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UNIVALENCE AND CONVEXITY PROPERTIES
FOR GAUSSIAN HYPERGEOMETRIC FUNCTIONS

S. PONNUSAMY AND M. VUORINEN

ABSTRACT. Let A = {f : ∆ → C | f(z) = z +∑∞
n=2

Anzn}. We study sufficient/necessary conditions, in
terms of the coefficients An, for a function f ∈ A to be mem-
ber of well-known subclasses of the class S of univalent func-
tions. Examples of these subclasses include starlike, convex,
close-to-convex functions. In particular, functions of the form
z2F1(a, b; c; z) are considered, where 2F1(a, b; c; z) is the hy-
pergeometric function.

1. Introduction. The class of normalized analytic functions

(1.1) A =
{
f : ∆→ C

∣∣∣ f(z) = z +
∞∑

n=2

Anz
n

}

has been studied extensively, together with its subclass of univalent
(Schlicht) functions

(1.2) S = {f ∈ A | f is one-to-one in ∆},

where ∆ is the unit disc. Along with the classes A and S several
subclasses of S have been widely studied. Two such subclasses are
analytically characterized by

(1.3) C(β) =
{
f ∈ A

∣∣∣Re
(
1 +
zf ′′(z)
f ′(z)

)
> β, z ∈ ∆

}
, β < 1,

and

(1.4) S∗(β) =
{
f ∈ A

∣∣∣Re
(
zf ′(z)
f(z)

)
> β, z ∈ ∆

}
, β < 1.
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The classes are called convex of order β and starlike of order β,
respectively. If β = 0 these classes are called just convex and starlike
and are denoted by C and S∗, respectively. Given a convex function
g ∈ C with g′(z) 	= 0, set

(1.5) Kg(β) =
{
f ∈ A

∣∣∣Re
(
f ′(z)
g′(z)

)
> β, z ∈ ∆

}
, β < 1.

The class Kg(0) is the class of functions close-to-convex with respect
to g. Let K = {Kg(0) : g ∈ C} denote the class of all close-to-convex
functions. The strict inclusions C � S∗ � K � S hold. We prove in
this paper univalence criteria for the Gaussian hypergeometric series

(1.6) F (a, b; c; z) := 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)n!

zn,

where

(a, 0) = 1, (a, n+ 1) = (a+ n)(a, n), n = 0, 1, 2, ...,

and where we require that the denominators 	= 0 that is c 	=
0,−1,−2,−3, . . . and we give various univalence criteria for 2F1 in
terms of inequalities between the three parameters a, b and c. The
hypergeometric function has found many applications and generaliza-
tions, [19]. The present work is in part motivated by our earlier work
dealing with the case of the Gaussian hypergeometric function and its
asymptotic behavior close to the singularity r = 1 for real values of r,
see [2, 16].

Ozaki [14] (see also [1, 10]) proved the following theorems just
by looking at certain monotonicity conditions on the coefficients An

when these coefficients are real and nonnegative. Monotonicity of the
sequence {An}, An = (a, n)(b, n)/((c, n)n!) was used in [2, 16] to derive
explicit bounds for the asymptotic behavior of F (a, b; c;x) at x = 1.

Theorem 1.1 [14]. Suppose that

(1.7) 1 ≥ 2A2 ≥ · · · ≥ nAn ≥ · · · ≥ 0

or

(1.8) 1 ≤ 2A2 ≤ · · · ≤ nAn ≤ · · · ≤ 2
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and f is defined by (1.1). Then f is close-to-convex with respect to
− log(1− z).

Theorem 1.2 [14]. Suppose that f is an odd function (i.e., A2n in
(1.1) is zero for each n ≥ 1) such that

(1.9) 1 ≥ 3A3 ≥ · · · ≥ (2n+ 1)A2n+1 ≥ · · · ≥ 0

or

(1.10) 1 ≤ 3A3 ≤ · · · ≤ (2n+ 1)A2n+1 ≤ · · · ≤ 2.

Then f ∈ S. Indeed, f is close-to-convex with respect to the convex
function (1/2) log((1 + z)/(1− z)).

Theorem 1.3 [6]. If An ≥ 0, {nAn} and {nAn − (n+1)An+1} both
are nonincreasing, then the function f defined by (1.1) is in S∗.

It is interesting to point out that a convex function in A need not
be close-to-convex with respect to the identity function g(z) = z. The
convex function z/(1 − z) clearly demonstrates this. More explicitly,
even if f ∈ A is in C then it is not true [8] that Re (f ′(z)) > 0 in
the whole of ∆. It is also known that if f ∈ A satisfies the condition
Re (f ′(z)) > 0 for z ∈ ∆ then the function f need not be starlike in
the whole of the unit disc ∆. Indeed, not even the condition

(1.11) |f ′(z)− 1| < λ,

will imply the starlikeness if λ > 2/
√
5. Fournier [7] has shown that if

λ ≤ 2/
√
5, then (1.11) implies starlikeness, and the bound λ = 2/

√
5

is sharp.

Theorem 1.4 [12]. Let Ω ⊂ C. Suppose that ψ : C2 × ∆ −→ C
satisfies the condition

ψ(ir2, s1; z) 	∈ Ω
when r2 is real and s1 ≤ −(1 + r22)/2. If p is analytic in ∆, with
p(0) = 1 and ψ(p(z), zp′(z); z) ∈ Ω for z ∈ ∆, then Re (p(z)) > 0 in ∆.
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The above theorem is a special case of Theorem 1 due to Miller and
Mocanu in [12].

Merkes and Scott [11] made use of continued fractions and showed
that if 0 < a < c, 0 ≤ b ≤ 2 and b ≤ a then z2F1(a, b; c; z) is starlike
in ∆. Ruscheweyh and Singh (see [19] and [21, Theorems 1 and 2])
employed a refined version on continued fraction and convolution theory
and obtained sufficient conditions for z2F1(a, b; c; z) to be in S∗(β),
β < 1, for various choices of the parameters a, b, c. In this paper
we employ two different techniques: the first one makes use of the
well-known criteria of Ozaki and Fejér dealing with the sufficiency for
close-to-convexity and starlikeness, respectively. The second method is
a slightly modified version of the idea of Miller and Mocanu [13] and
it uses Theorem 1.4. Similar problems for confluent hypergeometric
functions have been considered by the authors in detail in [17]. Lewis
[9], using another approach, based on the so-called Julia-Jack-Clunie
lemma, proved the following result:

Theorem 1.5 [9, Lemma 1]. For α ≥ β > −∞, the function
zF (1 + α+ β, 1 + β; 1 + α; z) is in S∗((1− α− β)/2).

We recall that the functions in S∗((1−α−β)/2) need not be univalent
if α + β > 1. Because of normalization we require that α + β > −1.
These observations show that the starlikeness of zF (1+α+β, 1+β; 1+
α; z) in Theorem 1.5 holds only for the values of α, β with α ≥ β > −∞
and −1 < α+ β ≤ 1. In our notation this is equivalent to saying that
the function zF (a, b; c; z) is in S∗ for a, b, c > 0 such that a ∈ (0, 2]
and 1 < b + c ≤ 3, according to Theorem 1.5. On the other hand,
in Section 3 of the present paper, for a given a, b > 0 we determine a
condition on c so that zF (a, b; c; z) ∈ S∗. (In fact, we conclude much
more than this, see Theorems 3.1, and 3.2.) A similar situation arises
when considering the results of Ruscheweyh and Singh [21].

At this place, we remark that the univalency question for zF (a, b; c; z)
and F (a, b; c; z) are different, as the examples 1 + z and z + z2 show
for instance. For a given a, b > −1, a condition on c has been
established in [15], in particular, for the univalence of the function
F (a, b; c; z). In [5], Carlson and Shaffer introduced a convolution
(Hadamard product) operator for the case a = 1 to study the properties
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of the hypergeometric function zF (1, b; c; z) under this operator for a
different purpose.

This paper is organized as follows. In Section 2, we investigate
the geometric meaning of hypergeometric functions, i.e., we establish
constraints on the coefficients a, b, c to obtain geometric properties
such as close-to-convexity for zF (a, b; c; z). In Section 3, we determine
conditions on a, b, c so that the function zF (a, b; c; z) is close-to-convex
with respect to z/(1 − z) and is also starlike in ∆. In Section 4, we
find conditions so that an odd hypergeometric function zF (a, b; c; z2)
is close-to-convex with respect to the convex function (1/2) log((1 +
z)/(1−z)). In Section 5, we use the method of differential subordination
to obtain the order of convexity for zF (a, b; c; z) and the order of
starlikeness for the odd function zF (a, b; c; z2), respectively.

In the proof of Theorems 2.1 and 4.1, we use the following well-known
fact that follows easily from the Stirling formula [3, p. 57, Equation 5]:

(1.12) lim
n→∞

(a, n)(b, n)
(c, n)(1, n)

=




Γ(c)
Γ(a)Γ(b)

) if c+ 1 = a+ b

0 if c+ 1 > a+ b
∞ if c+ 1 < a+ b.

We shall give several explicit examples of the parameter combina-
tions (a, b, c) that lead to simplified expressions for zF (a, b; c; z) and
zF (a, b; c; z2) illustrating our results, see Section 6. An extensive list
of special cases of F (a, b; c; z) is given in [18]. Note that the behav-
ior of zF (a, b; c; z) depends strongly on the mutual size of the coeffi-
cients. In fact, the hypergeometric series defined by (1.6) converges for
|z| < 1, converges absolutely for |z| = 1 whenever Re (c − a − b) > 0.
These simple observations show that for a, b, c ∈ C with Re c >
Re (a + b), the function F (a, b; c; z) is bounded in |z| < 1. In par-
ticular, zF (a, b; c; z) is bounded in |z| < 1 for a, b, c > 0 and c > a+ b,
as the example zF (1, 1; 3; z) = (2/z)[z + (1 − z) log(1 − z)] shows.
For c ≤ a + b, the function zF (a, b; c; z) is unbounded in |z| < 1,
as the functions zF (1, 1; 2; z) = − log(1 − z), zF (1, 1/2; 3/2; z2) =
(1/2) log((1−z)/(1+z)), zF (1/2, 3; 1; z) = (z/8)[8−8z+3z2](1−z)−5/2

and zF (1/2, 3; 2; z) = (z/4)[4 − 3z](1 − z)−3/2 show. The behavior of
the hypergeometric function F (a, b; c; z) at z = x = 1 in the three cases
c = a+ b, c > a+ b and c < a+ b has been studied recently in [2, 16].
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Finally, we remark that Theorems 1.1 and 1.3 suggest a conjecture
for starlike mappings, see Conjecture 6.1.

2. Close-to-convexity criterion for hypergeometric func-
tions. In this section we determine conditions on a, b, c > 0 for the
Gaussian hypergeometric function zF (a, b; c; z) to be close-to-convex.

Theorem 2.1. If a, b>0, T1(a, b)=max{a+b, a+b+(a b−1)/2, 2a b}
and c satisfies either

(2.1) c ≥ T1(a, b)

or c = a+ b with

(2.2) a b ≥ 1, a+ b ≤ 2a b and
Γ(a+ b)
Γ(a)Γ(b)

≤ 2

then zF (a, b; c; z) is close-to-convex with respect to − log(1− z).

Proof. Let f(z) = zF (a, b; c; z). Then f ∈ A and is of the form
f(z) = z +

∑∞
n=2Anz

n, where

An =
(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1) , for n ≥ 2

and A1 = 1. From the definition of ascending factorial notation we
observe that

(2.3) An+1 =
(a+ n− 1)(b+ n− 1)

(c+ n− 1)n An.

To prove the theorem, we first use (2.1) and then apply Theorem 1.1.
Therefore, in this case we need to show that {nAn} is a decreasing
sequence of positive real numbers. By hypothesis and (2.3) we note
that An is positive for each n ≥ 1. Next, we use (2.3) and obtain

nAn − (n+ 1)An+1 = An

[
n− (n+ 1)(a+ n− 1)(b+ n− 1)

(c+ n− 1)n
]
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so that
nAn − (n+ 1)An+1 =

An

n(c+ n− 1) X(n),

where

(2.4) X(n) = n2(c− a− b) + n(1− a b)− (a− 1)(b− 1).
Therefore, for the proof of our first part, it is sufficient to check that
X(n) is nonnegative. We first note that the condition (2.1) implies that
c ≥ a+ b and so the coefficient of n2 in the above expression for X(n)
is nonnegative. Thus for all n ≥ 1, we can write

X(n) ≥ (2n− 1)(c− a− b) + n(1− a b)− (a− 1)(b− 1)
= n[2(c− a− b) + 1− a b]− c+ 2(a+ b)− 1− a b = Y (n),

say. By (2.1), we have c ≥ a+ b+ (a b− 1)/2 so that the coefficient of
n in the expression for Y (n) is nonnegative and so we obtain that

X(n) ≥ Y (n) ≥ Y (1) = c− 2a b.
Since c ≥ 2a b, by (2.1), we get that Y (1) ≥ 0 which yields the desired
conclusion. This argument proves that if c ≥ T1(a, b) then the function
zF (a, b; c; z) is close-to-convex with respect to − log(1− z).
For the proof of the second part, we need to show that {nAn} is a

nondecreasing sequence and has a limit less than or equal to 2. From
(2.2), we note that c = a+ b and a b ≥ 1. So in this case

X(n) = Y (n) ≤ Y (1) = a+ b− 2a b ≤ 0,

by (2.2). Using this inequality, we obtain that X(n) is nonpositive for
each n ≥ 1. In other words, the sequence {nAn} is increasing. Thus to
complete the proof, according to Theorem 1.1, it suffices to show that
the value of the limit is less than or equal to 2. Therefore, for the proof
of the second part, we write c = a+ b and

nAn =
(n− 1)(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1) +
(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1)

which may be equivalently written in the form

nAn =
a b

c

(a+ 1, n− 2)(b+ 1, n− 2)
(c+ 1, n− 2)(1, n− 2) +

(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1)
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so that

lim
n→∞nAn =

a b

c
lim

n→∞
(a+ 1, n− 2)(b+ 1, n− 2)
(c+ 1, n− 2)(1, n− 2)

+ lim
n→∞

(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1) .

From the property of gamma function, namely the equation (1.12), we
have

lim
n→∞nAn =

a b

c

Γ(c+ 1)
Γ(a+ 1)Γ(b+ 1)

+ 0

and since c = a+ b, the above gives

lim
n→∞nAn =

Γ(a+ b)
Γ(a)Γ(b)

.

The conclusion now follows from the above relation and (2.2).

Corollary 2.1. Let a, b > −1 and a b 	= 0. If c satisfies either
c ≥ −1 + T1(a+ 1, b+ 1), where T1(a, b) is defined in Theorem 2.1, or

c = a+ b+ 1 with a+ b ≥ max{−a b, 2a b}
and

Γ(a+ b+ 2)
Γ(a+ 1)Γ(b+ 1)

≤ 2

then zF ′(a, b; c; z) is univalent in ∆.

Proof. Differentiating (1.6) with respect to z and then using the def-
inition of the ascending factorial notation (a, n+ 1) = (a+ n)(a, n) we
obtain the well-known identity for the first derivative of the hypergeo-
metric function, namely (see [22])

a b zF (a+ 1, b+ 1; c+ 1; z) = czF ′(a, b; c; z).

From the above formula and Theorem 2.1 we deduce that the function
(c/a b)zF ′(a, b; c; z) is close-to-convex with respect to − log(1− z) and
hence the function zF ′(a, b; c; z) is univalent in ∆.
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3. Starlikeness criterion for hypergeometric functions. In
this section we determine conditions on a, b, c > 0 for the Gaussian
hypergeometric function zF (a, b; c; z) to be not only close-to-convex
with respect to − log(1− z) but also starlike in ∆. As remarked in the
introduction, there exist conditions in the literature to conclude that
the function zF (a, b; c; z) is starlike in ∆ but not both. An interesting
special case, the incomplete beta function will be considered at the end
of this section.

For convenience, we denote by KS∗ the family of functions in A which
are close-to-convex with respect to − log(1− z) and also starlike in ∆.

Theorem 3.1. Let a, b > 0,

T (a, b) = max{a+ b, a+ b+ (3a b− 1)/2, (2 +
√
10/2)a b}

and c ≥ T (a, b). Then zF (a, b; c; z) is in KS∗.

Proof. We use the method of proof of Theorem 2.1. Define

f(z) = zF (a, b; c; z) = z +
∞∑

n=2

Anz
n,

where An is as in (2.3). Further, let T1(a, b) = max{a + b, a + b +
(a b − 1)/2, 2a b}. Then the hypotheses imply that T (a, b) ≥ T1(a, b).
Therefore, from Theorem 2.1, we have that the sequence nAn is
nonincreasing. Now we use Theorem 1.3 to prove that f is starlike.
For this, we need to show that the sequence {nAn − (n + 1)An+1} is
also nonincreasing. For convenience, we define

Bn = nAn − (n+ 1)An+1.

Using the definition of An we find that

Bn −Bn+1 = An

[
n+ (n+ 2)

An+2

An
− 2(n+ 1) An+1

An

]
.

After some elementary computation we obtain that

Bn −Bn+1 =
An

n(n+ 1)(c+ n− 1)(c+ n) U(n),
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where

(3.1) U(n) = D3n
3 +D2n

2 +D1n+D0.

Using simple calculation one can simplify the coefficients of U(n) and
obtain

D3 = (c− a− b)(c+ 1− a− b)
D2 = (c− a− b+ 2(1− a b))(c+ 1− a− b)
D1 = −2c(2a b− a− b) + 2a b(a+ b− 2)

+ (a− 1)(b− 1)(2(a+ b) + a b− 2)
D0 = −2(c− a b)(a− 1)(b− 1).

Our aim is to check that U(n) is nonnegative for all n ≥ 1. First we
observe that

n3 ≥ 3n2 − 3n+ 1, for all n ≥ 1.

By hypothesis, c ≥ T1(a, b) ≥ a + b and so we have D3 ≥ 0. Thus for
all n ≥ 1, we can write

U(n) ≥ (3n2 − 3n+ 1)D3 +D2n
2 +D1n+D0

= (3D3 +D2)n2 + (D1 − 3D3)n+D0 +D3

= V (n),

say. Now we compute

3D3 +D2 = 2(c− a− b+ 1)[2(c− a− b)− (a b− 1)] = φ1(c, a, b),

say, and since c ≥ T (a, b), we have φ1(c, a, b) ≥ 0. Therefore, we obtain
that

U(n) ≥ V (n)
≥ (2n− 1)(3D3 +D2) + (D1 − 3D3)n+D0 +D3

= (3D3 + 2D2 +D1)n+ (−2D3 −D2 +D0)
=W (n),

say. We have

3D3 + 2D2 +D1

= (c+1−a−b)(5c−3(a+b)+4−8a b)) + (a−1)(b−1)(a b−2).
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For convenience, we denote the right-hand side of the above expression
by φ2(c, a, b). Next we show that φ2 ≡ φ2(c, a, b) ≥ 0. After some
arithmetic calculation we find that

φ2 = [5c2 + c(9− 8(a+ b)− 8a b)] +M1(a, b)

where

M1(a, b) = 2 + 3(a+ b)2 + a2b2 + 7a b(a+ b)− 5(a+ b)− 9a b.

To show φ2 ≥ 0, we rewrite the square bracketed term in the above
expression as

[
(c+2a b)2+5c+4

{
c−

(
a+b+

3a b−1
2

)}2

−4a2b2−4
{
a+b+

3a b−1
2

}2]

and, for convenience, we denote the above expression by φ3. We first
give a lower bound for φ3. Since c ≥ a+ b+ (3a b− 1)/2, we have

(c+ 2a b)2 ≥ (a+ b+ (7a b− 1)/2)2

and so

φ3 ≥ (a+ b+ (7a b−1)/2)2+ 5c− 4a2b2− 4(a+ b+ (3a b−1)/2)2.

From this inequality, we deduce, in particular, that

φ2 ≥ (a+b+(7a b−1)/2)2+5c−4a2b2−4(a+b+(3a b−1)/2)2+M1(a, b).

After some work we see that this inequality is equivalent to

φ2 ≥ 1
4
[a2b2 + 1] + 3(c− 2a b) + [2(c− a+ b) + 1− 3a b]

+
5a b
2
+ 2a b(a+ b).

In particular, by hypothesis, we get that φ2 ≥ 0 and so 3D3 + 2D2 +
D1 ≥ 0. This observation shows that

(3.2) U(n) ≥ V (n) ≥W (n) ≥W (1) = D0 +D1 +D2 +D3.
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Finally, to complete the proof we need to show thatD0+D1+D2+D3 >
0. If we let φ4(a, b, c) = D0 +D1 +D2 +D3, then we find that

φ4 = [2c2 + 2c(1− 4a b)]− 5a b+ 3a b(a+ b) + 3a2b2

which can be rewritten in the form

φ4 = 2
[
c−

(
2 +

√
10
2

)
a b+

√
10−1
2
√
10

][
c−

(
2−

√
10
2

)
a b+

√
10 +1
2
√
10

]

− 9
20
+ 3a b(a+ b).

Since c ≥ (2 +
√
10/2)a b, we see that

φ4 ≥ 2
{√

10− 1
2
√
10

}{√
10 + 1
2
√
10

}
− 9
20
+ 3a b(a+ b) = 3a b(a+ b) > 0

which shows that D0 + D1 + D2 + D3 > 0. Thus, by (3.2), U(n) is
positive for all n ≥ 1. Therefore the sequence {Bn} and hence the
sequence {nAn − (n + 1)An+1} is nonincreasing, and by Theorem 1.3
we deduce that f is starlike. We also note that all the requirements
of Theorem 1.1 have also been verified and so f is also close-to-convex
with respect to − log(1− z).

It is clear from the proof that the above theorem could be improved
slightly in the following form:

Theorem 3.2. Let a, b > 0 and α = α(a, b) be a least positive number
such that

(3.3) [2α2 + 2α(1− 4a b)]− 5a b+ 3a b(a+ b) + 3a2b2 ≥ 0.

If T2(a, b) = max{a+ b, a+ b + (3a b− 1)/2, α} and c ≥ T2(a, b), then
zF (a, b; c; z) is in KS∗.

From Theorem 3.2, we can obtain several simple examples to point
out the usefulness of the starlikeness criteria. We note that it is often
difficult to check the analytic condition Re (zf ′(z)/f(z)) > 0 when f
is the hypergeometric function. Because of its independent interest, as
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considered by Carlson and Shaffer [5], we state the result for the special
case a = 1 of Theorem 3.2 separately in the following form:

Corollary 3.1. If b and c are related by any one of the following:

(i) b ∈ (0, 1/3] and c ≥ b+ 1
(ii) b ∈ [1/3,∞) and c ≥ (5b+ 1)/2

then the incomplete beta function φ(b, c; z) is in KS∗.

Proof. Choose a = 1 in Theorem 3.2. Then equation (3.3) reduces to

(α− 2b)2 + α2 + 2α+ 2b2 − 2b ≥ 0

which is clearly true whenever α ≥ 1 + b or α ≥ (5b+ 1)/2. Therefore,
the condition c ≥ T2(a, b) of Theorem 3.2 for a = 1 is equivalent to
c ≥ max{1 + b, (5b + 1)/2}. This observation shows that the function
zF (1, b; c; z) is in KS∗ and the proof is completed.

The above corollary is to indicate that Theorem 3.2 would be more
suitable whenever we deal with special cases such as in Corollary 3.1.

The case a = 1 of [21, Theorem 2] shows that the incomplete beta
function φ(b, c; z) is in S∗ whenever 1 ≤ b ≤ c. Thus, Theorem 2 in [21]
applies to φ(b, c; z) only when b ≥ 1 whereas the above example clearly
demonstrates that our approach applies also to the case b ∈ (0, 1) even
though in this special case range for c becomes slightly smaller. On the
other hand, the conclusion in our case is much stronger because, from
Theorem 2 of Ruscheweyh and Singh [21], one cannot claim that the
corresponding function is close-to-convex with respect to the convex
function − log(1− z).
If we restrict only to close-to-convexity of the incomplete beta func-

tion, then we have the following example which follows from Theo-
rem 2.1:

Example 3.1. The incomplete beta function defined by φ(b, c; z) =
zF (1, b; c; z) is close-to-convex with respect to − log(1 − z) if b and c
are related by any one of the following:

(i) b ∈ (0, 1] and c ≥ b+ 1
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(ii) b ∈ [1, 2] and c = b+ 1
(iii) b ∈ [1,∞) and c ≥ 2b.

Remark 3.1. There is yet another simple criteria for functions in
S∗ due to Ruscheweyh [20]: If An ≥ 0, {nAn} is nonincreasing and
(2n+1)A2n+1 ≤ (2n− 1)A2n for n ≥ 1, then the function f defined by
(1.1) is starlike univalent in ∆. However, our calculation shows that the
result of Ruscheweyh [20] does not yield better information, at least
not for the case where f(z) = zF (a, b; c; z).

4. Close-to-convexity criterion for odd hypergeometric func-
tions. In this section we determine conditions on a, b, c > 0 for the
Gaussian hypergeometric function zF (a, b; c; z2) to be close-to-convex
with respect to the convex function (1/2) log((1 + z)/(1− z)). We ob-
serve that the results of this type seem completely new in the case of
the odd hypergeometric function zF (a, b; c; z2).

Theorem 4.1. If a, b > 0, N(a, b) = max{a + b, a + b + (2a b −
1)/3, 3a b} and c satisfies either c ≥ N(a, b) or c = a+ b with

a b ≥ 1/2, a+ b ≤ 3a b and
Γ(a+ b)
Γ(a)Γ(b)

≤ 1

then zF (a, b; c; z2) is close-to-convex with respect to (1/2) log((1 + z)/
(1− z)).

Proof. As in the proof of Theorem 2.1, we let A1 = 1 and

f(z) = zF (a, b; c; z2) = z +
∞∑

n=2

A2n−1z
2n−1,

where
A2n−1 =

(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1) for n ≥ 2.

Using this, we estimate

(2n− 1)A2n−1 − (2n+ 1)A2n+1 =
A2n−1

n(c+ n− 1) Y (n)
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where

Y (n) = 2n2(c− a− b) + n(1 + a+ b− c− 2a b)− (a− 1)(b− 1).

By hypothesis, A2n−1 > 0 for all n ≥ 1 and the coefficient of n2 in
Y (n) is nonnegative.

First we assume that c ≥ N(a, b). Thus, we note that the sequence
{A2n−1} is nonincreasing, if the inequality

2(2n− 1)(c− a− b) + n(1 + a+ b− c− 2a b)− (a− 1)(b− 1) ≥ 0,

or equivalently,

n[3(c− a− b)− (2a b− 1)]− 2c+ 3(a+ b)− 1− a b ≥ 0

holds for all n ≥ 1. From the condition on c, we, in particular, have
c≥a+b+(2a b−1)/3. Since 3(c−a−b)−(2a b−1)≥0, the last inequality
continues to hold for all n ≥ 1 if this holds for n = 1. Therefore putting
n = 1, we infer that c≥3a b which is true by hypothesis and therefore
if c ≥ N(a, b) then the sequence {A2n−1} is nonincreasing for all n ≥ 1,
and by Theorem 1.2 we deduce that the function zF (a, b; c, z2) is close-
to-convex with respect to the convex function (1/2) log((1+z)/(1−z)).
Hence, the proof of the first part follows.

For the proof of the second part, we write c = a+ b and consider the
case a b≥1/2, a+ b≤3a b, and Γ(a+ b)≤Γ(a)Γ(b). Therefore, in this
case the coefficient of n2 in the expression for Y (n) is zero and, since
a b≥1/2, the coefficient of n in Y (n) is nonpositive. This observation
gives that Y (n)≤Y (1)=a+ b − 3a b and since a+ b≤3a b, we obtain
that Y (n) ≤ 0 for all n ≥ 1. These arguments show that

(2n− 1)A2n−1 − (2n+ 1)A2n+1 ≤ 0

for all n ≥ 1 and hence the sequence {A2n−1} is increasing for all n ≥ 1.
Using the definition of A2n−1, we have

(2n−1)A2n−1 =
(2(n− 1) + 1)(a, n− 1)(b, n− 1)

(c, n− 1)(1, n− 1)
=
2a b
c

(a+ 1, n− 2)(b+ 1, n− 2)
(c+ 1, n− 2)(1, n− 2) +

(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1)
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so that

lim
n→∞(2n− 1)A2n−1 =

2a b
c

lim
n→∞

(a+ 1, n− 2)(b+ 1, n− 2)
(c+ 1, n− 2)(1, n− 2)

+ lim
n→∞

(a, n− 1)(b, n− 1)
(c, n− 1)(1, n− 1) .

Using (1.12), we deduce that

lim
n→∞(2n− 1)A2n−1 =

2a b
c

Γ(c+ 1)
Γ(a+ 1)Γ(b+ 1)

= 2
Γ(a+ b)
Γ(a)Γ(b)

.

Since Γ(a+ b) ≤ Γ(a)Γ(b), the value of the limit, namely limn→∞(2n−
1)A2n−1, is less than or equal to 2. The result now follows from the
above facts and part 2 of Theorem 1.2.

Using the method of proof of Corollary 2.1 we have

Corollary 4.1. Let a, b > −1 and a b 	= 0. If c satisfies either
c ≥ −1 +N(a + 1, b+ 1), where N(a, b) is defined in Theorem 4.1, or
c = a+ b+ 1 with

2(a+ b+ a b) + 1 ≥ max{0,−a b} and
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
≤ 1

then zF ′(a, b; c; z2) is univalent in ∆.

5. Order of convexity for hypergeometric functions. In our
next theorem, we obtain the order of convexity of the hypergeometric
function F (a, b; c; z) for certain values of the parameters a, b and c. The
results of this section extend the results of Miller and Mocanu [13].

Theorem 5.1. Let a, b, c be real, (a+ 1)(b+ 1)β ≤ 0 and such that
F ′(a, b; c; z) 	= 0 in ∆. Let c ≥Mβ(a, b), where

(5.1) Mβ(a, b) = max
{
2(1−β)+ |a+b+2β|, 1−a b− (a+1)(b+1)β

1− β
}
.

Then F (a, b; c; z) is convex of order β.
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Proof. If we put 1+(zF ′′(z)/F ′(z)) = β+(1−β)p(z) then p is regular
in ∆, p(0) = 1. Therefore to prove the theorem we need to show that
Re (p(z)) > 0 in ∆. Since the hypergeometric function w = F (a, b; c; z)
satisfies the differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′(z)− a bw(z) = 0,

it follows that p satisfies the first order differential equation

(1−z) zp′(z) + (1−β)(1−z) p2(z) + {c− 2(1−β)− (a+b+2β) z} p(z)
+ 1− c− β −

{
a b− β + (a+1)(b+1) β

1−β
}
z = 0.

From the condition on c we note that c− 2(1− β)− (a+ b+ 2β)z 	= 0
in ∆. We adopt the method used in [13]. We can rewrite the above
differential equation in the form ψ(p(z), zp′(z); z) = 0, where

ψ(r, s; z) = J(z) [s+ (1− β)r2] + r + J(z)−H(z)
2

with
J(z) =

1− z
c− 2(1− β)− (a+ b+ 2β)z

and

H(z) =
2c− 1 + 2β − [1− 2a b+ 2β − 2(a+1)(b+1)β/(1− β)]z

c− 2(1− β)− (a+ b+ 2β)z .

According to Theorem 1.4, it suffices to show that ψ(ir2, s1; z) 	= 0 for
z ∈ ∆ and real r2 and s1 ≤ −(1 + r22)/2. We actually show a stronger
inequality, namely that Reψ(ir2, s1; z) < 0. Recall that the function

W (z) =
1 +Az
1 +Bz

, −1 ≤ A,B ≤ 1,

maps the unit disc ∆ conformally onto the disc

(5.2)
∣∣∣∣ω − 1−AB

1−B2

∣∣∣∣ < |B −A|
1−B2

if B 	= ±1,
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and onto the half-plane

Re (ω) >



1 +A
2

if B = 1

1−A
2

if B = −1.

Further from (5.2) we also note that for B 	= ±1,

Re (ω) >



1 +A
1 +B

if B > A

1−A
1−B if B < A.

The condition on c, in particular, gives c > 2 + a+ b. Choose

A = −1 and B = − a+ b+ 2β
c− 2(1− β) .

Then A < B and so the function J(z) satisfies the inequality Re J(z) >
0 for z ∈ ∆. To get a similar condition for H(z), we choose

A = −
(
1− 2a b+ 2β − 2(a+ 1)(b+ 1)β

1− β
)

1
2c− 1 + 2β ,

B = − a+ b+ 2β
c− 2(1− β)

so that H(z) takes the form

H(z) =
2c− 1 + 2β
c− 2(1− β)

(
1 +Az
1 +Bz

)
.

Since c > 2(1− β) + |a+ b+ 2β|, it follows that

1±B = c− 2(1− β)∓ (a+ b+ 2β)
c− 2(1− β) > 0.

This shows that B 	= ±1. Since c > 1− a b− [(a+ 1)(b+ 1)β]/[1− β],
we have

1 >
{
1− 2a b+ 2β − 2(a+ 1)(b+ 1)β

1− β
}

1
2c− 1 + 2β



UNIVALENCY OF HYPERGEOMETRIC FUNCTIONS 345

and so 1 +A > 0. Further it is easy to see that

c > 1− a b− (a+ 1)(b+ 1)β
1− β ⇐⇒ β < c− 1 + a b

c− 2− (a+ b) ,

and to note that

c− 1 + a b
c− 2− (a+ b) ≤ 1⇐⇒ (a+ 1)(b+ 1) ≤ 0.

Similarly, under the hypothesis of Theorem 5.1, we also get that 1−A
is positive. These observations show that ReH(z) > 0 for z ∈ ∆. Now
for all real r2 and s1 ≤ −(1 + r22)/2 and z ∈ ∆, we have

Reψ(ir2, s1; z) = Re
{
J(z)[s1 − (1− β)r22] +

J(z)−H(z)
2

}

−
[
1 + r22
2

+ (1− β)r22
]
Re J(z) + Re

(
J(z)−H(z)

2

)

≤ −
[
r22
2
+ (1− β)r22

]
Re J(z)− Re

(
H(z)
2

)
.

Now using the fact that Re J(z) > 0 and ReH(z) > 0 in ∆, we
deduce that Reψ(ir2, s1; z) < 0. Hence, by Theorem 1.4, we obtain
Re (p(z)) > 0 in ∆, which shows that F (a, b; c; z) is convex of order β.

To get more applications of the above theorem we need to obtain
conditions on the coefficients a, b, c for which F ′(a, b; c; z) 	= 0 in ∆. In
[13] Miller and Mocanu have shown that if

(5.3) −1 ≤ b ≤ c and a ∈ [−2, 0) ∪ [c− 1, c+ 1],

then F ′(a, b; c; z) 	= 0 in ∆. Thus, the fact that F ′(a, b; c; z) 	= 0 for
|z| < 1 and Theorem 5.1 give the following result which generalizes
Theorem 4 in [13].

Theorem 5.2. If −2 ≤ a < 0, −1 ≤ b, b 	= 0, (a + 1)(b + 1)β ≤ 0
and c ≥Mβ(a, b), where Mβ(a, b) is given by (5.1), then F (a, b; c; z) is
convex of order β.
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The case β = 1/2 of Theorem 5.2 gives

Corollary 5.1. If −2 ≤ a < −1, −1 ≤ b, b 	= 0 and c ≥ M1/2(a, b),
where

M1/2(a, b) = max{1 + |a+ b+ 1|, 1− a b− (a+ 1)(b+ 1)}

then F (a, b; c; z) is convex of order 1/2.

If we use the identity

(a− 1)(b− 1)zF (a, b; c; z) = (c− 1)zF ′(a− 1, b− 1; c− 1; z),

then Theorem 5.2 takes the following equivalent form.

Theorem 5.3. If −1 ≤ a < 1, 0 ≤ b, b 	= 1, a b β ≤ 0 and
c ≥ 1 + Mβ(a − 1, b − 1), where Mβ(a, b) is given by (5.1), then
zF (a, b; c; z) ∈ S∗(β).

If we let f(z) = zF (a, b; c; z) and h(z) = f(z2)/z then we have

zh′(z)
h(z)

= 2
z2f ′(z2)
f(z2)

− 1.

This observation and Theorem 5.3 immediately yield

Theorem 5.4. If −1 ≤ a < 0, 0 ≤ b, b 	= 1 and c ≥ 1 +Mβ(a −
1, b − 1), where Mβ(a, b) is given by (5.1) then, for 1/2 ≤ β < 1, the
odd hypergeometric function zF (a, b; c; z2) is in S∗(2β − 1).

Example 5.1. If we take a = −2, b = 1 and β = δ/(δ + 2) in
Theorem 5.2, then for c ≥ 3 + δ, we have

F (−2, 1; c; z) = 1− 2
c
z +

2
c(c+ 1)

z2 ∈ C(δ/(δ + 2)).

We note that as δ increases from 0 to∞, the order of convexity increases
from 0 to 1. We also remark that the order of convexity of the function
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F (−2, 1; c; z) cannot be obtained from the results of Merkes and Scott
[11] or Ruscheweyh and Singh [21].

Supposing that a ∈ (−1,∞), b ∈ (−1,−a/(a+ 1)] and c ≥ a+ b+ 1,
then we get by Theorem 2.1 that the function zF (a+ 1, b+ 1; c+ 1; z)
(and hence zF ′(a, b; c; z) ) is univalent in ∆. This fact together with
Theorem 5.1 gives the following corollary.

Corollary 5.2. If a ∈ (−1,∞), b ∈ (−1,−a/(a + 1)], b 	= 0,
and c ≥ M0(a, b), where M0(a, b) is given by (5.1), then F (a, b; c; z)
is convex for |z| < 1.

Applying Corollaries 2.1 and 4.1 in the same way as above, one can
easily get several new results. In particular, the order of convexity of
the hypergeometric function F (a, b; c; z) and the order of starlikeness
of the odd hypergeometric function zF (a, b; c; z2) can be obtained for
various values of the parameters a, b and c. These results are easy to
derive and so we do not give the details. However, the following simple
case is useful:

Taking a = 1 and β = 0 in Theorem 5.1 we obtain that if b ∈ (−1,∞),
b 	= 0 and c ≥ b+3 such that F ′(1, b; c; z) 	= 0 in ∆, then F (1, b; c; z) is
convex in ∆. Further, if we choose a = 1 in Corollary 2.1 then we have

Corollary 5.3. Let b > −1, b 	= 0 and c > 0. If b and c are related
by any one of the following:

(i) b ∈ (−1,∞) and c ≥ max{b+ 1, (3b+ 2)/2, 2b+ 1}
(ii) b ∈ [−1/2, 0) and c = b+ 1.

then the function (c/b)zF ′(1, b; c; z) is close-to-convex with respect to
− log(1− z).

In particular, the above observation together with Corollary 5.3 yield
the following example dealing with the incomplete beta functions:

Example 5.2. If b ∈ (−1,∞), b 	= 0 and c ≥ max{b + 3, (3b +
2)/2, 2b + 1}, then (c/b)zF ′(1, b; c; z) is close-to-convex with respect
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to − log(1 − z) and F (1, b; c; z) is convex in ∆. On letting g(z) =
(c/b)[F (1, b; c; z)− 1], we find that the latter condition is equivalent to
saying that the function zg′(z) = zF (2, b + 1; c + 1) is starlike in ∆
whenever b ∈ (−1,∞), b 	= 0 and c ≥ max{b+ 3, (3b+ 2)/2, 2b+ 1}.

This section ends with the following observation: We remark that the
criteria of Ozaki and Alexander are useful for generalized hypergeomet-
ric functions. For example, consider an odd analytic function defined
by

f(z) = z +
1
3.5
z3 +

1.3
5.7.9

z5 +
1.3.5

7.9.11.13
z7 + · · · = z +

∞∑
n=2

A2n−1z
2n−1

where

A2n−1 =
1.3.5 · · · (2n− 3)

(2n− 1)(2n+ 1) · · · (4n− 3) .
Now

(2n− 1)A2n−1 > (2n+ 1)A2n+1

⇐⇒ 1
2n+ 1

>
2n− 1

(4n− 3)(4n+ 1)
⇐⇒ (4n− 3)(4n+ 1) > (2n+ 1)(2n− 1)
⇐⇒ 12n2 − 8n− 2 = 4(n− 1)[3n+ 1] + 2 > 0.

This shows that {(2n − 1)A2n−1} is a strictly increasing sequence of
positive real numbers. Thus f defined above is close-to-convex for
|z| < 1. We also observe that f can be written in the form

f(z) = z3F2(1/2, 1/2, 1; 3/4, 5/4; z2/4).

Thus we have

Problem 5.1. The results of this paper have a counterpart for
the generalized hypergeometric function pFq(a1, . . . , ap; b1, . . . , bq; z)
for the case aj > 0, bj > 0 and p = q + 1.

6. Concluding remarks. Consider zF (a, b; c; z) = z+
∑∞

n=2Anz
n.

It is known that [3, p. 57, Equation 5]

An+1 =
(a, n)(b, n)
(c, n)(1, n)

=
Γ(c)

Γ(a)Γ(b)
na+b−c−1

[
1 +O

(
1
n

)]
.
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From this relation, we note that |An+1| > n + 1 as n → ∞ whenever
Re a > 0, Re b > 0 and 0 < Re c < Re (a + b − 2). Using this
observation and de Branges’ theorem [4], |an| ≤ n, we deduce that
the function zF (a, b; c; z) is not univalent for a, b, c ∈ C\{0}, Re a > 0,
Re b > 0, and 0 < Re c < Re (a+ b− 2). In particular, when a, b, c are
positive real numbers then the function zF (a, b; c; z) is not univalent in
∆ for 0 < c < a + b − 2. Further, according to Bieberbach’s theorem
for the second coefficient, for zF (a, b; c; z) to be in S we must have
|A2| = |a b/c| ≤ 2 and therefore, if a, b, c ∈ C, c 	= 0,−1,−2, · · · , then
the function zF (a, b; c; z) is not univalent whenever |c| < |a b|/2. We
also note that if a, b > 0 are related by one of the following

(i) a ∈ (0, 2] and b ∈ (0, 2]
(ii) a ∈ (2,∞) and b ∈ (2,∞)

then it is easy to check that the inequality a b/2 ≥ a+ b− 2 holds, and
if a, b > 0 are related by

(iii) a ∈ (0, 2) and b ∈ (2,∞)
then we have a b/2 < a+ b− 2. More precisely, these observations give
the following:

Theorem 6.1. If a, b, c > 0 satisfy (i) or (ii), then the function
zF (a, b; c; z) is not univalent in ∆ for 0 < c < a b/2. A similar
conclusion holds if a and b are related by (iii) and 0 < c < a + b − 2.
In particular, zF (a, b; a + b; z) is not univalent when a > 2 and
b > 2a/(a− 2).

It is also known that a necessary condition for f ∈ A to be in C
is that the modulus of the n-th coefficient of the Maclaurin series for
f is bounded by 1. This fact and the idea used above immediately
imply that the function zF (a, b; c; z) is not convex for a, b, c ∈ C\{0},
Re a > 0, Re b > 0, and 0 < Re c < Re (a + b − 1). In particular,
the function zF (a, b; c; z) is not convex whenever a, b, c > 0 with
0 < c < a + b − 1. Further, for zF (a, b; c; z) to belong to C we must
have |c| > |a b|. Using the fact that
(iv) a ∈ (0, 1] and b ∈ (0, 1] =⇒ a b ≥ a+ b− 1,
(v) a ∈ (1,∞) and b ∈ (1,∞) =⇒ a b ≥ a+ b− 1,
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(vi) a ∈ (0, 1) and b ∈ (1,∞) =⇒ a b < a+ b− 1,
we summarize the above observations, for the case a, b, c > 0, as follows:

Theorem 6.2. If a, b ∈ (0, 1] or a, b ∈ (1,∞), then the function
zF (a, b; c; z) is not convex in ∆ for 0 < c < a b. If a and b are related
by a ∈ (0, 1) and b ∈ (1,∞) then for 0 < c < a + b − 1, the function
zF (a, b; c; z) is not convex in ∆. In particular, zF (a, b; a+ b; z) is not
convex when a > 1 and b > a/(a− 1).

For convenience, we denote by K1 the family of functions in A which
are close-to-convex with respect to − log(1 − z) and we denote by K2

the family of odd functions in A which are close-to-convex with respect
to (1/2) log((1 + z)/(1− z)). As pointed out in the introduction these
two classes K1 and K2 are in S. Further, the results of this paper
provide us with numerous examples of close-to-convex, starlike and
convex functions. In the following example we list some simple cases
for the close-to-convex case and we remark that in the same way one
can obtain several results for starlikeness and convexity properties of
the hypergeometric function zF (a, b; c; z) and the odd hypergeometric
function zF (a, b; c; z2), respectively.

Examples 6.1.

(i) On taking b = a+ 1/2 and c = 2a+ 1 from Theorem 2.1, we see
that if 0 < a ≤ (

√
17− 1)/4 then [18, p. 461, Formula 105]

zF (a, a+ 1/2; 2a+ 1; z) = z
(

2
1 +

√
1− z

)2a

∈ K1.

(ii) On substituting a = b = 1 and c = 3 in Theorem 2.1, we see that
[18, p. 477, Formula 150]

zF (1, 1; 3; z) = 2 + 2
(1− z)
z

log(1− z) ∈ K1.

(iii) If we put a = 1 and c = b+1 in Theorem 2.1, then we see that the
function [18, p. 462, Formula 122] zF (1, b; b+1; z) (and, in particular,
zF (1, 2; 3; z) = −(2/z) log(1− z)− 2 ) is in K1.
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(iv) From Theorem 2.1, we have that the function [18, p. 455,
Formula 28] zF (1, b; c; z) ∈ K1 whenever b ∈ (1,∞) and c ≥ 2b. In
particular, the function [18, p. 477, Formula 158]

zF (1, 3/2; 3; z) = 4z(1 +
√
1− z)−2

and the function [18, p. 477]

zF (1, 2; 4; z) = (3/z2)[z(2− z) + 2(1− z) log(1− z)]

are in K1.

Based on our experiments we have the following conjecture to study
the geometry of the image domains under the normalized functions
z2F1(a, b; a+ b; z) and z2F1(a, b; a+ b; z2).

Problem 6.1. There exist positive numbers δ1, δ2 such that for
a ∈ (0, δ1) and b ∈ (0, δ2) the normalized function z2F1(a, b; a + b; z),
z2F1(a, b; a + b; z2), respectively, satisfies the property that maps the
unit disc ∆ into a strip domain. For example, the functions

− log(1− z) = z2F1(1, 1; 2; z)

and

1
2
log

(
1 + z
1− z

)
= z2F1(1, 1/2; 3/2; z2)

map the ∆ into a strip. Therefore, the problem here is to find the exact
range of the constants δ1, δ2 and conditions on a and b satisfying the
stated property.

We recall that the Koebe function z/(1− z)2 = zF (1, 2; 1; z) maps ∆
into the compliment of the ray {w = u + iv ∈ C : u = 0, v ≤ −1/4}.
This function raises the following question: Suppose a, b, c > 0 with
c < a + b. Do there exist δ3, δ4 > 0 such that for a ∈ (0, δ3) and
b ∈ (0, δ4) the function z2F1(a, b; c; z), z2F1(a, b; c; z2) respectively, has
the property that the image domain is completely contained in a sector
type domain where the “angle” depends on a+ b− c?

The paper ends with the following conjecture:
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Conjecture 6.1. If f(z) = z +
∑∞

n=2 anz
n satisfies conditions

∑
n≥1

|nan − (n+ 1)an+1| ≤ 1,

and ∑
n≥1

|(n− 1)an−1 − 2nan + (n+ 1)an+1| ≤ 1,

then f ∈ S∗.
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8. J. Krzyż, A counterexample concerning univalent functions, Folia Soc. Sci.
Lublin. Mat. Fiz. Chem. 2 (1962), 57 58.

9. J. Lewis, Application of a convolution theorem to Jacobi polynomials, SIAM
J. Math. Anal. 10 (1979), 1110 1120.

10. T.H. MacGregor, Univalent power series whose coefficients have monotone
properties, Math. Z. 112 (1969), 222 228.



UNIVALENCY OF HYPERGEOMETRIC FUNCTIONS 353

11. E. Merkes and B.T. Scott, Starlike hypergeometric functions, Proc. Amer.
Math. Soc. 12 (1961), 885 888.

12. S.S. Miller and P.T. Mocanu, Differential subordinations and inequalities in
the complex plane, J. Differential Equations 67 (1987), 199 211.

13. , Univalence of Gaussian and confluent hypergeometric functions,
Proc. Amer. Math. Soc. 110 (1990), 333 342.

14. S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika
Daigaku 2 (1935), 167 188.

15. S. Ponnusamy, Univalence of Alexander transform under new mapping
properties, Complex Variables Theory Appl. 30 (1996), 55 68.

16. S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for
hypergeometric functions, Mathematika 44 (1997), 278 301.

17. , Univalence and convexity properties of confluent hypergeometric
functions, Complex Variables Theory Appl. 36 (1998), 73 97.

18. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and series, Vol.
III (Russian translation), Gordon and Breach Science Publ., New York, London,
1990.

19. St. Ruscheweyh, Convolution in geometric function theory, Les Presses de
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