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WEIGHTED VERSION OF MULTIVARIATE
OSTROWSKI TYPE INEQUALITIES

M. MATIC, J. PECARIC AND N. UJEVIC

ABSTRACT. We establish two weighted integral identities
and use them to prove a number of inequalities of Ostrowski
type for functions of several variables. The results in the paper
extend some known results of Pec¢ari¢ and Savié as well as some
recent results of Anastassiou.

1. Introduction and preliminary results. The results in this
paper are motivated by the following integral inequality that was proved
in 1938 by Ostrowski [12].

Theorem A. Let [ be a differentiable function on [a,b], and let
[f'(z)] < M on [a,b]. Then, for every x € [a,b],

N L

Some generalizations of this inequality, obtained by Milovanovié [8,
9], Milovanovi¢ and Pecari¢ [10] and Fink [4] were noted in [11, pp.
468-471]. Recently, Anastassiou [1], [2] proved some more general
inequalities of this type.

We are interested in generalization of (1.1) for functions of several
variables. In 1984 Pecari¢ and Savi¢ [14, pp. 263-264] proved the
following result.

Theorem B. Consider a real linear space X of real valued functions
f:Q — R, where Q is a subset of R"™, m € N, and assume that 1 € X
(here 1 denotes the constant function x — 1, x € Q). Let A: X - R
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be a positive linear functional on X such that A(1) =1 andlet f,g € X
be such that fg € X. Suppose that f satisfies the condition

m

(1.2) |ﬂ@—f@ﬂ§§)wm—m

"t for all x,y € Q,

where N; > 0 and 0 < r; <1,¢=1,...,m, are some constants. For
any fired x € Q, define f; : Q@ — R, i=1,... ;m, as

Ly)=lyi—=|", yeQ, i=1,...,m.

(i) If g(y) > 0 for ally € Q and A(g) > 0, then

A n A(f;
EENCE
(ii) If
(14) 0<c<gly)<Ac forallyeQ

with some constants ¢ and X, then

A(fg) = Afi9)  ~— AT A(f;)
15 J10 - G| <2 <2 Mo hAGy

where

T, =sup fi(y), i=1,...,m.
yeQ

A special case of Theorem B can be obtained in the following way,
(14, p. 264]. Take

Q:D::H[ai,bi], ai,biéR, ai<bi, 1=1,...,m,
i=1
and let X be a linear space which contains all functions f : D — R
integrable on D. Define A: X — R as

1
A(f):m/[)f(y)dy, fex.

i=1
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Then (1.3) becomes

ng y) dy
(0 “ f lys — zi|™ g(y) dy
< ;Ni ng v xeD

while (1.5) becomes

o Ao @) dy| = Jp v @il g(y) dy

‘f( ) Jp9(y)dy ‘ : ;N Jp9(y)dy
(1.7) - o
< ZNZ m, xeD

where
T; = (max{z; — a;,b; — x;})"™,
(1.8) g _ (25 — @) + (b — )t i=1...,m.
! (1-’-7’2)(1)2 —al—)
This result is a modification of the result of Pecari¢ and Savié¢ previously

proved in [13, p. 196]. Namely, instead of the condition (1.4), the
following assumption can be used:

0<e¢ <Gily) < Ny for all y; € [ag,b;], i=1,...,m,
where .
Gi(y:) = / 9(y) dyi, = [ [lay. b,
i

dej, i=1,...,

Jsﬁz
In that case, instead of (1.7) we get

s

I fMey)dy| S o fplyi =zl g(y) dy
f(x) — =< > N;
19 ‘ () - ngy ; Jpaly)dy
<N S ep

T, + (N — 1)S;

i=1
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where T; and S; are given by (1.8). Further, if f satisfies the condition
(1.2) with ry = --- = r,, = 1, that is, if

(1.10) |f(x Z i |lxi —yi| forall x,y € Q,

then (1.9) can be rewritten as

N o fy)ely o plyi — xilg( ) dy
fx) ng y)d = ; ng
(1.11) - s
SE s v T
where
t; = max{z; — a;,b; — x;},
1 (2 — ((as + b)/2))° .
Si:[f“ b —an)? ](bi—ai), i=1,...,m.

When g(y) =1 for all y € D, then (1.11) reduces to

Jp f(y)dy
H£1(bi - a;)

—+

M (e (i 6)/2)
= Z {4 (b — a;)? (b~ as)N;

]f(x) -

=1

which is for m = 1 just the Ostrowski’s inequality (1.1). Milovanovié
[9, p. 27] proved (1.11), but under more restrictive assumptions on f
than (1.10), that is, under the assumption that f is differentiable on D

and
’W( x)

<N; forallxeD, i=1
ox;

N

Also, it should be noted that the inequality (1.6), along with the special
case when ¢g(y) = 1 for all y € D, was rediscovered in the recent paper
(3].

The proof of the second part of Theorem B is based on the following
result obtained by Pecari¢ and Savié¢ [14, p. 247].
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Theorem C. Assume that a space X and a linear functional A :
X — R are as in Theorem B. Let f,g € X be such that fg € X.
Suppose

my < f(x) < My, my# M,

and
0<mg <g(x) <My foralxeQ@,

where my, My, mo and My are constants. If
D(f) == My — A(f) and d(f):=A(f)—m,

then

mlMgD(f) +M1m2d(f) < A(fg) < Mled(f) +m1m2D(f)
MoD(f) 4+ med(f) - Alg) — Mod(f) + maD(f)

Theorem C is a generalization of one result of Lupag [6, Theorem 1].
We actually need the following corollary.

Corollary D. Let Q be a convex and compact subset of R™, m € N
such that Vol (Q) = fQ dy > 0. Let g,w : Q — R be integrable on Q.
Suppose

k<gly) <K, k#K

and
O0<c<w(y) <A, yeqQ,

for some constants k,K,c and A. If G := (1/Vol (Q)) fQ g(y)dy, then

Me(K = G) + K(G—k) _ Jo9)w(y)dy
ME=G)+(G—k) —  Jouly)dy
_ KE —G)+\K(G = k)
= T (K-G)+ MG —k)

The result stated in the above corollary is a generalization of an
analogous result proved by Karamata [5] for integrable real-valued
functions defined on [0, 1]. Tt is easily proved; we simply take X to be



516 M. MATIC, J. PECARIC AND N. UJEVIC

a space of all integrable functions defined on @) and define A: X — R

as
1

A(f):=m/Qf(y)dy, feX,

and then apply Theorem C.

Another possibility to generalize the inequality (1.1) is to use the
higher order derivatives. This idea was used by Anastassiou [1], [2].
The main result from [2] concerning functions of several variables is:

Theorem E. Let Q be a compact and convexr subset of R™, m > 1.
Let f € C""1(Q), n € N and x € Q be fived such that all partial
derivatives fo := (0%f/02%), where a = (a1,... , ), a; € NU{0},
i=1,....m, ol =" 0a,=7,j=1,...,n fulfill fa(x)=0. Then

e Sy )

1 m
(1.12) <m/@(;|yz—$z|

D’n«+1(f) n
=t D)IVol (Q) /Q(||Y—X|1) +dy,

Oo)”“f(y) dy

9
82’1'

where

Dnpa(f) = max  felle

and

m
ly = [l == lyi — @il-
=1

In this paper we extend the above results of Pecari¢ and Savié¢ as well
as the results of Anastassiou. Similar results for the functions of one
variable can be found in the recent paper [7].

2. Two integral identities. We consider an open interval I C R
and fixed a,b € I, a < b. Suppose that a function g : I — R is given.
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If, for some n € N, g(™)(t) exists for all ¢ € [a,b], then we define

") (2 _
Ro(z,y:9) = g(y) — g(a) = Y 7 j,( ) (y—z), x,y€[ab].
=1 7
Also we set

Ro(z,y59) :=g(y) —g(x), x,y€[a,b].

Lemma 1. Let g: I — R be a function defined on an open interval
ICR, andleta,bel, a <b.

(i) If (for some n € N) g™ (t) ewists for all t € [a,b] and g™)(-) is
integrable on [a,b], then for all x,y € [a,b] we have

(2.1)  Ru(z,y;9) = ﬁ /U (g™ (1) — g™ (2)](y — )" dt.

(ii) If (for some n € N U{0}) g™tV (t) exists for all t € [a,b] and
)

g™t (.) is integrable on [a,b], then for all x,y € [a,b] we have
1 Y (n+1) n
(2.2 Ralei) = [ g0~ 0.

Proof. For x,y € [a,b] and for j € N, denote

Ajaaia) = =y [ 690 =99 @l =07

We have
Y

Ar(z.yig) = / [0'(t) — g/ ()] dt

=9(y) —g(z) = ¢'()(y — x)
= Ri(z,y;9)
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which shows that (2.1) is true for n = 1. Further, by partial integration
we get for any j € N

) . AV
8(w359) =~ 09 0) — ¢ )] L=
L[V G |
(2:3) o / dT (1) (y — 1) dt
LY Gy j
= [ - an
Using this we also have
L[ G G+1) j
Aj(z,y;9) = i [V (t) — gV ()] (y — 1)’ dt
) —_ )ity
— g+l (g) %
(G+1)! |,
(j+1)
g x ;
=Ajp(z,y;9) + Wl()') (y— )t
or
(G+1)
g z ;
(2.4) Ajyi(z,y39) = Aj(w,y39) — (jTl()') Y- x)JH-

Suppose (2.1) is valid for some n € N and g1 (.) is integrable on
[a,b]. Then by (2.4)

(n+1)
g €z n
(n+1)
g € n
=An(z,y39) — (nTl()') (y — )"
= Any1(@, 95 9)

and we conclude by induction that (2.1) is true for any n € N. Now
combining (2.1) and (2.3) we get, for n € N,

1

Yy
Ro(e,i9) = Muevig) = 5 [ 9" 000 -0 de.
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So (2.2) is valid for any n € N. It is easy to check that (2.2) holds for
n = 0 too. o

Let @Q be any compact and convex subset of R™, m € N. A weight
function on @ is any function w : Q — [0, 00) which is integrable on @
and

/Qw(Y) dy > 0.

For given m-tuple & = (aq,... , ), a; € NU{0}, i =1,...,m, we
use the notation

m m
la] = E o; and o :=Hai!=a1!---am!.
i=1 i=1

Also, for any z = (21,... ,2m) € R™, we set

m

o oy 00 Oy
Z —|Izl =z Zp"

i=1

Here we assume the convention 0° = 1. With such notation the
following multinomial formula is valid:

(2"1:22)”_ Z Z—!'za, n € N.

=1 |O|=n
Also, for given m-tuple r = (ry,... ,rp), r; € [0,00), i =1,... ,m, we
set
m
2 = (|z1]y- s lzml) and 2" = [ lzol™ = | - o]
i=1

again with convention 0° = 1.

If a weight function w : @ — [0,00) is given, then we define the
moment me(Q; w) of order a, of the set @ with respect to w as

ma(Qsw) = /Q y®u(y) dy.
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For any fixed x € @ we define the x-centered moment E(x,Q;w) of
order «, of the set () with respect to w as

o (x, Qs w) /Q (v — x)%ul(y) dy.

Also, for any fixed x € @ and for any m-tuple r € [0,00)™ we define
the x-centered absolute moment M,(x,Q;w) of order r, of the set @
with respect to w as

M, (x,Q;w) := / ly — x["w(y) dy.
Q
Note that
mo(@:w) = Eo(x. Qs w) = Mo(x.Qsw) = [ w(y)dy.

Q

where 0 = (0,...,0). In the special case when w(y) = 1 for all
y € Q = [a,b], where a = (a1,...,a;,) and b = (by,...,b,) are
such that a; < b;, i =1,... ,m and

m

[a,b] := H[ai,bi] ={(x1,... ,&m) ra; <a; < b, i=1,...,m},
i=1

we shall use the notations
mea = ma([a, b]; 1), Eq(x):= Ea(x,[a,b];1)
and
M, (x) := M(x,[a, b];1).
An easy calculation gives

m bi m bari’l_ a;+1
i

ma:H/ y?idyizniai_ff

i=1 v % i=1

and
m

b;
Ba(x)=]] / (yi — ;)™ dy;

i=1 7 @i

o ﬁ (bz — $i)a'i+1 + (_1)0@ (3% _ ai)ai-i-l
- a; +1

)

i=1
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while for r € [0, 00)™ we have

911

_H (z; — a;)" T + (b — ;)i
r+1 '

" dy;

Next suppose that f : V — R is any function defined on an open set
V' C R™ which contains @ as a subset. If for some k € N partial
derivatives fo(y) exist for all y € @ and for all @ with |a| < k, then
we can define

o, fiw /f y)dy - f(x )/Qw<y)dy

zz Jo1%) (. i),

J=1|o=g

where x € @) is any fixed element. Also, we set

/f y)dy - f(x )/C2w<y>dy, x€Q.

Theorem 1. Let f: V — R be a function defined on an open subset
V of R™, m € N. Let Q be any compact and convez subset of V', and
let w: Q — [0,00) be a weight function on Q.

(i) If f € C™(Q) for some n € N, then for any x € Q we have

(25) Rulxfiw)= 3 = | (=%

(i) If f € C" Q) for some n € N U{0}, then for any x € Q we
have

26 Rubxf)= 3 0 [ o

|O¢|=n+1

- { / et iy — )1 - t)"dt}wm dy.
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Proof. For fixed x,y € Q, x = (1, ,Zm), ¥ = (Y1,--- ,Ym), We
can define gy y : [0, 1] — R as

gxy(t) = f(x+t(y —=x)), te€l0,1].

We have gxy(0) = f(x) and gxy(1) = f(y). Also, if f € C*(Q) for
some k € N, then gxy € C*([0,1]) and for j =1,... ,k

00 = (S 0= )
7 = 3 Ly -9 alx+ily )
and o
(2.8 0= Y L5 -x%ak).
Further, o

=
k
S R D D) DI L
J=1|al=j '

Multiplying this by w(y) and integrating over y € @, we get

/ Ri(0,1; grey () dy
Q

/f y)dy - f(x >/Qw<y>dy

—sz“ / (v = x)®w(y) dy

J=1 |o)=j

(2.9) / F(y)w(y) dy — f(x) /Q w(y) dy
3 Y 2 )
Jj=1 |a)=j

= Rk(xa faw)
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Now if f € C™(Q) for some n € N, then by (2.7) and (2.8) we have

g () — gl (0) = Y g, (v — x)Y[falx+tly —x) — fa(x)].
la|=n

Using this and (2.1) we have

1
R (0.15003) = oy | o - sgdoia -0 ar

= %(Y—X)a

Q=n
1
' /0 [fa(x+ty —x)) — fa(x)](1 —t)" dt.

Multiplying this by w(y) and integrating over y € @ and then using
(2.9), we get (2.5). If f € C"T1(Q) for some n € NU{0}, then by (2.2)
and (2.7) we have

1 1
R0 Ligy) = o [ a0 0" ar

-y "ly-xe

|O¢|=n+1

[ ety =@ -

Multiplying this by w(y) and integrating over y € ), and then using
(2.9), we get (2.6). O

3. Some Ostrowski-type inequalities. In this section we use in-
tegral identities (2.5) and (2.6) to deduce some Ostrowski-type inequal-
ities. As in the preceding section we consider a function f : V — R
defined on an open set V- C R™, m € N, and which is integrable on a
convex and compact subset () of V. We also consider a weight function
w: Q — [0,00) defined on Q C V. We can define

o fy)w(y) dy

Ovla, frw) 1= LS (), x€Q
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Further, under the assumption that for some k& € N partial derivatives
fa(y) exist for all y € Q and for all o with |a| < k, we can define

k )
( f’ Q Z a(X,Q;w)7

X € Q.

3.1 Inequalities involving functions of class C"(Q). We use
the integral identity (2.5) to obtain some upper bounds on the quantity
|On(x, f;w)]. The basic estimations are given in the following theorem.

Theorem 2. Let f: V — R be a function defined on an open subset
V of R™, m € N. Let Q be any compact and convex subset of V' such
that Vol (Q) = fQ dy >0, and let w : Q — [0,00) be a weight function
on Q. Suppose f € C™(Q) for some n € N.

(i) For any x € Q we have

mo(Q;w) ‘a‘_n
(31) < s |y =l iy ay
< D) x @)
where
(32)  pelxQ) = max|ly = x| = (max/y —x) . s>0
and

Du(x, f) = max |[[fa() = fa(¥)]-

o:|O0=n
(ii) If for some constants ¢ and A

(3.3) O0<c<w(y)<Ac foralyeqQ,
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then for any x € Q

Dy (x, f) ] A (X, Q) S (%, Q)
n! pn (%, Q) + (A = 1)S,(x, Q),

(3.4) |On(x, f;w)] <
where

(3.5) Ss(x,Q) = Vo%@ /Q lly — x|l dy, s>0.

Proof. For fixed x € Q and for any a = (1,... ,q4), a; € NU{0},
i=1,...,m, such that |a| = n, we have

/0 Ferlxttly — %)) — fa())(1 = 6" dt‘

< [lfal) = fa®)ll / (1— "t
=~ lfal) - fa(l

So from (2.5) we get the estimation

|&|=n

_ 3 Va0 falle oo
and dividing this by mo(Q;w) = fQ w(y)dy > 0 we get the first
inequality in (3.1). Further,

|ot|=n

<Du(x,f) Y i/Qy—XIaw(y)dy

|a|=n

2D [ Sy July)ay

|C|=n

= 2 [y =l ) ay
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and this implies the second inequality in (3.1). The third inequality in
(3.1) is a consequence of the following simple estimation

/Q ly — x| w(y)dy < max ly —x[I? /Qw(Y) dy
= pin (%, Q)mo(Q; w).

To obtain (3.4) set g(y) = [ly — x[|, y € @, and note that
0<g(y) <max|y —x[|7 = pn(x, Q)
yeQ

and
VO%@) /Q o(y) dy = Su(x.Q).

Now apply Corollary D with &k = 0, K = p,(x,Q) and G = S,,(x,Q)
to get
1 n o lly =x|Fw(y) dy
T /Q Iyl wty) dy = <0
Atin (X, Q) Sn (%, Q)
T (%, Q) = Sn(x,Q) + ASn(x, Q)

so that (3.4) follows from the second inequality in (3.1). m

Remark 1. Upper bound on |O,,(x, f;w)| given by the inequality (3.4)
is better than one given by the third inequality in (3.1). Namely, it is
obvious that

1

= e — |7 dy < — |7 = pn(x,
5.0@) = gy [ Iy Iy < maxly - 17 = (x. @

and

M (%, Q) S (%, Q)
1 (%, Q) + (A = 1)S,(x, Q)
_ AS,(x,Q) .
i (%,Q) = Su(x,Q) + ASn (%, Q) pn (%, @)

< ,un(xv Q)
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It is easy to see that this last inequality can be strict.

Remark 2. In the case when Q = [a,b] = [[\%;[a;,b;], where a =
(a1,...,am) and b = (by,... ,by,,) are such that a; < b;, i =1,... ,m,
the quantity u,(x, @) can be calculated. If x € @ is fixed, then for any
yeq

m
ly =l = lyi —
i=1
m
S Z maX{xi — ai,bi — l‘l}
_aitb

U bi—ai
:Z( 3 TN

‘b—a+‘x_a—|2—b

)

1
If we define yo = (yo1,.-- ,Yom) € R™ by
a; ifxi—aizbi—:m' . 1

;= , i=1...,m

Yoi b; if T, —a; < b —x; ’ ’

then yo € [a, b] and it is easy to check that |y —x]||1 = ||[((b—a)/2) +
|x — ((a+b)/2)|||l1. We conclude that

—a a+b
max |y — x| = + |x =
y€[a,b] 1
and b "
—a a+
tn (%, [a,b]) = H -l-‘x— 5 )
1

We proceed with some estimations which can be obtained when
additional assumptions are made on f.

Definition 1. Consider a function g : @ — R defined on a subset
Qof R, m e N. Let L= (Ly,... ,Ly) and r = (rq1,... ,7,,) where
L;>0,7,>0,i=1,...,m. Wesay that g is of class C, 1.(Q) if

[g(u) — g(v)] < ZLi lu; —v;|" for all u,v € Q.
i=1
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If g is of class C(y,... 1),L(Q), that is, if

lg(u Z ilug —v;| forallu,v e @,

then we say that g is L-Lipschitzian. If g is (L, ... , L)-Lipschitzian for
some L > 0, that is, if

() = g(v)| LY |ui —vi| = Lju—v]|y forallu,veQq,

i=1

then we say that g is L-Lipschitzian. Finally we say that ¢ is of class
C,..(Q) for some r >0 and L > 0 if

lgw) —g(v)| < Lu—vl} forall u,v € Q.

Theorem 3. Let f: V — R be a function defined on an open subset
V of R™, m € N. Let Q be any compact and convex subset of V' such
that Vol (Q) = fQ dy >0, and let w : Q — [0,00) be a weight function
on Q. Suppose f € C™(Q) for somen € N.

(i) Suppose foo is of class CeL(Q) for all @ = (a1,...,0m),
a; € NU{0}, i =1,...,m, such that |&| = n. Then for any x € Q
we have

|On (%, f;w)|
1 K Ll(ri+1)
3.6 < . R .
(39 ~ mo(Q;w) ; C(ri+1+mn) / ly =l |y w(y) dy
~ LT(r;+1)
< At T (%, ,
T = I(ri+1+n) i (%, Q)
where
fini (%, Q) = max ||y — x|} |ys , i=1,...,m
yeaQ
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If, additionally, w satisfies (3.3), then

|0y (x, f;w)|
(3.7) <§: Lil(ri+1)  Mini(%,Q)Sn,i(x,Q)
T Tt 1+n) pni(x,Q) + (A= 1)Sn(x,Q)
where
$05,Q) = gy [ Iy Xl dy, =1

(ii) Suppose foa is of class Cr(Q) for all o = (a1,...,0m),
a; e NU{0}, i =1,...,m, such that |&| = n. Then, for any x € Q,
we have

LT(r et
N 00 10| € oy o 1Y =18 wly) y
(3:8) LT(r+1)
= m Mn+r(X7 Q)a

where fin+r(X,Q) is defined by (3.2). If additionally w satisfies (3.3),
then

w)| < LT(r +1) AMinyr (X, Q) Snpr (%, Q)
T I(r+1+n) Mn-i-r(xa Q) + (A= 1)Snir(x, Q),

(3.9) [On(x, f;
where Sy, (x,Q) is defined by (3.5).

Proof. If fo is of class Cy 1.(Q), then

[fa(x+ty —x) SZ i [t(ys — @)
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for any two x,y € @ and for any ¢ € [0,1]. This implies
1
[ttty =) = o - o
0
DI / e
P 0
= ZLi |Yi

1=

" B(r; + 1,n),

[

where B(u,v) := fol tv=1(1 —¢)*"1dt, u > 0, v > 0 is a beta function.
We know that B(u,v) = I'uw)['(v)/T'(u + v), where I' is a gamma
function. Also I'(n) = (n — 1)!, n € N so that

[ bty =) a1 -0

T4

Lil"(ri—kl)
<(n-1)! — |y — x;
<(n-1) ZF(m—l—l—i—n)w x

R (x, f;w)]|

- O;ﬂ E'/ y—x|a<(n & ; Fl(/;f‘gil—:-lT)l) i~ l")w(y)dy
‘2%4(25%)&% w(y) dy
-3 O [yl b

and dividing this by mo(Q;w) = fQ y)dy > 0 we get the first

inequality in (3.6). To obtain the second 1nequahty in (3.6) we only

have to note that
" / w(y) dy
Q

[ Iy =l =z,
Q
:/“Ln,i(va)mO(Q;w)a T = 15 , M.

T4

w(y)dy < ma: —x || |y;
(v) yfyeg;Hy 7 i
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Further, for fixed ¢ € {1,... ,m} we can set g(y)=|y —x||7 |v:
y € @ and note that

0 <g(y) <max|ly — x|} lyi — 2] = pn,i(x, Q)
yeQ
and
! /()d L /H 71 " d
_ __ x| s — |
Vol (@) Jo Y YT Vel J, W I Y

— Sn,i (X7 Q)
If w satisfies (3.3), then we can apply Corollary D to obtain

1 LT(r;+1)
Hy |1 |y —

mo(Q;w) = I'(ri+1+4n)

zm: L F ’I"z + 1) Aﬂn,i (X7 Q)Sn,i(xa Q)
C(ri +14n) pni(%,Q) — Sni(x,Q) + AS.i(x, Q)

so that (3.7) follows from the first inequality in (3.6). Further, suppose
fau is one of class C,. (Q). Then

[fa(x+ty —x)) = fa(x)] < Lty —x)|l] = Lt" [ly — x|}
for any two x,y € @ and for any ¢ € [0,1]. This implies

w

w(y) dy

Ms

-
I

=1

‘/Ol[fa(x—i-t(y—x)) ~ fa(x))(1 _t)n—ldt’

1
<Lly-xlf [ -0t
0

=Ly —x[ly B(r +1,n)
CLT(r 4 D)(n — 1)

_ T
I'(r+1+n) ly = Il
Using this estimation and (2.5), we have
LF r+1)(n—1)!
Rn < VTV Ty —x|T d
(R, f50)] ; /I i Xl dy
LF(T—I—l) n! o .,
= - — — — d
T+ 14n) /( > ily—x] )IIy x|t w(y)dy

|&x|=n

LF 1
(r+ / Iy — x5+ w(y) dy
7°+1+n
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and dividing this by me(Q;w) = fQ y)dy > 0 we get the first
inequality in (3.8). The second 1nequahty in (3.8) is a consequence
of the estimation

/ Iy — <7+ w(y) dy < max [ly — x|+ / w(y) dy
Q yeQ Q
= Un+r (X7 Q)mO(Q7 w)

Finally, if g(y) = [ly = x|}*", y € Q, then

0 < g(y) < max|y — x| = pnir(x,Q)
yeQ
and
i@ Wy = /|| 1147 dy = Sy (x,Q),
—X n—+r X

so that when w satisfies (3.3) we can apply Corollary D to get

1 n—+rr
m/@ny—xm w(y) dy

/\ﬂn+7”(xv Q) YL+7"(X Q)
T g (%, Q) = Sppr (%, Q) + ASpyr (X, Q)

Now (3.9) follows from the first inequality in (3.8). O

It should be noted that, under the assumption that f is of class
CrL(Q), inequalities (3.6) and (3.7) are valid for n = 0 too. When
n =0, (3.6) becomes

1 m
O(x, fiw)]| < ——— Li/ yi — x| w(y) dy
Out frl < s D | v)
S Z Lz /LO,i(Xa Q)7
i=1
where
uO,i(X7Q):I;l€a‘g|yi ia Zzlv <.,y
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while (3.7) reduces to

m Ao,i(x, Q)So,i(x, Q)
|O(x, f;w Z 10.4(%,Q) + (A — 1)S0.(x, Q)

where

SOZ(X Q VOI / ‘yi 7dY7 Z:]-a , .

These inequalities can be obtained by applying Theorem B. It is enough
to set X to be a linear space of all functions f :  — R integrable on
Q@ and define A: X — R by

A(f) = /f )dy, fe€X.

Vol

Moreover, under the assumption that f is of class C, 1 (Q), the second
part of Theorem 3 is valid for n = 0 too. When n =0, (3.8) and (3.9)
reduce to

L ks
(3.10) [Oolx, fiw)| = ;;35;;5'/2 Iy =l w(y) dy
< L (x,Q),

and

A (x, Q) Sy (x, Q)
(X, Q) + (/\ - 1)ST(Xv Q)’

respectively. It is not hard to prove (3.10) and (3.11) directly. Namely,
we have

(3.11) |Oo(x, f;w)| < L-

fy) = f&E) < Llly —x[l;, xyeQ.
Multiplying by w(y) > 0 and integrating over y € @, we get

’/f’ y)dy - f<{éw@0@¢s1Jﬂﬁ—f@ﬂw@ﬂw

SL/WW—xMwwmy
Q
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D1V1d1ng this by mo(Q;w) = [, w QW y)dy > 0, we get the first inequality
n (3.10). The rest of the proof is the same as for (3.8) and (3.9).

In connection with Theorem 3, observations similar to those given in
Remarks 1 and 2 can be made.

3.2 Inequalities involving functions of class C"*1(Q). In this
section we use the integral identity (2.6) to obtain some further bounds
on the quantity |0, (x, f;w)].

Theorem 4. Let f:V — R be a function defined on an open subset
V of R™, m € N. Let Q be any compact and convex subset of V' such
that Vol (Q) = fQ dy >0, and let w : Q — [0,00) be a weight function
on Q. Suppose f € C"1(Q) for some n € NU{0}.

(i) For any x € @ we have

Oux il < s 0 o ba(x, i)

mO(Qa |a|—n+1
(312) < (n+1n'-;:rllo Q / ”y XH7L+1 ( )
< Dn+1 (f)

= m 1 (%, Q),
where fin+1(x, Q) is defined by (3.2) and

Dy (f) = oo | felloo-

(ii) If, additionally, w satisfies (3.3), then for any x € @,

Dyya(f) . Ml t1(X, Q) Sny1(x, Q)
m+1)! pp1(x,Q) + (A —1)Sp41(x,Q)’

(3.13)  [On(x, f;w)] <

where fin41(X, Q) is defined by (3.2) and Sy11(x, Q) is defined by (3.5).
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Proof. If f € C"*1(Q) for some n € N U {0}, then for any partial
derivative fo with |a| =n + 1 and for any x € Q

\/0 falx+ty —x)(1 —t)"dt‘ < ol /O A

_ el
n+1"

Using this estimation we get, from (2.6),

Rax, frw) < Y el /Q y —xI%u(y) dy

|O|=n+1

|o|=n+1
Ma(x,Q;w
o) ¥
|ot|=n+1 ’
|O|=n+1
o Dn+1 n-+1
- 7 / Iy — I w(y) dy
Dn-‘rl(f) n+1/
S Tt max [y — x| Qw(y) dy
_ Dn l(f)
= ﬁﬂnﬂ(x ,Q)mo(Q; w)
and dividing this by mo(Q;w fQ y)dy > 0 we get (3.12). To
prove (3.13), we use the argument sumlar to that used for (3.4). O

Corollary 1. Let the assumptions of Theorem 4 be satisfied. Ad-
ditionally, suppose that, for some x € @ all partial derivatives fey,
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1 <|o| <n fulfill fa(x) =0. Then we have

RErcT
< (22’ m 3 Hft;l\oo Ma(x, Qs w)
(3.14) |Cl=n+1
< i | Iyl ) dy
< Dunilf)

>~ (n+1)| /Ln+1(X,Q)-
If additionally w satisfies (3.3), then
fQ y)dy
mo(Q, o )

< Dn+1(f) . )‘:UfnJrl(Xv Q)Sn+1(x> Q)
T (D g (x,Q) + (A= 1)Shta(x,Q)

Proof. Since fo/(x) =0 for 1 < || < n, we have

fQ y)dy
—mo Q) f(x)

and the desired result follows by Theorem 4. ]

On(xaf; ) -

Remark 3. When w(y) = 1 for all y € @Q, the first part of the
above corollary coincides with Theorem E. Namely, in that case we
have mo(Q; 1) = [, dy = Vol (Q). Also

|a|=n+1

B <n+1 ! /Q ( Y Dy e ||fa||oo) dy

|O|=n+1
n+1
) £(y)dy,

:(n—l—l /(Zly” zil

oo
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so that the first and the second inequality in (3.14) coincide with (1.12).

Remark 4. In connection with Theorem 4 and with Corollary 1,
observations similar to those given in Remarks 1 and 2 can be made.

Acknowledgment. The authors wish to thank Professor G.A.
Anastassiou who called their attention to his article [2], from which
this paper results.
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