is bounded-to-1 if there is some M ∈ N such that all fibers of f
have cardinality at most M . The map f is finite-to-1 if all fibers are
finite sets, and f is countable-to-1 if all fibers are countable sets, and
finally f is uncountable-to-1 if there is a fiber which is not countable.

We now give an outline of the content of the paper. Let S, T be
subshifts and f : S → T be a factor map.

If S is a compact subshift, then of course, T is compact and htop(S) ≥
htop(T ). If S is an SFT, then either the map preserves entropy and
is bounded-to-1 or it does not preserve entropy and is uncountable-
to-1, [20]. This dichotomy remains true in the larger class of shifts
with specification, [5]. If S is merely compact, then a countable-to-1
map preserves entropy, but an entropy preserving map need not be
countable-to-1 even if S is synchronized, [5]. To complete this picture
we shall show in Section 5 that if S is synchronized then properly
finite-to-1 (meaning the map is finite-to-1, but not bounded-to-1) and
properly countable-to-1 factor maps exist, Examples 5.1 and 5.2.

If S is a locally compact Markov shift, then T need not be locally
compact, Examples 1.6, 1.7, and hG(S) < hG(T ) is possible, [21].
More generally, for every noncompact Markov shift S and every SFT
T which satisfy a trivial periodic point condition, there is a factor map
f : S → T , [15]. Thus, in this case the entropy condition apparent in
the compact setting completely vanishes. This is the starting point
for us. We investigate the connection between entropies and fiber
cardinalities for factor maps f : S → T , where S and T are both locally
compact transitive Markov shifts. We show that if f is countable-to-1,
then f is entropy increasing, Theorem 2.2. We give examples that the
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entropy can strictly increase; thus, in contrast to the compact setting,
the induced map on the set of invariant Borel probability measures
need not be onto, though f is. This makes it impossible to adapt
to the locally compact case the measure theoretical proof that if S is
compact then a finite-to-1 map preserves entropy. Furthermore, it is not
possible to adapt Bowen’s proof [3] using (n, ε)-separated sets, since the
Bowen-entropy of a Markov shift in graph presentation with respect to
the standard metric is, in general, different from Gurevic entropy, and
it is not even a conjugacy invariant [9]. We give a purely topological
argument that finite-to-1 factor maps between locally compact Markov
shifts are entropy preserving, Theorem 2.4. As a corollary of the proof
we obtain that a factor map which is bounded-to-1 on periodic points
is entropy preserving, Corollary 2.5. However, the borderline between
entropy preserving and not entropy preserving is very fine; we give an
example of a countable-to-1 map which is finite-to-1 on periodic points
and not entropy preserving, Example 2.6. Thus, properly countable-
to-1 factor maps between Markov shifts exist, since finite-to-1 maps
preserve entropy by Theorem 2.4.

We then study factor maps between Markov shifts such that preim-
ages of compact sets are compact. These factor maps are called proper,
Definition 3.1. A factor map is proper if and only if it extends to a fac-
tor map between the 1-point compactifications, Lemma 3.2. A proper
factor map is entropy decreasing, Lemma 3.3. Thus, a finite-to-1 proper
factor map is entropy preserving. We study these maps in detail and
show that they behave much like finite-to-1 factor maps between SFT’s,
Proposition 3.6, Lemma 4.6 and Lemma 4.7.

1. Factor maps defined on Markov shifts. In this section we
study factor maps defined on locally compact Markov shifts which are
not necessarily transitive now. If the domain is compact, then the range
is compact as well. However, if the domain is merely locally compact,
the range need not be locally compact, Examples 1.6 and 1.7. But,
if the domain is transitive and the range is a Markov shift, then the
range will be locally compact and transitive as well, Corollary 1.5. To
see this we use the following characterization of nonlocally compact
Markov shifts.

Lemma 1.1 [15, Observation 2.3.2]. If S is a transitive Markov shift
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which is not locally compact, then the space of S is homeomorphic to
NZ.

Proof. Let S be given in graph presentation SG, and assume that the
space of S is not homeomorphic to NZ. Then there is a nonempty set
C which is compact-open, [18]. For x ∈ C there is thus some n ≥ 0
such that the cylinder set −n[x−n, . . . , xn] is compact. Now let α be
a vertex in G. Since S is transitive there is thus a path p1 . . . pk in G
which begins at the terminal vertex of xn and ends at vertex α. Let
B := {y ∈ SG | y[−n, n+ k] = x[−n, n]p1 . . . pk}. Let E denote the set
of edges in G with initial vertex α. Then {y ∈ B | yn+k+1 = e}, e ∈ E
is an open cover of disjoint sets of B. Since B ⊂ C, B is compact and,
thus, E is finite. Similarly the set of edges with terminal vertex α is
finite. Thus SG is locally compact.

Lemma 1.2. The set NZ is not σ-compact (i.e., not a countable
union of compact sets).

Proof. Let A1, A2, . . . be a sequence of compact sets in NZ. We
construct a point x ∈ NZ which is not contained in the union of the
Ai as follows. Since A1 ∩ [1]0 is compact, there is some n1 such that
x ∈ NZ, x0 = 1 and x1 ≥ n1 implies x /∈ A1. Since A2 ∩0 [1n1]1 is
compact, there is some n2 such that x ∈ NZ, x0 = 1, x1 = n1 and
x2 ≥ n2 implies x /∈ A2. Inductively, we obtain a sequence ni such that
for the point x ∈ NZ with xi = 1 for all i ≤ 0, and xi = ni for all i ≥ 1,
it holds that x /∈ ∪iAi.

Corollary 1.3. A transitive Markov shift is locally compact if and
only if it is σ-compact.

Example 1.4. A subshift can be transitive, σ-compact and not
locally compact. For n ≥ 1, let c(n) := 0nn. Let x ∈ {0, 1, 2, . . . }Z.
Then x ∈ S if and only if x = 0∞ or x can be written as some bi-
infinite concatenation . . . c(n−1)c(n0)c(n1) . . . with |ni − ni+1| ≤ 1 for
all i ∈ Z. Then S is transitive. Let A0 := {0∞} and, for n ≥ 1,
let An := {x ∈ S | 1 ≤ xi ≤ n for some −n ≤ i ≤ n}. Since
An ⊂ {x ∈ {0, 1, 2, . . . }Z | xi ≤ |i| + n for all i ∈ Z}, An is compact.
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If x ∈ S and xk = n ≥ 1, then x ∈ Amax(|k|,n). Thus S is σ-
compact. The point 0∞ ∈ S has no compact neighborhood, since a
cylinder set −N [0 . . . 0]N contains for n > 2N a point yn ∈ S which has
(yn)N+1 = n, and the sequence yn has no convergent subsequence in
S.

Corollary 1.5. Let f : S → T be a factor map. Let S be a transitive,
locally compact Markov shift and T a Markov shift. Then T is also
locally compact and transitive.

Proof. Factors of transitive systems are transitive, and factors of
σ-compact systems are σ-compact. Apply Corollary 1.3.

Example 1.6 shows that the transitivity assumption on S in Corol-
lary 1.5 was essential, while Example 1.7 below shows that the Markov
shift assumption on T was essential.

Example 1.6. A locally compact Markov shift S factoring onto a
nonlocally compact Markov shift T . The Markov shift S has symbols
{(a, n), (b, n), n | n ∈ N} and S is the closure of the union of orbits
((a, n))∞n((b, n))∞, while T is a Markov shift having symbols {a, b}∪N
and T is the closure of the union of orbits a∞nb∞. The factor map f
is 1-block and drops the n in the symbols (a, n) and (b, n).

Example 1.7. A transitive locally compact Markov shift factoring
onto a nonlocally compact subshift. Just take any coded, nonsynchro-
nized system Y . Then there is a transitive locally compact Markov shift
S and a continuous shift commuting map g : S → Y such that g(S)
is dense in Y , [10, Theorem 1.7]. Since Y is not synchronized, g(S) is
not open in Y , [10, Theorem 1.1]. Thus, T := g(S) is a subshift, which
is not locally compact [4, Theorem 6.5]. With f : S → T , fx = gx,
x ∈ S, we have the desired example.

2. Factor maps between Markov shifts: entropy and fiber
cardinality. Now we consider factor maps between transitive locally
compact Markov shifts. There are two trivial implications. A bounded-
to-1 map is finite-to-1 and a finite-to-1 map is countable-to-1. We
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start with an easy example showing that a finite-to-1 map need not be
bounded-to-1.

Example 2.1. A finite-to-1 factor map between Markov shifts which
is not bounded-to-1. Let T be the Markov shift given by the graph with
vertex set Z, and there is an edge

(1) from vertex n to vertex n+ 1, for each n ∈ Z,

(2) from 2n+ 1 to −(2n+ 1), for each n ≥ 1,

(3) from 2n to 2n, for each n ≥ 1.

Let S be the Markov shift given by the graph with vertex set {(n, 0) |
n ∈ Z} ∪ {(2n, k) ∈ N× N | 1 ≤ k ≤ n}, and there is an edge

(1) from vertex (n, 0) to vertex (n+ 1, 0), for each n ∈ Z,

(2) from (2n+ 1, 0) to (−(2n+ 1), 0), for each n ≥ 1,

(3)(a) from (2n, k) to (2n, k + 1), for each 0 ≤ k < n,
(b) from (2n, n) to (2n, 0), for each n ≥ 1,
(c) from (2n, k) to (2n+ 1, 0), for each 1 ≤ k ≤ n.

Since in T for any pair of vertices n,m, there is at most one edge with
initial vertex n and terminal vertexm, we can define a shift commuting
and continuous map f : S → T by mapping a vertex (n, k) of S to the
vertex n of T . Using (1) and (3a) (3c), one sees that f is surjective.

The S-orbit of length n+1 which visits the vertex (2n, n) is mapped
to the fixpoint of T which visits the vertex 2n. Thus, f is not bounded-
to-1. As already observed, every fixpoint in T has a finite number of
preimages. If y ∈ T is not a fixpoint, then there is some n ∈ Z such
that yn is an edge with initial vertex m /∈ 2N. Thus, for x ∈ f−1y
we get xn has initial vertex (m, 0). Now y[n,∞) determines x[n,∞).
If there is some n′ < n such that yn′ is an edge with initial vertex
m′ /∈ 2N, then y[n′, n] determines x[n′, n]. If, for all n′ < n the edge
yn′ starts in a vertex from 2N, then m ≥ 3 and x(−∞, n] has exactly
m possibilities. Thus, f is finite-to-1.

In Example 2.6 we shall also see that a countable-to-1 factor map need
not be finite-to-1. Before this, we investigate the interplay between
entropy and fiber cardinalities. First, we shall see that maps which
are countable-to-1 on periodic points are entropy increasing. For a
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Markov shift T , let Per (T ) denote the set of periodic points in T , that
is, Per (T ) = {y ∈ T | Tny = y for some n ∈ N}.

Theorem 2.2. Let S be a transitive locally compact Markov shift
and T be a locally compact subshift. Let f : S → T be a factor map.
Let f−1p be countable for each p ∈ Per (T ). Then hG(S) ≤ hG(T ). In
particular, if f is countable-to-1, then hG(S) ≤ hG(T ).

Proof. Let ε > 0. Choose a transitive SFT R in S such that
htop(R) > hG(S) − ε, [16], [19]. Then f |R : R → f(R) is a factor
map between compact subshifts which is countable-to-1 on periodic
points. Since R is a transitive SFT, f |R is bounded-to-1, and thus
htop(f(R)) = htop(R). Since f(R) is closed in T0, we get hG(T ) =
htop(T0) ≥ htop(f(R)) = htop(R) > hG(S)− ε.

Countable-to-1 maps which strictly increase entropy do exist, Exam-
ple 2.6. In [8], the idea of Example 2.6 is used and countable-to-1 maps
which strictly increase entropy are constructed in a much more general
setting. Thus, contrary to the compact case, the induced map on the
spaces of invariant Borel probability measures is not onto in general,
since every factor map decreases measure entropy. This fact makes it
impossible to use measures to prove that finite-to-1 maps are entropy
preserving. We shall give here a purely topological argument, for which
we prepare with the following lemma. It gives a sufficient condition for
a factor map being entropy decreasing. In the proof of the main theo-
rem of this section, Theorem 2.4, we shall verify that a finite-to-1 map
satisfies this sufficient condition. However, Example 2.6 below shows
how delicate the arguments in Theorem 2.4 have to be, since it presents
an example of a countable-to-1 biclosing 1-block factor map which is
finite-to-1 on periodic points but not entropy preserving.

Lemma 2.3. Let S and T be locally compact transitive Markov
shifts given in graph presentation and f : S → T be a factor map. Let
z ∈ Per (T ) which has only finitely many preimages, and such that for
every T -block w with z−wz+ ∈ T , there is a finite set E(w) of edges in
S and a point x = x(w) ∈ S with fx = z−wz+ and xi ∈ E(w), for all
i ∈ Z. Then hG(S) ≥ hG(T ).
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Proof. LetM be the set of points in S which are mapped to a point in
the orbit of z. Since f−1z is finite, the set M is a finite set of periodic
points. Thus, there is a finite set of edges, say E, in S such that a
point in M has all edges in E. Let p ≥ 1 be so large that y, y′ ∈ M ,
and y[0, p] = y′[0, p] implies y = y′. Let F be a finite set of edges in S
containing E. Then there is some N = N(F ) such that whenever x ∈ S
with fx[−N,N ] = z[−N + i, i + N ] for some i ∈ Z and x0 ∈ F , then
x[−p, p] = y[−p, p] for a point y ∈ M . (Otherwise, by compactness
of {x | x0 ∈ F}, there would be a point x ∈ M with x0 ∈ F and
x[−p, p] �= y[−p, p] for all y ∈ M , a contradiction.) Thus, if x ∈ S
with x0 ∈ F and fx(−∞, N ] = Siz(−∞, N ] for some i, then for each
n ≤ 0, there is yn ∈ M with x[−p + n, n + p] = yn[−p + n, n + p].
Then yn[0, p] = yn+1[−1, p − 1] for all n < 0, and thus, by the choice
of p, yn = yn+1 for all n < 0. Thus, x(−∞, 0] = y(−∞, 0] for some
y ∈ M . Similarly, if x ∈ S with x0 ∈ F and fx[−N,∞) = Siz[−N,∞)
for some i, then x[0,∞) = y[0,∞) for some y ∈ M . Now fix n and
consider the set of T -blocks w of length n such that u(w) ∈ T where
u(w)(−∞, 0] = z− and u(w)[1,∞) = wz+. By assumption there is
a finite set of edges E(w) in S and a preimage x(w) of u(w) having
all edges in E(w). We may assume that E(w) contains E. With
F = E(w) we thus obtain x(w)(−∞,−N(E(w))] is a ray in M and
x(w)[n+ 1+N(E(w)),∞) is a ray in M . In particular, x(w)

−N(E(w)) and

x
(w)
n+1+N(E(w)) are edges in E. Thus we get that, by applying the above

with F = E, x(w)(−∞,−N(E)] and x(w)[n+1+N(E),∞) are rays in
M . Thus, if w �= w′, then x(w)[−N(E) − p, n + 1 + N(E) + p] �=
x(w′)[−N(E) − p, n + 1 + N(E) + p]. Thus, #{S-blocks of length
n+2(N(E)+ p)+ 2 which start and end with a symbol in E} ≥ #{T -
blocks w of length n such that z−wz+ ∈ T}. This holds for all n. Thus,
hG(S) ≥ hG(T ).

The following theorem shows that finite-to-1 maps between Markov
shifts preserve the Gurevic entropy. It is an open problem whether this
is true or not in the larger class of locally compact transitive subshifts.

Theorem 2.4. Let S and T be locally compact transitive Markov
shifts and f : S → T a finite-to-1 factor map. Then hG(S) = hG(T ).
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Proof. Since f is countable-to-1, hG(S) ≤ hG(T ) by Theorem 2.2.

To prove the other inequality, we may assume that S and T are
in graph presentation, and we shall show that the assumptions of
Lemma 2.3 are satisfied. Let Z ⊂ T be a nonempty compact open set,
and let k ∈ N. We say “Z forces k preimages” if there are compact open
sets U1, U2, . . . , Uk such that Ui ∩Uj = ∅ for i �= j and f−1t ∩Ui �= ∅

for all t ∈ Z and all 1 ≤ i ≤ k.

Note that if Z forces k preimages, then for t ∈ Z we have k ≤ #f−1t.
We may define a map H : {Z ⊂ T | Z �= ∅ and Z compact open} →
N ∪ {0} where H(Z) := 0, if there is no k ∈ N such that Z forces k
preimages and H(Z) := sup{k ∈ N | Z forces k preimages} if there is
such a k.

Since f is onto, the sets f [e]0, e an edge in S, cover all of T . Thus
there is an edge such that f [e]0 is not nowhere dense. Let Z be a
cylinder in T such that f [e]0 ∩ Z is dense in Z. Since [e]0 is compact
and f is continuous, f [e]0 is closed in T and f [e]0 ∩ Z = Z. So every
point in Z has a preimage in the set [e]0. Thus H(Z) ≥ 1, which shows
that H �= 0.

We show now that H is bounded. Assume not. Then, for each k ∈ N
there is a compact open Zk ⊂ T such that H(Zk) ≥ k. By transitivity
of T there is a sequence n(k) → ∞ and a point t ∈ T such that
Tn(k)t ∈ Zk. Since f is finite-to-1, #f−1t < ∞. Thus there is a k with
#f−1t < k. But #f−1t = #f−1(Tn(k)t) ≥ k, a contradiction.

Let d := supH, and fix a compact open set Z ⊂ T with H(Z) = d.
Let U1, . . . , Ud ⊂ S be disjoint compact open sets such that for every
t ∈ Z and every 1 ≤ i ≤ d it holds that f−1t ∩ Ui �= ∅. Let
U := ∪1≤i≤dUi. Now fix z ∈ Per (T ) ∩ Z.

Let M be the set of points in S which are mapped to a point in
the orbit of z. Since f−1z is finite and z is periodic, there is a finite
set of edges, say E, in S such that a point in M has all edges in E.
Let F be a finite set of edges in S containing E such that x ∈ U
implies x0 ∈ F . Then there is some N such that whenever x ∈ S
with fx[−N,N ] = z[−N + i, i + N ] for some i ∈ Z and x0 ∈ F , then
x[−1, 1] = y[−1, 1] for a point y ∈ M . In particular, x−1, x1 ∈ F .
Thus, if x ∈ U and fx(−∞, N ] = Siz(−∞, N ] for some i, then xn ∈ F
for all n ≤ 0 and if x ∈ U with fx[−N,∞) = Siz[−N,∞) for some i,
then xn ∈ F for all n ≥ 0.
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Let w be a T -block such that z−wz+ ∈ T . Let u ∈ T with
u(−∞, 0] = z(−∞, 0] and u[1,∞) = wz[1,∞). Since z ∈ Per (T ) ∩ Z,
we can fix n < −N and m > |w| + N such that Snu, Smu ∈ Z. Now
assume that there is no x ∈ f−1u with Snx ∈ U and Smx ∈ U . Then,
since u ∈ T−nZ ∩ T−mZ and f is continuous, there is a compact open
set Z ′ ⊂ T−nZ ∩ T−mZ such that u ∈ Z ′; and for every u′ ∈ Z ′ it
holds if x′ ∈ f−1u′ with Snx′ ∈ U , then Smx′ /∈ U . Thus, by the
choice of the sets Ui, every point u′ ∈ Z ′ has preimages in each of the
sets S−nUi ∩ S−mUc and S−nUc ∩ S−mUi, 1 ≤ i ≤ d. These are 2d
disjoint compact open sets. Thus H(Z ′) ≥ 2d, a contradiction. Thus
we have shown that there is an x ∈ f−1u with Snx ∈ U and Smx ∈ U .
Thus, since n < −N and m > |w| + N , we get xk ∈ F for all k ≤ n
and all k ≥ m. Thus #{xk | k ∈ Z} < ∞, and thus z satisfies the
conditions of Lemma 2.3.

Let S, T be transitive locally compact Markov shifts and f : S → T
be a factor map. If f is bounded-to-1 on periodic points, then hG(S) ≤
hG(T ), Theorem 2.2. The above proof shows, if f is bounded-to-1 on
periodic points, then hG(S) ≥ hG(T ). Thus,

Corollary 2.5. If f : S → T is bounded-to-1 on periodic points, then
hG(S) = hG(T ).

Thus, a map which is bounded-to-1 on the periodic points is entropy
preserving. The next example shows that a map which is merely finite-
to-1 on periodic points need not be entropy preserving. Since finite-to-1
maps preserve entropy, Theorem 2.4, this example is also an example
for a countable-to-1 nonfinite-to-1 factor map between Markov shifts.
Furthermore, the factor map in the example is also biclosing, which
means that if x, y ∈ S with x(−∞, 0] = y(−∞, 0] and fx = fy, then
x = y, and if x, y ∈ s with x[0,∞) = y[0,∞) and fx = fy, then also
x = y. Thus, the example also shows that in the noncompact setting
biclosing factor maps need not be constant-to-1, which is true for factor
maps between SFT’s.

Example 2.6. A countable-to-1 factor map which is finite-to-1 on
periodic points and does not preserve entropy.
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We shall define a label map from a Markov shift S with hG(S) < log 2
onto the 2-shift T = {0, 1}Z. We define S together with the map
f : S → T inductively. The Markov shift S has a special vertex which
we call α. In the nth step, we shall obtain a positive number L(n) such
that 2 + L(n) is a multiple of (n + 1)!, a subset Vn of T -blocks of a
certain fixed length, a finite labeled graph with special vertices (+, u)
and (−, u), u ∈ Vn such that the shortest paths from α to a vertex
(+, u) and the shortest paths from (−, u) to α, u ∈ Vn, have a length
being a multiple of 2 + L(n − 1). The graph is chosen such that it
defines an irreducible SFT R(n) with htop(R(n)) < 1/2 · log 2.
Let L(0) = 1. For n = 1 the construction is as follows. For a ∈ {0, 1}

there is an edge starting in α ending in vertex (+, a) labeled a, and
there is an edge starting in vertex (−, a) ending in α labeled a. Let
V1 = {a | a ∈ {0, 1}}, that means V1 = {0, 1}. Now fix L(1) ≥ 1.
For a ∈ {0, 1}, add a path of length L(1) from vertex (+, a) to vertex
(−, a) labeled aL(1). This finishes the first step of construction. We
have obtained an irreducible SFT which we call R(1). By enlarging
L(1) we may assume that htop(R(1)) < 1/2 · log 2 and that 2 + L(1) is
a multiple of 2!.

Given R(n − 1) with its labeling, Vn−1 and L(n − 1) we do the
construction for n as follows. Let u ∈ Vn−1. For each T -block
w �= u1+L(n−1)

of length |w| = |u| · (1 + L(n − 1)) we create a path
of length |w| from vertex (+, u) to vertex (+, uw) labeled w and a
path from vertex (−, wu) to vertex (−, u) of length |w| labeled w. Let
Vn = {v is a T -block | |v| = |u| · (2 + L(n− 1)) and v �= u2+L(n−1) for
all u ∈ Vn−1}, so the set of new special vertices we created in the nth
step is (+, u) and (−, u), u ∈ Vn. Then a shortest path from α to a
vertex (+, u), u ∈ Vn, has a length which is a multiple of 2 + L(n− 1)
and thus a multiple of n!, by choice of L(n−1). Then we fix L(n) large
and draw for each u ∈ Vn a path of length |u| ·L(n) from vertex (+, u)
to vertex (−, u) labeled uL(n). We obtain an SFT R(n). For L(n) large
enough htop(R(n)) < 1/2 · log 2. By enlarging further we may assume
that 2 + L(n) is a multiple of (n+ 1)!.

This finishes the construction of S and a continuous shift commuting
map f : S → T given by (fx)i := label of the edge xi. Since
each of the SFT’s R(n) has htop(R(n)) < 1/2 · log 2, we get that
hG(S) ≤ 1/2 · log 2 < log 2. We show now that f is onto, countable-to-1
and that every periodic point in T has only finitely many preimages in
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S. Let y ∈ T . We show that there is a unique path x+ starting at α
which is labeled y[0,∞). Let m1 = 1 and, for n ≥ 2, let mn be the
length of the shortest path from a vertex (+, u) to a vertex (+, uw),
where u ∈ Vn−1 and uw ∈ Vn.

There is a unique edge e in S with initial vertex α and terminal vertex
(+, y0). Let x0 = e. Now consider the block y[1,m2]. By construction
of S, there is a unique path p starting from (+, y0) of length m2 and
having label y[1,m2]. Let x[1,m2] = p. If y[1,m2] = (y0)1+L(1), then
x[1,m2] ends in α and we restart the argument. Otherwise, x[1,m2]
ends in vertex (+, y[0,m2]) and y[0,m2] ∈ V2. Then we consider the
block y[m2+1,m2+m3]. Again, by construction of S there is a unique
path of length m3 starting from vertex (+, y[0,m2]) and having label
y[m2+1,m2+m3]. So we can define x[m2+1,m2+m3] to be this unique
path. Repeating this argument over and over finally gives a unique path
x+ starting from α which is labeled y[0,∞). Since the incoming paths
into α are constructed symmetrically, the analogue argument shows
that there is a unique path x− ending at α and having label y(−∞,−1].
Thus, f is onto. Since every point in S visits the special vertex α at
least once, this also shows that f is countable-to-1 and actually shows
that f is biclosing.

We shall now show that a periodic point in T has only finitely many
preimages in S. So let y ∈ T be periodic with least period, say n. Now
we shall show that for each 1 ≤ i ≤ n, there is some m(i) ≥ 1 such that
there is a loop at α labeled (y[i, i + n − 1])m(i). Since every preimage
of y visits α at least once and there is at most one preimage of y being
in α at time i, this will show that y has only finitely many periodic
preimages.

Let N be the length of a shortest path from α to a vertex (+, u),
u ∈ Vn. Then N is a multiple of n! and thus there is an m ≥ 1 such
that n ·m = N . Let x ∈ S be a preimage of y such that xi starts in
vertex α. Let w = y[i, i+ n− 1]. If wm ∈ V n, then x[i, i+N − 1] ends
at vertex (+, wm) and there is a path from vertex (+, wm) to (−, wm)
of length N · L(n − 1) labeled wmL(n−1), and a path from (−, wm)
to α labeled wm. Thus, in this case x[i, i + nm(2 + L(n − 1)) − 1] is
a loop at α labeled wm(2+L(n−1)). If wm /∈ Vn, then x[i, i + N − 1]
visits α at least once. Thus, in either case we have shown that there
is some L ≤ nm(2 + L(n − 1)) such that x[i, i + L − 1] is a first
return loop at α. Thus, there are indices i = i1 < i2 < · · · with
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ik − ik−1 ≤ nm(2 + L(n− 1)) such that x[ik−1, ik − 1] is a first return
loop at α for all k ≥ 2. Thus, there are some k < k′ such that
y[ik,∞) = y[ik′ ,∞), since the set {y[j,∞) | j ∈ Z} is finite. Since y has
least period n it thus follows that ik′ − ik is a multiple of n. Since the
map is biclosing as shown above, it follows thus that x = (x[ik, ik′ ])∞.
Thus, x[i, i+ ik′ − ik − 1] is a loop at α which has label y[i, i+ n− 1]p

for some p ≥ 1.

3. Finite-to-1 proper factor maps. We have seen that the be-
havior of factor maps between general Markov shifts is quite “unusual”;
they can increase entropy, even if they are countable-to-1 and finite-to-
1 on periodic points! So one might be interested in finding a natural
property of a factor map, which ensures that the map is entropy de-
creasing. (Another point of view is that one can try to find subclasses
of Markov shifts on which factor maps are entropy decreasing; one pos-
sible such class is presented in [7, Theorem 3.18]). Since the entropy
we are considering is the topological entropy of the 1-point compact-
ification, it is quite natural to consider factor maps which extend to
a continuous factor map between the 1-point compactifications. This
is possible if and only if the factor map is uniformly continuous with
respect to the Gurevic-metric (on both Markov shifts). To avoid tech-
nical complications we restrict ourselves here to factor maps f : S → T ,
where both S and T are noncompact. It is easy to extend the results
presented below to the general case; we leave this to the reader.

Standing assumption for the rest of this section. All Markov shifts
considered are noncompact.

By the 1-point compactification S0 of a Markov shift S we mean the
dynamical system which consists of the Alexandroff 1-point compactifi-
cation of the shift space together with the extended shift map, see [11].
The extended shift map is a homeomorphism which fixes the unique
point in S0 which does not lie in S. We denote this point by ∞. Since
the Markov shift S is locally compact, S0 is compact metric. A metric
dS on S such that the completion of S with respect to this metric is
S0, is called a Gurevic metric. The metric is unique up to uniform
equivalence. If S is given in graph presentation with edge set E = N,
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then an explicit formula for the metric is given by, see [11, p. 627],

dS(x, y) =
∑

n∈Z

1
2|n|

·
∣∣∣∣
1
xn

− 1
yn

∣∣∣∣, x, y ∈ S.

Definition 3.1 [2]. Let S, T be locally compact transitive Markov
shifts. A factor map f : S → T is proper if f−1K is compact for every
compact set K ⊂ T .

Thus, if S and T are locally compact Markov shifts given in graph
presentation, then a factor map f : S → T is proper if and only if for
every edge e in T , the number of edges e′ of S, such that there is a
point x ∈ S with x0 = e′ and (fx)0 = e, is finite.

The next lemma characterizes proper maps in terms of the Gurevic
metric.

Lemma 3.2 [2]. Let S, T be locally compact transitive Markov shifts.
Let dS , respectively dT , denote the Gurevic metric on S, respectively
T . Let f : S → T be a factor map. Then f is proper if and only if f is
a uniformly continuous map (S, dS) → (T, dT ).

Proof. Let f : (S, dS) → (T, dT ) be uniformly continuous. It suffices
to show that f−1K ⊂ S is compact for any K ⊂ T compact open.
Since f is continuous, f−1K is closed and open. Let ε := d(K,Kc).
Since K is closed and open, ε > 0. Since f is uniformly continuous,
there is thus some δ > 0 such that dS(x, y) < δ implies dT (fx, fy) < ε.
By the definition of dS there is some compact open set E ⊂ S such that
x, y ∈ S, x /∈ E and y /∈ E implies dS(x, y) < δ. Thus, either fEc ⊂ K
or fEc is disjoint from K. But fEc ⊂ K implies fS ⊂ fE ∪ K is
compact, since f is continuous and E is compact, and thus, since T
is by assumption not compact, f would not be onto, a contradiction.
Thus f−1K ⊂ E, and is thus compact.

Now assume that f is proper. Let ε > 0, and fix a compact open set
K ⊂ T such that x, y ∈ T − K implies dT (x, y) < ε. By assumption
f−1K ⊂ S is compact open. Since f−1K is compact, there is δ > 0 so
that x, y ∈ f−1K and dS(x, y) < δ implies dT (fx, fy) < ε. Since f−1K
is closed and open, if δ > 0 is small enough then a ball with radius δ is
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either contained in f−1K or in f−1Kc. Thus, for all x, y ∈ S, it holds
that dS(x, y) < δ implies dT (fx, fy) < ε.

Thus, a factor map is proper if and only if it extends to a factor
map f0 : S0 → T0 between the 1-point compactifications by mapping
∞ to ∞. Every conjugacy is a proper map, and thus the 1-point
compactification is conjugacy invariant of the Markov shift.

Lemma 3.3. Let S, T be locally compact subshifts and f : S → T
a proper factor map. Then hG(S) ≥ hG(T ). If f is countable-to-1
proper, then hG(S) = hG(T ).

Proof. Since f is proper it extends to a factor map S0 → T0. These
are compact metric dynamical systems, thus htop(S0) ≥ htop(T0).
Since measures lift under factor maps on compact metric spaces and
countable-to-1 maps preserve measure entropy, the variational principle
[23] implies that hG(T0) = hG(S0) if f is countable-to-1. Since
hG(S) = htop(S0), the lemma is proved.

We shall now see that finite-to-1 proper maps between Markov shifts
behave much like finite-to-1 factor maps between SFT’s. Indeed, merely
proper maps are more like factor maps between SFT’s. We mention,
without proof, that for example, whenever f : S → T is a proper
factor map, then #f−1(p) < ∞ for all p ∈ Per (T ) if and only if f−1(p)
countable for all p ∈ Per (T ) and in this case there is a doubly transitive
point y ∈ T with #f−1(y) = min{#f−1(p) | p ∈ Per (T )}.

Definition 3.4 [15, Definition 4.1.1]. A mixing locally compact
Markov shift T with hG(T ) < ∞ is strongly positive recurrent if
hG(S) < hG(T ) for every closed proper subsystem S ⊂ T , (proper
means S �= ∅ and S �= T ).

Lemma 3.5 [15, Lemma 4.1.2]. Let T be a mixing locally compact
Markov shift with hG(T ) < ∞. Then T is strongly positive recurrent
if and only if hG(S) < hG(T ) for every proper closed mixing locally
compact Markov shift S ⊂ T .
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Proposition 3.6. Let S, T be mixing locally compact Markov shifts
with finite Gurevic entropy. Let f : S → T be a countable-to-1 proper
factor map. Then hG(S) = hG(T ) and

(a) The shift S is positive recurrent if and only if T is positive
recurrent.

(b) The shift S is strongly positive recurrent if and only if T is
strongly positive recurrent.

Proof. Since f is countable-to-1, hG(S) ≤ hG(T ), Theorem 2.2, and
since f is proper, hG(S) ≥ hG(T ), Lemma 3.3, and thus hG(S) =
hG(T ).

A mixing Markov shift is positive recurrent if and only if it has a
measure of maximal entropy, [19, Proposition 7.2.13]. A countable-to-
1 proper factor map extends to a countable-to-1 factor map on the
one-point-compactifications. Since measures lift under factor maps
on compact metric spaces and countable-to-1 maps preserve measure
entropy, statement (a) follows.

Let S be strongly positive recurrent. Let Y be a proper closed
subsystem in T . If Y is compact, then hG(Y ) < hG(T ). Now assume
that Y is not compact. Then f−1(Y ) is a proper closed subshift of S,
and thus hG(f−1(Y )) < hG(S). Then f restricts to a proper map from
f−1(Y ) → Y . Thus, by Lemma 3.3, hG(Y ) ≤ hG(f−1(Y )) < hG(S) =
hG(T ) and T is strongly positive recurrent.

Now let T be strongly positive recurrent. Let N be a proper closed
subshift in S. We show that f(N) is a closed subshift in T . For
that, let xn ∈ N and y ∈ T be such that f(xn) → y. We may
assume that all f(xn) and y are contained in some compact open set
K ⊂ T . Since f is proper, f−1K ⊂ S is compact open and contains
all xn. Thus, a subsequence is convergent to some x ∈ f−1K. Since
all xn ∈ N and N is closed, thus x ∈ N and, by continuity of f ,
fx = y. Thus, f(N) is a closed subshift in T and thus f(N) is a
locally compact subshift of T . Since f |N : N → f(N) is countable-to-1
and proper, hG(f(N)) = hG(N), Lemma 3.3. We show that f(N) is a
proper subshift of T , and then, since T is strongly positive recurrent,
it follows that hG(N) < hG(S). Assume that f(N) = T . Then
consider (f |N )0 : N0 → T0. Since T is strongly positive recurrent,
T is positive recurrent, [15, Corollary 4.1.15]. Thus, the extended map
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(f |N )0 : N0 → T0 lifts the maximal measure of T to a measure µ on
N which has entropy hG(T ). But since hG(T ) = hG(S) and S has a
unique maximal measure, we get that µ is the maximal measure on
S and µ has full support, [17]. Thus S is the support of µ ⊂ N , a
contradiction. This proves (b).

The next two examples show that the properties finite-to-1 and proper
are independent.

Example 3.7. A finite-to-1 proper factor map between Markov
shifts preserves entropy, by Theorem 2.4. However, a proper entropy
preserving factor map between Markov shifts need not be countable-
to-1.

Let S be the Markov shift given by the graph with vertex set
Z × {0, 1} − {(0, 1)} and there

(1) is one edge from vertex (0, 0) to vertex (1, i), for each i ∈ {0, 1},
(2) is one edge from vertex (2m, i) to vertex (2m + 1, i), for each

m ≥ 1, i ∈ {0, 1},
(3) is one edge from (2m, i) to (−2m, i), for each m ≥ 1, i ∈ {0, 1},
(4) are two edges from (n, 0) to (n+1, 0), for each n ∈ Z−{−1, 0}−

{2m | m ≥ 1},
(5) are two edges from (−1, 0) to (0, 0),

(6) are two edges from (n, 1) to (n+1, 1), for each n ∈ Z−{−1, 0}−
{2m | m ≥ 1},
(7) are two edges from (−1, 1) to (0, 0).

Let T be the Markov shift given by the graph with vertex set Z ×
{0, 1} − {(0, 1)} and the edges are according to the same rules (1) (5)
and, additionally,

(6a) is one edge from (n, 1) to (n+ 1, 1), for each n ∈ Z− {−1, 0} −
{2m | m ≥ 1},
(7a) is one edge from (−1, 1) to (0, 0).

Note that S and T are transitive. For vertices α and β let ES(α, β)
denote the set of edges in S from vertex α to vertex β. Similarly,
ET (α, β). Note that always 2 ≥ #ES(α, β) ≥ #ET (α, β) and that



FACTOR MAPS, ENTROPY AND FIBER CARDINALITY 973

#ES(α, β) = #ET (α, β) for each pair of vertices α, β ∈ Z× {0}. Thus
we can choose a surjective map π : ES → ET such that π(e) ∈ ET (α, β)
if and only if e ∈ ES(α, β). Then f : S → T where (fx)i := πxi,
i ∈ Z, defines a factor map from S onto T . The point t ∈ T
where tn begins in vertex (n, 1), n �= 0, and t0 begins in vertex (0, 0)
has uncountably many preimages, by (4). Thus, f is uncountable-
to-1. The map f is proper, since #π−1(e) ≤ 2 for all e ∈ ET .
We shall now see that hG(S) = hG(T ) = log 2. The graph of S
has outdegree 2; thus, hG(S) ≤ log 2. By rules (1) (5) there are
at least 22m · (22m−m) paths in T of length 2 · 2m + 1 through the
vertices (0, 0), (1, 0), . . . , (2m, 0), (−2m, 0), . . . , (−1, 0), (0, 0). Thus,
hG(T ) ≥ limm 1/(2m+1 + 1) · log 22m · (22m−m) = log 2. Since T ⊂ S,
we thus have log 2 ≤ hG(T ) ≤ hG(S) ≤ log 2, and thus the factor map
f is entropy preserving.

Example 3.8. A bounded-to-1 factor map need not be proper. The
vertex set for the graph of S is {n, n′ | n ∈ Z}, and there is an edge

(1) en from vertex n to vertex n+ 1, for each n ∈ Z,

(2) bn from vertex n to vertex −n, for each n ≥ 1,

(3) e′n from vertex n′ to vertex (n+ 1)′, for each n ∈ Z − {−1, 0},
(4) e′0 from vertex 0 to vertex 1′,

(5) e′−1 from vertex (−1)′ to vertex 0,

(6) b′n from vertex n′ to vertex (−n)′, for each n ≥ 1,

(7) a′n from vertex (n+ 1)′ to vertex (−n)′, for each n ≥ 1,

(8) c from vertex 0 to vertex 0′,

(9) a from vertex 0′ to vertex 0′,

(10) d from vertex 0′ to vertex 0.

Let T be given by the graph with vertex set Z ∪ {1′, 2′}, and there is
an edge

(1) en from vertex n to vertex n+ 1, for each n ∈ Z,

(2) bn from vertex n to vertex −n, for each n ≥ 1,

(3) e′0 from vertex 0 to vertex 1′,

(4) e′1 from vertex 1′ to vertex 2′,
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(5) c from vertex 0 to vertex 2′,

(6) a from vertex 2′ to vertex 2′,

(7) d from vertex 2′ to vertex 0.

(The subgraphs of S, respectively T , which use only vertices from Z
are there only for the reason to make T noncompact). Define a shift
commuting map f : S → T by defining f(x)0 for x ∈ S as follows.

(1) If x0 = b′1, then let f(x) = e′1.

(2) If x0 = e′−1, then let f(x)0 = d.

(3) If x0 ∈ {e′n | n ∈ Z − {−1, 0, 1}} ∪ {a′n, b′n | n ≥ 2}, then let
f(x)0 = a.

(4) In all other cases, let f(x)0 = x0.

Then f is a factor map. The map f is not proper since f−1{y ∈ T | y0 =
a} = {x ∈ S | x0 ∈ {e′n | n ∈ Z − {−1, 0, 1}} ∪ {a′n, b′n | n ≥ 2} ∪ {a}}
and thus is not compact. The map f is bounded-to-1, since every point
y ∈ T for which y(−∞, n] �= a∞d for all n ∈ Z has a unique preimage.
A point y ∈ T such that for some n ∈ Z, y(−∞, n] = a∞d has two
preimages.

4. Expansiveness of the 1-point compactification. So far
we have seen that a finite-to-1 proper factor map between Markov
shifts preserves several properties of the 1-point compactification. An
important property is expansiveness. The 1-point compactification S0

of a Markov shift S can be expansive, as for the shifts in Example 3.8,
or can be nonexpansive, as for the shifts in Example 2.1. We show
that the expansiveness of the 1-point compactification lifts under finite-
to-1 proper factor maps. For that we give a characterization of
expansiveness of S0 in terms of a graph presentation of S.

Lemma 4.1. Let S be a noncompact locally compact transitive
Markov shift given in graph presentation. Then S0 is expansive if and
only if there is a finite set of edges, say E, such that

(1) any point x ∈ S sees an edge from E,

(2) for any pair of edges, say e, f , and any n, there is at most one
path p of length n which has all edges outside of E and such that epf
is a path in S,
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(3) for every edge e there is at most one ray x[0,∞) with x0 = e
and xn /∈ E for all n ≥ 1, and there is at most one ray x(−∞, 0] with
x0 = e and xn /∈ E for all n ≤ −1.

Proof. Let d denote the metric on S0 such that d restricted to S × S
is the Gurevic metric dS , as in the formula just before Definition 3.1.

First, let S0 be expansive, and let ε > 0 be such that for all x, y ∈ S0

with x �= y there is some n ∈ Z such that d((S0)nx, (S0)ny) > ε. Then
let F be a finite set of edges of S such that x ∈ S and x0 /∈ F implies
d(x,∞) < ε/2. Since S0(∞) = ∞, (1) holds for the set F .

(a) For x, y ∈ S, x0, y0 /∈ F implies d(x, y) < ε.

Now let N be so large that

(b) for x, y ∈ S with x[−N,N ] = y[−N,N ], it holds that d(x, y) < ε.
Then fix a finite set of edges E such that F ⊂ E and

(c) for x ∈ S, x0 /∈ E and xn ∈ F implies |n| > N .

Let x, y ∈ S and n ≥ 0 with xi = yi for all i /∈ {0, . . . , n} and xi, yi /∈ E
for all 0 ≤ i ≤ n. Then (c) implies that xi, yi /∈ F for −N ≤ i ≤ −1
and for n+1 ≤ i ≤ n+N . Since F ⊂ E, xi, yi /∈ F for 0 ≤ i ≤ n. Thus
(a) implies d(Six, Siy) < ε for −N ≤ i ≤ n +N . Since xi = yi for all
i ≤ −1 and for all i ≥ n+ 1, (b) implies d(Six, Siy) < ε for i ≤ N − 1
and for i ≥ N + n+ 1. Thus, d(Six, Siy) < ε for all i, and thus x = y
and (2) holds for the set E. In the same way, (3) is shown to hold for
the set E. Thus, (1) (3) holds for the set E.

Now let E be a finite set of edges such that (1) (3) holds. We show
that S0 is expansive. Let ε > 0 such that for x ∈ S with x0 ∈ E it
holds that d(x, y) > ε for y ∈ S with x0 �= y0 and also for y = ∞. Now
let x, y ∈ S0. If y = ∞ and x ∈ S, then by (1) there is some n such
that xn ∈ E and thus d((S0)nx, (S0)ny) > ε. Let x, y ∈ S, x �= y. By
(1) there are n ∈ Z such that xn ∈ E or yn ∈ E. If for all those n we
would have xn = yn, then (2) and (3) imply x = y, a contradiction.
Thus, there is some n with xn �= yn and xn ∈ E or yn ∈ E, and then by
the choice of ε, d(Snx, Sny) > ε. Thus, ε is an expansiveness constant
for S0.

The 1-point compactification S0 is finitely expansive if there is an
ε > 0 such that for all x ∈ S0 there is a finite subset M(x) ⊂ S0
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such that d((S0)ny, (S0)nx) < ε for all n ∈ Z implies y ∈ M(x).
Thus, if S0 is expansive, then S0 is finitely expansive. In general the
notion of finite expansiveness is more general than expansiveness. The
following lemma, however, shows that for the 1-point compactification
of a Markov shift, the converse implication is true. This will be used
in the proof of Lemma 4.4.

Lemma 4.2. Let S be a locally compact transitive Markov shift such
that S0 is finitely expansive. Then S0 is expansive.

Proof. We shall show that there is a finite set E which satisfies
conditions (1) (3) from Lemma 4.1. Let d denote the metric on S0

induced by the Gurevic metric. Since S0 is finitely expansive, there is
an ε > 0 such that for all x ∈ S0 there is a finite subset M(x) ⊂ S0

such that whenever d((S0)ny, (S0)nx) < ε for all n, then y ∈ M(x).

There is a finite set E1 which satisfies (1). Assume not. Then, for
each finite edge set E there is a point x such that xn /∈ E for all n. Let
E(0) = E where E is so large that whenever x, y ∈ S with x0, y0 /∈ E,
then d(x, y) < ε. And let x0 be any point in S, such that x0

n /∈ E(0)
for all n. Then define inductively E(k + 1) = E(k) ∪ {xk

0}, and choose
a point xk+1 such that xk+1

n /∈ E(k + 1) for all n. By the choice of E,
we have that d(Snxk, Snxm) < ε for all k,m, n in contradiction to the
fact that S0 is finitely expansive.

There is a finite set E2 which satisfies (2). Choose a finite set of edges
E and an integer N such that:

(a) If x, y ∈ S with x0, y0 /∈ E, then d(x, y) < ε.

(b) If x, y ∈ S with x[−N,N ] = y[−N,N ], then d(x, y) < ε.

Let E′ be a finite set of edges containing E and such that x ∈ S with
x0 ∈ E and xn /∈ E′ implies |n| > N+1 and such that SE′ is irreducible.
Then, for x, y ∈ S such that xn, yn /∈ E′ whenever xn �= yn, it holds
that d(Smx, Smy) < ε for all m. Thus, if there would be two distinct
paths p, q of the same length having first and last edge in E′ and all
other edges outside E′, then, since SE′ is irreducible, one would find an
uncountable set A of points for which x, y ∈ A implies d(Snx, Sny) < ε
for all n. This is impossible, since S0 is finitely expansive. Thus E′

satisfies (2).
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There is a finite set E3 which satisfies (3). Assume for every finite set
of edges, say E, there are infinitely many vertices v such that for each
v there are two infinite paths starting at v which run the whole time
outside of E and have distinct first edge. Then choose E so large that

(a) If x, y ∈ S with x0, y0 /∈ E, then d(x, y) < ε.

By enlarging E we may assume that the SFT SE is irreducible.
Determine N such that

(b) If x, y ∈ S with x[−N,N ] = y[−N,N ], then d(x, y) < ε.

Enumerate those vertices from which two paths are starting with
distinct first edge and running outside of E the whole time as
v(1), v(2), . . . . Let V be the set of vertices which is an initial ver-
tex of an edge in E. For each v(k) choose a shortest path from a vertex
in V to v(k) which has only edges outside of E. Call this path wk.
By taking a suitable subsequence we may assume that all the paths wk

start with the same block w of length N + 1, and that the lengths of
the wk are strictly increasing. Since SE is irreducible there is a point
p such that all pn ∈ E and the initial vertex of p0 is the initial vertex
of w. Let x1 be a point with x1(−∞,−1] = p(−∞,−1], x1[0,∞) starts
with w1 and such that x1

n /∈ E for all n ≥ 0.

If there are increasing sequences nk, ik such that the initial vertex
of x1

nk
is v(ik), then since from each vertex v(k) there are two paths

starting, each having edges outside E, we can choose points xk for k ≥ 2
such that xk(−∞, nk − 1] = x(−∞, nk − 1], xk

nk
�= x1

nk
and xk

n /∈ E
for all n ≥ 0. Thus we have an infinite set A of points x which have
x(−∞, N ] = p(−∞,−1]w and xn /∈ E for all n ≥ 0.

If x1 visits only finitely many of the vertices v(k), then choose k
so large that x1 never visits the vertex v(k). Then let x2 be a point
with x2(−∞,−1] = p(−∞,−1], x2[0,∞) starts with wk and such that
x2

n /∈ E for all n ≥ 0. Then, again, if x2 visits infinitely many of
the vertices v(k) we can find an infinite set A of points x which have
x(−∞, N ] = p(−∞,−1]w and xn /∈ E for all n ≥ 0. Otherwise, there
is a vertex v(k) which is not visited by x1 and not by x2. Then let
x3 be a point with x3(−∞,−1] = p(−∞,−1], x3[0,∞) starts with wk

and such that x3
n /∈ E for all n ≥ 0. Repeating this procedure gives

an infinite set A of points x which have x(−∞, N ] = p(−∞,−1]w and
xn /∈ E for all n ≥ 0. But now, by (a) and (b) for any pair x, y ∈ A
we have d(Snx, Sny) < ε for all n, contradicting the fact that S0 is
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finitely expansive. A symmetric argument for rays ending in E shows
that there is a finite set E3 which satisfies (3).

The union of the sets E1, E2 and E3 is a finite set which satisfies
(1) (3).

Example 4.3. The 1-point compactification S0 can be countably
expansive without being expansive. Let S be given by the following
graph. The vertex set is {n ∈ Z | n ≤ 1} ∪ {(n, k) | n > k ≥ 0}. The
edges are as follows. There is an edge from vertex

(1) n− 1 to vertex n, for each n ≤ 1,

(2) 1 to vertex (1, 0),

(3) (n, k) to vertex (n+ 1, k) for each n > k ≥ 0,

(4) (k + 1, k) to vertex (k + 2, k + 1) for each k ≥ 0,

(5) (k +
∑m

i=1 i, k) to vertex −(k + ∑m
i=1 i) for 0 ≤ k ≤ m, m ≥ 1.

Note that every point visits the edge starting at vertex 1, and for each
n ≥ 1, there is exactly one first return loop of length 2n + 2 to vertex
1. Thus there is a finite set of edges which satisfies (1) and (2) of
Lemma 4.1. But there is no finite set which satisfies (3), since for a
finite set E of edges there is a k0 ≥ 0 such that n > k ≥ k0 implies
the edges starting from vertex (n, k) do not belong to E; thus, starting
from vertex (k0+1, k0), there are infinitely many rays which never visit
E, namely for each k ≥ k0, there is a unique ray through the vertices
(k0+1, k0), (k0+2, k0+1), . . . , (k+1, k), (k+2, k), (k+3, k), . . . . Thus,
S0 is not expansive. However, for each finite set E of edges containing
the edge from −1 to 0, there are only countably many rays which have
all their edges outside of E; thus, S0 is countably expansive.

Lemma 4.4. Let S and T be noncompact locally compact transitive
Markov shifts. Let f : S → T be a finite-to-1 proper factor map. Then
T0 expansive implies S0 expansive. The converse is not true.

Proof. Since f is finite-to-1 proper, f0 : S0 → T0 is finite-to-1,
continuous. Let ε > 0 be an expansiveness constant for T0. Choose
δ > 0 such that d(x, y) < δ implies d(f0x, f0y) < ε. Then, if x, y ∈ S0

with d((S0)nx, (S0)ny) < δ for all n, then d((T0)nf0x, (T0)nf0y) < ε
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for all n, and thus f0x = f0y. Thus, S0 is finitely expansive, since f0

is finite-to-1. Thus, by Lemma 4.2, S0 is expansive.

To see that the converse is not true, consider the following Markov
shifts. The graph for S has vertex set Z and the edges are as follows.

(1) There are two edges a and b from vertex 0 to vertex 1.

(2) There is an edge en from vertex n to vertex n + 1, for each
n ∈ Z− {0}.
(3) There is an edge cn from vertex n to vertex −n, for each n ≥ 1.

The graph for T also has vertex set Z, and the edges are as follows.

(1) There is an edge en from vertex n to vertex n+1 for each n ∈ Z.

(2) There are two edges an and bn from vertex n to vertex −n, for
each n ≥ 1.

Using the characterization in Lemma 4.1, one sees that S0 is expansive
(use the set E = {a, b}), and T0 is not expansive, since the paths
en−1ane−n and en−1bne−n violate (2) of Lemma 4.1 for large enough
n. Define a factor map f : S → T by defining f(x)0 for x ∈ S as
follows.

(1) If x0 ∈ {a, b}, then let f(x)0 = e0.

(2) If x0 = en for some n ∈ Z − {0}, then let f(x)0 = x0 = en.

(3) If x0 = cn for some n ≥ 1, then let [f(x)0 = an if x−n = a], and
let [f(x)0 = bn if x−n = b].

This map is proper, onto and at most 2-to-1.

In Lemma 4.4, it is essential that the factor map be finite-to-1. An
example for a countable-to-1 proper factor map f : S → T , with T0

expansive and S0 not expansive, is obtained by taking for S the Markov
shift from Example 4.3 and letting T be the Markov shift given by the
graph with vertex set Z and then for each n ∈ Z, there is an edge
from vertex n to vertex n + 1, and for each n ≥ 1, there is an edge
from vertex n+ 1 to vertex −n. So then the edge set consisting of the
unique T -edge which starts in vertex 1 satisfies (1) (3) of Lemma 4.1,
and thus T0 is expansive. Note that, for each pair of T -vertices α, β,
there is at most one T -edge from α to β. Thus we can define a factor
map f : S → T by mapping an S-vertex n ≤ 1 to the T -vertex n
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and an S-vertex (n, k), n > k ≥ 0 to the T -vertex n + 1. The map
f is proper, since each T -vertex has only finitely many S-vertices as
preimages. We show that the map is countable-to-1. Since in S there
is for each n exactly one first return loop of length 2n+ 2 at vertex 1,
which is mapped to the unique first return loop in T at vertex 1 of the
same length, we get that every y ∈ T , such that yn starts in vertex 1
for infinitely many n > 0, has a unique preimage. Let y ∈ T , x ∈ f−1y
such that there is some n such that yn starts in vertex 1, and yk does
not start in vertex 1 for k > n, then y(−∞, n] uniquely determines
x(−∞, n], and for each i ≥ 1 we get that xn+i is an edge starting in a
vertex (i+1, ki). By the definition of S there are only countably many
possible choices for the sequences (ki)i≥1. Thus f−1y is countable.

Let S be a subshift and m a block of S. Then m is a synchronizing
block if x, y ∈ S, x[1, |m|] = y[1, |m|] = m implies that there is a
z ∈ S with z(−∞, 0] = x(−∞, 0] and z[1,∞) = y[1,∞). A compact
subshift S is synchronizing if S is transitive and has a synchronizing
block, [1], [10]. For compact subshifts S the synchronizing part
SYN (S) := {x ∈ S | x sees a synchronizing block} is a conjugacy
invariant. If S is an SFT, then SYN(S) = S. The next lemma shows
that the 1-point compactification of a mixing Markov shift has the
property that all except at most one point are in the synchronizing
part.

Lemma 4.5. Let S be a mixing locally compact Markov shift with S0

expansive. Then S0 is a synchronized system with S ⊂ SYN (S0) and
S is strongly positive recurrent.

Proof. Let S be given in a graph presentation. Since S0 is expansive,
it is synchronized, [15, Theorem 7.3.4], [13, Lemma 1.10]; we give a
simplified proof here. Since S0 is expansive, there is a finite set E of
edges in S which satisfy (1) (3) from Lemma 4.1. By renaming the
edges, we may assume that 0 /∈ E. Let i : S → (E ∪ {0})Z be a
shift commuting map defined by (ix)0 = x0 if x0 ∈ E and (ix)0 = 0
otherwise. Properties (1) (3) imply that i is an injective map and
0∞ /∈ i(S). The map i extends to a continuous map S0 → i(S)∪ {0∞}
by i(∞) := 0∞. Thus, i is a conjugacy to the subshift T := i(S)∪{0∞}
where every T -symbol �= 0 is synchronizing.
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Since S0 is a subshift, hG(S) = htop(S0) < ∞. To show that S
is strongly positive recurrent, we verify (c) of [15, Theorem 4.1.13];
we show that there is some vertex v such that the growth rate of the
number of first return loops at v is strictly less than the growth rate of
the number of loops at v.

Let 1 < λ < ∞ with hG(S) = log λ. We may assume that the
SFT SE is mixing. Now fix a vertex, say v, in SE . By enlarging
E if necessary, we may assume additionally that every edge e which
starts or ends in v belongs to E. Let C(n) denote the first return
loops of length n at vertex v. We want to define an injective map from
C(n), into the set of loops at v of length n, of a certain SFT SE′ of
S not dependent on n. Then, since htop(SE′) < hG(S), we get that
lim supn 1/n·log#C(n) < log λ, and by [15, Theorem 4.1.13], it follows
that S is strongly positive recurrent.

Fix for every pair of edges e, f ∈ E such that there is a path of
length ≥ 1, from terminal vertex of e to initial vertex of f , which
only has edges outside of E, a shortest such path; call it p(e, f). Let
M = max |p(e, f)|. Since SE is mixing, there is some N such that, for
every pair of edges e, f and every n ≥ N there is a path in SE of length
n from e to f . Since S is locally compact, we can find a finite set E′

with E ⊂ E′ such that

(a) if p is a path starting and ending in E and having an edge outside
E′, then |p| > 2M + 4N .

Let B(n) be the set of loops of length n in SE′ at vertex v. We shall
now define an injective map i : C(n) → B(n) for all n > 2M + 4N .
For that, fix for each edge f ∈ E a shortest path in E starting with f
and ending at vertex v, say tf , and a shortest path in E from vertex
v which ends with f , say sf . By choice of N these have length ≤ N .
Fix for every n ≥ N a loop ln in E at vertex v of length n. Consider
a first return loop p = p1 . . . pn ∈ C(n). If p is a path in SE′ , then
i(p) := p. If p is not a path in SE′ , then p leaves the set E′ at least
once. So we can consider all the time intervals [i, j] for which pk /∈ E
for i < k < j and pi ∈ E, pj ∈ E, and there is some i < k < j
with pk /∈ E′. Let e = pi, f = pj . We replace the part p[i, j] of the
path p by ep(e, f)tf lmsep(e, f)f , where m is so that this part has the
same length as p[i, j]. This is possible, by (a). We do so for all those
subpaths of p. This gives i(p). We claim that the map is injective; we
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show that i(p) determines p uniquely. If i(p) is a first return loop at v,
then i(p) = p. If i(p) is not a first return loop at v, then consider the
first return at v. Since p is a first return loop, by construction of i(p)
we have that before the first return of v we see ep(e, f)tf for suitable
e, f . Since tf is a path in E and p(e, f) is a path outside E, we can
recognize this uniquely. Now go from the first return to v further to
the right such that we see the first occurrence of sep(e, f)f . Again we
can recognize this uniquely, since p(e, f) is a path outside of E. Thus,
we have recognized a maximal subpart of p which was replaced. By
(2), the original part is uniquely determined by e, f and the length of
the subpath. Thus, i(p) determines p uniquely and thus, i is injective.
The lemma is thus proved.

Lemma 4.6. Let S, T be mixing locally compact Markov shifts with
expansive 1-point compactifications. Let f : S → T be a finite-to-1
proper factor map. Then f has a degree, that is, every doubly transitive
point has the same finite number of preimages all of which are doubly
transitive.

Proof. The map f extends to a factor map f0 : S0 → T0. By
Lemma 4.5, S0 and T0 are synchronized systems. Let D(S0) denote the
doubly transitive points in S0; D(T0) those in T0. Clearly f0(D(S0)) ⊂
D(T0), thus D(S0) ⊂ f−1

0 (D(T0)). Now let x ∈ S0 such that f0x ∈
D(T0). Assume x /∈ D(S0). Then there is a block, say m, such that x+

or x− does not see m. Since S0 is compact, we can thus construct a
point y ∈ S0 such that f0y ∈ D(T0) and y never sees the block m. Let
R be the orbit closure of y. Since y never sees m, R is a proper subshift
of S0. Since f0y ∈ D(T0), the map f0 restricts to a factor map from
R onto T0. Thus, htop(R) ≥ htop(T0), and thus htop(R) = htop(S0).
This contradicts the fact that S is strongly positively recurrent, by
Lemma 4.5. Thus, D(S0) = f−1

0 (D(T0)). By [5, Theorem 3.3], f0 has
a degree, and thus f , too.

Lemma 4.7. Let S, T be mixing locally compact Markov shifts with
expansive 1-point compactifications. Let f : S → T be a finite-to-
1, proper factor map. Then there is a finite-to-1 proper factor map
g : S → T with degree 1.



FACTOR MAPS, ENTROPY AND FIBER CARDINALITY 983

Proof. By Lemma 3.2, f extends to a finite-to-1 factor map f0 : S0→
T0 and S0 and T0 are synchronized systems by Lemma 4.5. By [5,
Theorem 4.4], there is a finite-to-1 factor map g0 :S0→T0 of degree 1.
By construction of g0 we have g−1

0 (∞) = ∞, and thus g0 restricts to a
finite-to-1 proper factor map g : S → T with degree 1.

5. Properly finite-to-1 and countable-to-1 maps for synchro-
nized systems. We conclude this paper with two examples which
show that for synchronized systems, finite-to-1 factor maps which are
not bounded-to-1, and countable-to-1 maps which are not finite-to-1,
do exist. Thus, it is not necessary to drop the compactness assumption
to obtain such phenomena.

Example 5.1. Synchronized systems S and T and a countable-to-1
factor map f : S → T which is not finite-to-1. The idea is to “embed”
the factor map which collapses the orbit 0∞10∞ to the fixed point 1∞

into a factor map between synchronized systems.

Let S ⊂ {0, 1, 2}Z be the coded system given by the code C :=
{20n10n | n ≥ 0}, [1], [10]. Then the symbol 2 is synchronizing for S,
since it occurs only as the first symbol in any code word. Let f be the
1-block map given by f(x)0 = 1 if x0 ≤ 1, and f(x)0 = x0 if x0 = 2.
Then the image T ⊂ {1, 2}Z is a sofic shift, since it is the shift which
has an odd number of 1’s between two consecutive 2’s and 22 is not
allowed.

We show first that f is not finite-to-1. Since 0n10n is an S-block for
each n, we have that x = 0∞10∞ ∈ S, with x0 = 1, say. Then fx = 1∞.
Thus, 1∞ has infinitely many preimages, namely Snx, n ∈ Z.

We show that f is countable-to-1. Since f fixes the symbols 2 and
maps 0, 1 to 1, any point in T which sees the symbol 2 has a unique
preimage. The point 1∞ has the orbit 0∞10∞ as its preimage set.

Example 5.2. Synchronized systems S and T and a finite-to-1 factor
map f : S → T which is not bounded-to-1. The idea is similar to
the previous example. We embed a finite-to-1, nonbounded-to-1, map
between nontransitive subshifts into a factor map between synchronized
systems, but it is more delicate to keep the map finite-to-1.
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For k ∈ N, let

•Wk := {5ka15ka2 . . . 5kak5k ∈ {0, 1, 5}k(k+2) | ai ∈ {0, 1} for all 1 ≤
i ≤ k}.
and fix an enumeration, say wk,i, 1 ≤ i ≤ 2k, of the set Wk. Then let

• un,k,i := 2nwk,i2n4 ∈ {0, 1, 2, 4, 5}k(k+2)+2n+1, 1 ≤ i ≤ 2k, n ≥ k,
k ∈ N.

And, finally, let m(k) := 2k and

• cn,k :=3un,k,1un,k,2 . . . un,k,m(k)∈{0, 1, 2, 3, 4, 5}1+m(k)·(k(k+2)+2n+1).

Let S ⊂ {0, 1, 2, 3, 4, 5}Z be the coded system given by the code
C := {cn,k | n ≥ k ≥ 1}. The symbol 3 is synchronizing for S, since it
occurs only as the first symbol in any code word. Let f be the 1-block
map given by f(x)0 = 1 if x0 ≤ 1, and f(x)0 = x0 if x0 ≥ 2. Then the
image T ⊂ {1, 2, 3, 4, 5}Z is a coded system, [1]. The subshift T is in
fact synchronized with synchronizing symbol 3.

We show first that f is not bounded-to-1. Fix k ∈ N. Then, for
each 1 ≤ i ≤ 2k, the block un,k,i is an S-block for all n ≥ k. Thus,
there is an xi ∈ S with xi(−∞,−1] = 2∞ and x[0,∞) = wk,i2∞.
Then fxi(−∞,−1] = 2∞ and fxi[0,∞) = 5k15k1 . . . 5k15k2∞. Thus
y := fxi has at least 2k preimages. Since k was arbitrary this shows
that f is not bounded-to-1.

We show that f is finite-to-1. Let y ∈ T . Since f fixes the symbols
2, 3, 4, 5 and maps 0, 1 to 1, if #{n ∈ Z | yn = 1} = m < ∞ then
#f−1y ≤ 2m < ∞. Now assume that #{n ∈ Z | yn = 1} = ∞. Let
x ∈ f−1y. Let m ∈ Z with ym = 1. Since #{n ∈ Z | yn = 1} = ∞
there is a largest q < m such that yq = 3. Thus, y[q,m] begins with a
block 32n5k1 for some n ≥ k ≥ 1. But then x[q, q + |cn,k| − 1] = cn,k

and q + |cn,k| − 1 > m. Thus xm is uniquely determined by y[q,m].
The argument works for every m such that ym = 1, thus y has a unique
preimage. This proves that f is finite-to-1.
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