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GEODESIC LAMINATIONS ON COMPACT SURFACES
AND HOMEOMORPHISMS OF THE CANTOR SET

LUCA Q. ZAMBONI

ABSTRACT. In this paper we investigate a connection
between minimal geodesic laminations on compact hyperbolic
surfaces and homeomorphisms of the Cantor set. Let M be
a compact hyperbolic surface. To each minimal lamination
L ⊂ M having no closed leaves, and to each compact curve
C transverse to L, we associate a group consisting of certain
homeomorphisms on the intersection C ∩ L. This group is
used to study various topological aspects of the lamination
including orientability and existence of transverse measures.

0. Introduction. In [8] M. Urbański and I investigated a connection
between circle maps, measured laminations on compact surfaces, and
free actions of surface groups on R-trees. We showed that certain order
preserving homeomorphisms f of the unit circle induce a measured
lamination (L, µ) on the torus T 2. The map f has no periodic
points and no dense orbits; this is equivalent to saying that f is not
topologically conjugate to a rotation. The resulting lamination L is
minimal (each leaf is dense in L), and each leaf and each complementary
region of L is simply connected. Via results found in [6], the measured
lamination (L, µ) determines a free action (by isometries) of π1(T 2) =
Z × Z on an R-tree T . It is shown that T is isometric to R and that
the ratio of the translation lengths of the standard generators (1,0) and
(0,1) of Z × Z is equal to the rotation number of the homeomorphism
f .

The basic idea in the construction of the lamination L on the torus is
as follows. We begin with an essential simple closed curve C imbedded
in T 2 together with an identification of C with the unit circle S1. We
then take an order preserving homeomorphism f of S1 which is not
topologically conjugate to a rotation and view it as a homeomorphism
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of C. We let ∆ denote the set of accumulation points of {fn(x)}n∈Z

for some point x ∈ C. The set ∆ is independent of the point x ∈ C
and is invariant under f . Furthermore, ∆ is topologically a Cantor set,
i.e., a nonempty perfect totally disconnected set. We then construct L
by joining each point p ∈ ∆ to the point f(p) by a geodesic in T 2.

The lamination L is related to the homeomorphism f as follows. For
each point p ∈ ∆ the points p and f(p) lie on the same leaf of L and the
open segment (p, f(p)) contained in L is disjoint from C. It is shown in
[8] that this sort of relationship between a lamination L on a compact
surface M and an order preserving homeomorphism f of S1 implies
that the Euler characteristic of M is equal to zero. In this paper we
propose to extend the above construction to more general hyperbolic
surfaces.

Let M be a closed compact hyperbolic surface, and let L ⊂ M be a
minimal geodesic lamination having no closed and no isolated leaves.
Let TL be the set of all compact one-manifolds imbedded in M which
meet the lamination L transversely and whose boundary, if nonempty,
lies in the complement of L. For each C in TL, the intersection
∆ = C ∩ L is topologically a Cantor set, i.e., a nonempty perfect,
totally disconnected set. We associate to each C ∈ TL the group
GL(C) consisting of all homeomorphisms f of ∆ = C ∩ L satisfying
the following two conditions:

(1) For each x ∈ ∆, x and f(x) belong to the same leaf of L.

(2) The map ιf : ∆ → N defined by ιf (x) = Card ([x, f(x)] ∩ C) − 1
is continuous, where [x, f(x)] denotes the closed segment contained in
the leaf of L joining x to f(x).

The group structure is given by composition of mappings. We show
that for each C ∈ TL the group GL(C) is nontrivial (cf. Theorem 1.13).

An element f ∈ GL(C) is called irreducible if a proper nonempty
subset ∆′ of ∆ does not exist which is invariant under f and which
is a finite union of closed intervals of ∆. We show that an element
f ∈ GL(C) is irreducible if and only if it is minimal in the sense
that the orbit of each point x ∈ ∆ under the map f is dense in
∆ (see Corollary 2.5). It will follow that if L is orientable then the
first return map on ∆ (with respect to the orientation on L) defines
an irreducible element of GL(C) (see Theorem 2.7). We establish a
connection between irreducible elements of GL(C) and the existence of
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transverse measures on L. Each irreducible element f ∈ GL(C) which
carries discrete dynamics on C ∩ L (in the sense of [5]) determines a
transverse measure µ on L.

1. Minimal laminations and homeomorphisms of the Cantor
set. Let M be a closed compact hyperbolic surface (without bound-
ary). We identify the universal cover M̃ of M with the Poincare disk
H2. By a geodesic in M we mean the image in M under the covering
map of a complete geodesic in H2. A geodesic in M is said to be simple
if it has no transverse self intersections. A (geodesic) lamination in M
is a nonempty closed subset L of M which is a disjoint union of simple
geodesics. The geodesics contained in L are called the leaves of L. A
geodesic lamination L is said to be minimal if the closure of each leaf is
all of L. Clearly, such a lamination either consists of a single closed leaf
or else contains no closed leaves (in which case L contains more than
one leaf). A lamination is said to be perfect if it contains no isolated
leaves. It is well known that for most surfaces such laminations exist,
see Corollary 4.7.2 in [1]. In fact, there exist minimal perfect lami-
nations L with the property that each leaf and each complementary
region of L is simply connected. (See [6] and [7].) Such laminations fill
up the surface in the following sense.

Proposition 1.1. Let L be a geodesic lamination on M whose
complementary regions are all simply connected. Then L is minimal.

Proof. As each component of M − L is simple connected, it follows
that L has no closed leaves. Thus, L is a disjoint union of closed isolated
minimal sublaminations each of which consists of more than one leaf.

Let L0 be one such sublamination. We will show that L = L0. Let N
be a small ε-neighborhood of L0 disjoint from all other sublaminations
and whose boundary is a union of simple closed curves. (See [7] for
example.) By hypothesis each boundary component of N is trivial in
the surfaceM . It follows that L contains no other sublaminations other
than L0 for all other sublaminations would have to be contained in a
union of disks, which is impossible.

In what follows, L denotes a minimal geodesic perfect lamination in
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M having no closed leaves.

Lemma 1.2. Let S1
∞ denote the boundary of the Poincare disk

H2. Then no point on S1
∞ is an endpoint of infinitely many leaves

of L̃ ⊂ H2.

Proof. Actually the result of the lemma holds for arbitrary geodesic
laminations L ⊂M having no closed leaves (cf. [1, Lemma 4.4]).

In fact, if a point x ∈ S1
∞ is an endpoint of a leaf λ̃ of L̃, then it is

either an endpoint of exactly one leaf or of exactly two leaves depending
on whether λ is a regular leaf or a boundary leaf of L.

Let TL be the set of all compact one-manifolds imbedded in M
which meet L transversely and whose boundary if nonempty lies in
the complement of L. Let C be an element of TL. Put ∆ = C ∩L. The
set ∆ is topologically a Cantor set, i.e., a nonempty perfect, totally
disconnected set. A point x in ∆ is called a boundary point if it is
isolated from one side. Otherwise, x is called a regular point. Both
sets of points are dense in ∆. A subset J of ∆ will be called a closed
interval if it is the intersection of ∆ with a closed interval I in C. The
interior of J , denoted J◦, is then I◦ ∩∆.

Lemma 1.3. Let I be a closed interval contained in C which meets
the lamination L and whose endpoints lie in the complement of L. Then
there are only finitely many closed intervals I ′ ⊂ C which are isotopic
(relative to TL) to the interval I.

Proof. Let Ĩ be a lift of I in H2. Since I meets the lamination L,
Ĩ must meet infinitely many geodesics of L̃ in H2. Let γ̃ denote one
such geodesic, and let a and b denote the two endpoints of γ̃ on the
circle at infinity. Now suppose to the contrary that there are infinitely
many intervals I ′ isotopic to I. Then one can move Ĩ indefinitely along
γ̃ in at least one direction keeping the endpoints at all times in the
complement of L̃. Since the Euclidean metric of Ĩ must tend to zero
as we move Ĩ towards the circle at infinity, it follows that either a or
b must be an endpoint of infinitely many leaves of L̃. This contradicts
the result of Lemma 1.2.
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In what follows, let ∆′ ⊂ ∆ be a finite union of closed sub-intervals
of ∆.

Definition 1.4. Let f : ∆′ → ∆ be a continuous function. We say
that f is weakly supported by L if for each point x ∈ ∆′, the points x
and f(x) lie on the same leaf of L.

For example, given a transverse orientation on the curve C, the first
return map to C is weakly supported by L. More generally, in the same
way any continuous vector field parallel to L on ∆ determines a map
f which is weakly supported by L. In order to obtain the converse, we
need to impose an additional condition on the map f .

Let f : ∆′ → ∆ be weakly supported by L. Associated to f is a map
ιf : ∆′ → N defined as follows: for x ∈ ∆′,

ιf (x) = Card ([x, f(x)] ∩ C)− 1

where [x, f(x)] denotes the closed segment contained in the leaf of L
joining x to f(x). Thus, ιf (x) = 0 if and only if x is a fixed point of f .

Definition 1.5. A map f : ∆′ → ∆ is said to be supported by L if
it is weakly supported by L and if the associated map ιf : ∆′ → N is
also continuous.

Lemma 1.6. Let f : ∆′ → ∆ be supported by L. For each point
x ∈ ∆′, let ν(x) be the unit tangent vector to L at x in the direction from
x to f(x). Then ν defines a continuous vector field on ∆′. Conversely,
let ω be a continuous vector field on ∆′ and let ι : ∆′ → N be any
continuous function. Then the pair (ω, ι) determines a map f on ∆′

which is supported by L with ιf = ι.

Proof. The first assertion follows immediately from the continuity of
the map f together with the fact that the lamination L has no closed
leaves. As for the second assertion, we define f : ∆′ → ∆ as follows: for
x ∈ ∆′, if x lies on some leaf λ ⊂ L, we move along λ in the direction
ω(x) until we cross the curve C ι(x) times and take f(x) to be the
stopping point. The continuity of ω and ι on ∆′ together ensure the
continuity of f .
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Remark 1.7. The continuity of the map ιf does not in general follow
from the continuity of f .

Proof. To see this we construct an example of a map f on ∆ which is
weakly supported by L, and whose associate map ιf is discontinuous.
Let x0 be a regular point of ∆, and let γ0 be the leaf of L through
the point x0. Choose a transverse orientation ν of C and let y0 denote
the point of ∆ obtained by starting at x0 and moving along γ0 in the
direction of ν(x0) until we meet C again for the first time. Now let
{Ik}k≥0 be a sequence of nonempty disjoint closed intervals contained
in ∆ converging to x0 whose endpoints consist of boundary points of ∆.
In addition, if Ik = [ak, bk], we require that the point ak be isolated from
the left while the point bk is isolated from the right. Similarly choose
a sequence of nonempty disjoint closed intervals {Jk}k≥0 contained in
∆ converging to y0 whose endpoints consist of boundary points of ∆.

For each k = 0, 1, 2, . . . , there exists a continuous function fk on Ik
having the following properties:

(1) fk : Ik → Jk,

(2) for each x ∈ Ik, we have that x and fk(x) lie on the same leaf of
L,

(3) the map ιfk
: Ik → N is continuous,

(4) for each point z ∈ Ik, we have ιfk
(z) > maximum {ιfk−1(x) | x ∈

Ik−1}.
In fact, for each k ≥ 0, and for each point x ∈ Ik, the point x lies

on some leaf γ of L which meets the interior of Jk at infinitely many
points. Let y ∈ γ ∩ J◦

k , and set n = Card ([x, y] ∩ C) − 1. For each
x′ ∈ Ik sufficiently close to x, if x′ is contained in a leaf γ′ ⊂ L, then
traveling along γ′ parallel to [x, y], the nth crossing with C will occur
in J◦

k .

We next define f on ∆ as follows: if x ∈ Ik for some k, we set f(x)
equal to fk(x), while if x ∈ ∆ − ∪k≥0Ik, then f(x) is the first return
map to C along the leaf γ through x in the direction ν(x). Then f
is weakly supported by L, in fact, since the intervals Jk converge to
y0 = f(x0), it follows that f is continuous at x0. On the other hand,
ιf is unbounded in any neighborhood of the point x0.
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Lemma 1.8. Let f : ∆′ → ∆ be a map supported by L. There
exists finite decomposition ∆′ = J1 ∪ · · · ∪ Jn into pairwise disjoint
closed intervals such that, for each 1 ≤ i ≤ n, ιf is constant on Ji, the
restriction of f to Ji is a homeomorphism of Ji onto f(Ji) and f(Ji)
is a closed interval isotopic to Ji. Moreover, if f has no fixed points,
then the intervals Ji can be chosen so that f(Ji) ∩ Ji = ∅.

Proof. For each regular point x ∈ ∆′, there exists a neighborhood
U ⊂ ∆ of x on which ιf is constant, and on which the map f is
determined by a transverse orientation of U together with the natural
number ιf (x) (see Lemma 1.6). By choosing U sufficiently small, we
can ensure that f |U maps U homeomorphically onto f(U) and that,
for each closed interval I ⊂ U , I is isotopic to f(I). Moreover, if f is
fixed point free, U can be chosen so that U and f(U) are disjoint. The
result of the lemma now follows from the compactness of ∆′.

Lemma 1.9. Let f : ∆′ → ∆ be a map supported by L. Let
X = f(∆′) ∩ (∆ − ∆′). Then there exists a map f ′ : ∆′ ∪ X → ∆
with the following properties:

(1) f ′ is supported by L,

(2) f ′ is an extension of f ,

(3) f ′(x) ⊂ ∆′ − (f(∆′) ∩ ∆′).

Thus, if X contains a nondegenerate closed interval, then so does
∆′ − (f(∆′) ∩∆′).

Proof. In case the setX is empty there is nothing to show. Otherwise,
if X is nonempty, it follows from Lemma 1.8 that X contains a
nondegenerate closed interval. Let ∆′ = J ′

1 ∪ · · · ∪ J ′
k be a partition of

∆′ given by Lemma 1.8. Let

P = ∪{P (e) | e is an endpoint of some J ′
i}

where
P (e) = {f l(e) | l ∈ Z+} ∩X.

The cardinality of P (e) is at most one for each endpoint e. The
finite set P determines a partition X = X1 ∪ · · · ∪ Xr into disjoint
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closed intervals. By construction, the interior of each interval Xj is
disjoint from the images under f of all the endpoints of the intervals
J ′

i . Thus the preimage f−1(Xj) is a closed interval contained in one of
the intervals J ′

i . A similar argument shows that the interval f−1(Xj) is
either contained in f(∆′) or disjoint from it. In case it is contained in
f(∆′), then by a similar argument we obtain that the interval f−2(Xj)
is contained in one of the intervals J ′

i and is again either contained in
f(∆′) or disjoint from it.

Thus, for each 1 ≤ j ≤ r, there exists a smallest positive integer tj
such that f−tj (Xj) ⊂ ∆′− (f(∆′)∩∆′), for otherwise we would obtain
an infinite sequence of disjoint closed intervals

Xj , f
−1(Xj), f−2(Xj), . . .

each of which is isotopic to the interval Xj contrary to the result of
Lemma 1.3. We define the map f ′ : ∆′ ∪ X → ∆ by f ′|∆′ = f and
f ′|Xj

= f−tj (Xj) ⊂ ∆′ − (f(∆′) ∩∆′) for each 1 ≤ j ≤ r.

The following two corollaries are immediate consequences of Lemma
1.9.

Corollary 1.10. Let f : ∆′ → ∆ be supported by L. Then ∆′ cannot
be a proper subset of f(∆′).

Proof. Again, by Lemma 1.8, if f(∆′)−∆′ were nonempty, it would
contain a nondegenerate closed interval. The assertion now follows
from the last statement of Lemma 1.9.

Corollary 1.11. Let f : ∆′ → ∆ be a map supported by L. If f is
one-to-one, then f(∆′) cannot be a proper subset of ∆′. In particular,
if ∆′ = ∆, then f is a homeomorphism of ∆ onto itself.

Proof. Let ∆0 = f(∆′). Suppose to the contrary that ∆0 is a proper
subset of ∆′. Define g : ∆0 → ∆ by g(x) = f−1(x) for all x ∈ ∆0.
Then g is a map supported by L and g(∆0) = ∆′ properly contains ∆0

contradicting Corollary 1.10.
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Definition 1.12. Let GL(C) denote the collection of all homeomor-
phisms f : ∆ → ∆ which are supported by L. Then GL(C) is a group
under composition of maps.

Theorem 1.13. Let M be a closed compact hyperbolic surface
without boundary, and let L ⊂ M be a minimal lamination having no
closed leaves. Let C be a compact one-manifold in M which meets the
lamination L transversely and whose boundary if nonempty lies in the
complement of L. Then the group GL(C) defined above is nontrivial.
In fact, there exists an element F ∈ GL(C) which is fixed point free,
i.e., F (x) �= x for each x ∈ C ∩ L.

Proof. Let ∆ = C ∩ L. Let ν be any transverse orientation of C.
Then the first return map determines a map f : ∆ → ∆ which is
supported by L (cf. Lemma 1.6). Let ∆ = J1 ∪ J2 ∪ · · · ∪ Jn be the
decomposition given by Lemma 1.8. Since L has no closed leaves, it
follows that f is fixed point free, and therefore each Ji can be taken so
that f(Ji) ∩ Ji = ∅ (cf. Lemma 1.8). For each 1 ≤ m ≤ n, set

∆m = J1 ∪ · · · ∪ Jm.

We show by induction that for each m there exists a fixed point free,
one-to-one map

Fm : ∆m → ∆

which is supported by L. However, Fm+1 will not necessarily be an
extension of Fm. It follows then by Corollary 1.11 that the map
F = Fn : ∆ = ∆n → ∆ is a nontrivial homeomorphism of ∆ onto
itself.

Form = 1 we take F1 = f |J1 . Next suppose that Fm is defined on ∆m

having the above properties. We show how to define Fm+1 on ∆m+1 =
∆m ∪ Jm+1 having the required properties. Let X = Fm(∆m) ∩ Jm+1

and Y = Jm+1 − X. By Lemma 1.10, there exists a map F ′
m+1 on

∆m ∪X with the following properties:

(1) F ′
m+1 is supported by L

(2) F ′
m+1 is an extension of Fm

(3) F ′
m+1(X) ⊂ ∆m − (Fm(∆m) ∩ ∆m).
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We are now ready to define the map Fm+1 on all of ∆m+1. First, set

Z = F ′−1
m+1(f(Y )) ∩ F ′

m+1(∆m ∪X),

and
W = ∆m ∪X − Z.

Set

Fm+1|W = F ′
m+1|W ,(1.1)

Fm+1|Z = f−1 ◦ F ′
m+1|Z ,(1.2)

and

Fm+1|Y = f |Y .(1.3)

Note that Fm+1 is not necessarily an extension of Fm; in fact, if for
some x ∈ ∆m, Fm(x) should equal to f(y) for some point y ∈ Y , then
Fm+1(x) = y �= Fm(x). We further note that f(Y ) ∩ Y = ∅ since
Y ⊂ Jm+1.

It follows from (1.1), (1.2) and (1.3) that Fm+1 : ∆m → ∆ defines
a one-to-one map which is supported by L. Moreover, Fm+1 is fixed
point free; in fact, if x ∈ ∆m, then Fm+1 maps x either to Fm(x) or to
a point in Y . On the other hand, points in Jm+1 are mapped either to
∆m or to F (Y ), both of which are disjoint from Jm+1.

Let F = Fn : ∆ = ∆n → ∆. By Corollary 1.11, it follows that F is
the desired nontrivial element of GL(C).

We note that in the proof of Theorem 1.13, for each 1 ≤ m ≤ n, the
map Fm is “locally” an iterate of the map f , that is, for each x ∈ ∆m,
there exist a neighborhood U of x and a nonzero integer k so that
Fm|U = fk|U .

Definition 1.14. Let f : ∆ → ∆ be a map supported by L. Let
∆′ ⊂ ∆ be a finite union of closed intervals of ∆. A map g : ∆′ → ∆′

supported by L is said to be generated by f if there exists a finite
decomposition

∆′ = I1 ∪ I2 ∪ · · · ∪ Ir
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by pairwise disjoint intervals, and nonzero integers n1, n2, . . . , nr such
that, for each 1 ≤ t ≤ r, we have g|It

= fnt |It
.

As a consequence of the proof of Theorem 1.13, we have

Corollary 1.15. Every map f : ∆ → ∆ supported by L generates
a homeomorphism F : ∆ → ∆ supported by L. Moreover, if f is fixed
point free, then the homeomorphism F can also be taken to be fixed
point free.

By Lemma 1.8, the intervals I1, I2, . . . , Ir occurring in Definition 1.14
can be chosen so that for each 1 ≤ t ≤ r, g(It) is a closed interval
isotopic to It. Therefore, Theorem 1.15 asserts that, given any map
f : ∆ → ∆ supported by L, there exist a decomposition

∆ = I1 ∪ I2 ∪ · · · ∪ Ir
and nonzero integers n1, n2, . . . , nr so that the set {fn1(I1), fn2(I2),
. . . , fnr(Ir)} also constitutes a decomposition of ∆ by pairwise disjoint
closed intervals. Moreover, if f is fixed point free, then for each
1 ≤ t ≤ r, the interval It can be chosen so that fnt(It) ∩ It = ∅.

2. Irreducible elements. Let M be a compact hyperbolic surface
(without boundary) and L a minimal geodesic perfect lamination on
M having no closed leaves.

Definition 2.1. An element f ∈ GL(C) is said to be irreducible
if there does not exist a proper nonempty subset ∆′ of ∆ which is
invariant under f and which is a finite union of closed intervals of ∆.

We shall see later that, if L is orientable, that is, if it admits a
nonvanishing continuous vector field ν, then the first return map with
respect to ν defines an irreducible element of GL(C).

Proposition 2.2. Let f ∈ GL(C). For each closed interval I ⊂ ∆,
there exist a decomposition

I = I1 ∪ I2 ∪ · · · ∪ Ik
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and positive integers m(j) for 1 ≤ j ≤ k such that

I1, f(I1), . . . , fm(1)−1(I1), . . . , Ik, f(Ik), . . . , fm(k)−1(Ik)

is a sequence of pairwise disjoint closed intervals whose union

∆(I) =
k⋃

j=1

m(j)−1⋃

i=0

f i(Ij)

is invariant under f .

Proof. Let I = [x, y] ⊂ ∆. Let

∆ = J1 ∪ J2 ∪ · · · ∪ Jn

be the decomposition of ∆ given by Lemma 1.8. Let

S = {e | e = x, y or is an endpoint of one of the intervals Ji}.

For each point e ∈ S, let O−(e) = {f l(e) | l ≤ 0}. In case
O−(e) ∩ I◦ �= ∅, we set n(e) to be the largest nonpositive integer
such that fn(e)(e) ∈ I◦. Let

P = {fn(e)(e) | e ∈ S}.

Then the finite set P determines a partition

I = I1 ∪ I2 ∪ · · · ∪ Ik

into pairwise disjoint closed intervals.

Let 1 ≤ j ≤ k. Then there exists a positive integer m such that
fm(Ij)◦ ∩ I �= ∅. In fact, there exists a smallest positive integer r
such that fr(Ij) contains an endpoint e of one of the intervals Ji in its
interior, for otherwise by Lemma 1.8,

Ij , f(Ij), f2(Ij), f3(Ij), . . .

would be an infinite sequence of pairwise disjoint closed intervals each
isotopic to Ij , contrary to the result of Lemma 1.3. Now, since
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f−r(e) ∈ I◦j , it follows from the definition of the intervals I1, I2, . . . , Ik
that there exists a nonnegative integer s < r so that f−s(e) ∈ I◦. Thus,
f−s ◦ fr(Ij)◦ ∩ I �= ∅.

For each 1 ≤ j ≤ k, let m(j) denote the smallest positive integer less
than or equal to r such that fm(j)(Ij)◦ ∩ I �= ∅. It follows from the
minimality if m(j) that

Ij , f(Ij), f2(Ij), . . . , fm(j)−1(Ij)

is a sequence of pairwise disjoint closed intervals, each isotopic to Ij ,
and that fm(j)(Ij) is a closed interval isotopic to Ij and contained in I.
In fact, the interval fm(j)(Ij) meets I and does not contain the points
x or y in its interior. It follows that

I1, f(I1), . . . , fm(1)−1(I1), . . . , Ik, f(Ik), . . . , fm(k)−1(Ik)

is a sequence of pairwise disjoint closed intervals whose union

∆(I) =
k⋃

j=1

m(j)−1⋃

i=0

f i(Ij)

is invariant under f .

The following is an immediate consequence of Proposition 2.2.

Corollary 2.3. Let I be a closed interval contained in ∆. If
f ∈ GL(C) is irreducible, then ∆(I) = ∆.

Definition 2.4. An element f ∈ GL(C) is said to be minimal if the
set

O(x) = {fn(x) | n ∈ Z}

is dense in ∆ for each point x ∈ ∆.

Corollary 2.5. Let f ∈ GL(C). The following are equivalent:

(1) f is irreducible,

(2) f is minimal,
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(3) There exists a point x ∈ ∆ for which the set O(x) is dense in ∆.

Proof. First suppose that f is irreducible. Then, for each closed
interval I ⊂ ∆, we have that ∆(I) = ∆. This implies that, for each
point x ∈ ∆, there exists an integer m, dependent on I, such that
fm(x) ∈ I◦. This implies that f is minimal.

Clearly (2) implies (3). Finally, to see that (3) implies (1), suppose
that for some point x ∈ ∆ the set O(x) is dense in ∆. We suppose to
the contrary that f is not irreducible. Then there exists a nonempty
proper subset ∆′ of ∆ which is invariant under f and which is a finite
union of closed intervals. Since O(x) meets ∆′ and ∆′ is invariant
under f , it follows that O(x) ⊂ ∆′. This contradicts our assumption
that O(x) is dense in ∆.

Corollary 2.6. Let f : ∆ → ∆ be an irreducible element of GL(C).
Let I be any closed interval contained in C. Then f generates a fixed
point free homeomorphism F in GL(I), i.e., setting ∆′ = I ∩ L, there
exists a decomposition

∆′ = I1 ∪ I2 ∪ · · · ∪ Ir

by pairwise disjoint closed intervals and nonzero integers n1, n2, . . . , nr

such that
{fn1(I1), fn2(I2), . . . , fnr (Ir)}

also constitutes a decomposition of ∆′ by a pairwise disjoint closed
interval such that for each 1 ≤ t ≤ r we have fnt(It) ∩ It = ∅ and
fnt(It) is isotopic to It.

Proof. By Corollary 2.5, it follows that there exists a fixed point
free map g : ∆′ → ∆′ such that for each point x ∈ ∆′ there exist a
neighborhood U of x and a nonzero integer k such that g|U = fk|U .
The rest now follows immediately from Corollary 1.15.

Theorem 2.7. Let M be a closed hyperbolic surface. Let L be a
minimal geodesic lamination having no closed leaves. Let C ∈ TL, and
let ∆ = C ∩L. Suppose that L is orientable, and let ν be a continuous
nonvanishing vector field defined on L. Then the map f : ∆ → ∆
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defined to be the first return map with respect to ν defines an irreducible
element of the group GL(C).

Proof. First of all, by Lemma 1.6 it follows that the first return map
f on ∆ is a map supported by L. We next claim that the map f is
minimal, i.e., that the orbit of each point x ∈ ∆ is dense in ∆. To see
this we observe that since L contains no closed leaves, no point of ∆ is
periodic. This, together with the fact that L is minimal, implies that
the map f is minimal.

All that remains is to show that f is a homeomorphism. It will then
follow from Corollary 2.5 that the map f is also irreducible. We start
by showing that f is injective. If f were not injective, there would
exist distinct points x1 and xn in ∆ such that y = f(x1) = f(x2).
But the f(y) ∈ {x1, x2} which implies that y is a point of period two
contradicting the minimality of f . To see that f is onto, let z ∈ ∆.
Then there exists a sequence {yn}n�0 ⊂ {fm(z)}m�0 tending to the
point z. For each n, let xn = f−1(yn), and let x be a limit point of the
sequence {xn}. Then, since ∆ is compact, x ∈ ∆. Moreover,

f(x) = lim
n→∞ f(xn) = lim

n→∞ yn = z.

This concludes the proof of Theorem 2.7.

3. Invariant measures. Throughout this section, all measures are
assumed to be probability measures. Let f ∈ GL(C) be an irreducible
element. By Corollary 2.5, the map f is minimal and therefore any
f -invariant measure µ0 on ∆ necessarily has full support on ∆ (cf. [3]).

We saw in Corollary 2.6 that, for each closed interval ∆′ ⊂ ∆, there
exist a decomposition

∆′ = I1 ∪ I2 ∪ · · · ∪ Ir

by pairwise disjoint closed intervals and nonzero integers n1, n2, . . . , nr

such that
{fn1(I1), fn2(I2), . . . , fnr (Ir)}

also constitutes a decomposition by pairwise disjoint closed intervals
with fnt(It) ∩ It = ∅ for each 1 ≤ t ≤ r.



720 L.Q. ZAMBONI

Definition 3.1. Let µ0 be an f -invariant measure on ∆. We say
that the pair (f, µ0) carries discrete dynamics on ∆ if, given any two
nondegenerate closed intervals I and J with µ0(I) = µ0(J), there exist
decompositions

I = I1 ∪ I2 ∪ · · · ∪ Ir
and

J = J1 ∪ J2 ∪ · · · ∪ Jr

and nonzero integers n1, n2, . . . , nr such that for each 1 ≤ t ≤ r we
have fnt(It) = Jt.

In the above definition it is understood that the {It} consists of
mutually pairwise disjoint closed intervals. Similarly for the collection
{Jt}.

Lemma 3.2. Let µ0 be an f-invariant measure on ∆ such that the
pair (f, µ0) carries discrete dynamics on ∆. Then, for any f-invariant
measure ν0 on ∆, and for all closed intervals I and J contained in ∆,
we have that µ0(I) = µ0(J) if and only if ν0(I) = ν0(J). In particular,
the pair (f, ν0) also carries discrete dynamics on ∆.

Proof. Let I and J be two closed intervals of equal µ0 measure, and
let

I = I1 ∪ I2 ∪ · · · ∪ Ir
and

J = J1 ∪ J2 ∪ · · · ∪ Jr

be the decompositions given by Definition 3.1. Then

ν0(J) =
r∑

i=1

ν0(Ji) =
r∑

i=1

ν0(fni(Ii)) =
r∑

i=1

ν0(Ii) = ν0(I).

Conversely, suppose that I and J are closed intervals of equal ν0
measure, and suppose to the contrary that µ0(I) �= µ0(J). Without loss
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of generality, we can assume that µ0(J) > µ0(I) > 0. Recall that µ0 has
full support on ∆. Let J ′ ⊂ J be a closed interval with µ0(J ′) = µ0(I).
Then it follows from the above calculation that ν0(J ′) = ν0(I). But
this is a contradiction since ν0(J ′) < ν0(J) = ν0(I).

Any f -invariant measure µ0 on ∆ defines a measure on the curve C
simply by intersecting any Borel subset of C with the lamination L
and measuring this intersection with µ0. By abuse of notation we shall
denote the resulting measure on C by µ0. We now show that if (f, µ0)
carries discrete dynamics on ∆, then the resulting measure µ0 on C is
a transverse measure, i.e., is invariant under isotopy.

Theorem 3.3. Let f be an irreducible element of GL(C), and let
µ0 be an f-invariant measure such that the pair (f, µ0) carries discrete
dynamics on ∆ = C ∩ L. Let TL(C) = {X ∈ TL | X ⊂ C}. Then the
measure µ0 on C defines a transverse measure on C, i.e.,

(1) µ0 has full support on L.

(2) If C ′ ∈ TL(C) and C ′ ∪i≥0 Ci where Ci ∈ TL(C) and Ci ∩ Cj =
∂Ci ∩ ∂Cj for all i �= j, then µ0(C ′) =

∑
i≥0 µ0(Ci).

(3) If C1 and C2 are elements of TL(C) which are isotopic through
elements of TL, then µ0(C1) = µ0(C2).

Proof. Conditions (1) and (2) are immediate since µ0 is a measure
with full support on ∆ = C ∩ L. Thus, it suffices to verify condition
(3). Also, in view of (2), without loss of generality, we can take C1 and
C2 to be intervals contained in C. Let I = C1 ∩L and J = C2 ∩L. We
must show that µ0(I) = µ0(J). Suppose to the contrary. Without loss
of generality we can assume that µ0(I) < µ0(J). Let J ′ be a proper
subinterval of J with µ0(J ′) = µ0(I). Let I ′ be the corresponding
subinterval I which is isotopic to J ′. Since the pair (f, µ0) carries
discrete dynamics on ∆, it follows that there exists a map g : I → J ′

which is supported by L and which is both injective and surjective.
Composing the map g with the isotopy from J ′ to I ′, we obtain a new
map g′ also supported by L which maps I one-to-one onto I ′. But this
now contradicts the result of Corollary 1.11 since the interval I ′ is a
proper subinterval of I. This concludes the proof of Theorem 3.3.
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Let f be an irreducible element of GL(C), and let µ0 be an f -invariant
measure. Then the essence of Theorem 3.3 is that if the pair (f, µ0)
carries discrete dynamics on ∆, then the measure µ0 descends to a
measure on the family of isotopy classes of TL(C). Thus, the transverse
measure µ0 on C extends to a transverse measure µD for each D ∈ TL.
In fact, each such D admits a decomposition

D = D1 ∪D2 ∪ · · · ∪Dn

where each Dj is a closed interval isotopic to a closed interval Ij
contained in C. Hence we set

µD(D) =
n∑

j=1

µ0(Ij).

In view of Theorem 3.3, this is well defined and depends only on the
isotopy class of D. Thus, the measure µ0 determines a transverse
measure µ on the lamination L, i.e., it gives L the structure of a
measured lamination.

Conversely, if we are given a transverse measure µ on L then the
restriction of µ on C, denoted µC , is necessarily an f -invariant measure
on C with full support on L (cf. Lemma 1.8).

In summary:

Theorem 3.4. Let f be an irreducible element of GL(C), and let
µ0 be an f-invariant measure such that the pair (f, µ0) carries discrete
dynamics on ∆ = C ∩ L. Then µ0 defines a transverse measure µ on
L.
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