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THE SHARP BOUND FOR SOME COEFFICIENT
FUNCTIONAL WITHIN THE CLASS OF HOLOMORPHIC

BOUNDED FUNCTIONS AND ITS APPLICATIONS

K. KIEPIELA, M. PIETRZYK AND J. SZYNAL

ABSTRACT. We determine the sharp bound of the func-
tional |c3 + pc1c2 + qc31| for any given real numbers p and
q within the class of holomorphic and bounded functions
ω(z) = c1z + c2z + . . . , |ω(z)| < 1, |z| < 1, which have real
coefficients. Applications are given.

1. Let Ω denote the class of holomorphic functions of the form

(1) ω(z) = c1z + c2z2 + · · ·

in the unit disk |z| < 1 which satisfies the condition |ω(z)| < 1, |z| < 1.

In [3] the sharp bound for the functional was given by

(2) Ψ(ω) = |c3 + pc1c2 + qc31|

where p and q are arbitrary but fixed real numbers.

Namely, the following theorem holds.

Theorem A. If ω ∈ Ω, then for any real numbers p and q, the
following sharp estimate holds:

(3) Ψ(ω) ≤ H(p, q)
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where
(4)

H(p, q)=




1 for (p, q)∈D1 ∪D2

|q| for (p, q)∈∪7
k=3Dk

2
3
(|p|+1)

( |p|+1
3(|p|+1+q)

)1/2

for (p, q)∈D8 ∪D9

1
3
q
( p2−4
p2−4q

)( p2−4
3(q−1)

)1/2

for (p, q)∈D10∪D11 \ {±2, 1}
2
3
(|p|−1)

( |p|−1
3(|p|−1−q)

)1/2

for (p, q)∈D12

.

The extremal functions, up to the rotation, have the form:

(5)

ω(z) = z3, ω(z) = z, ω(z) = ω1(z) = z(t1 − z)/(1− t1z),

t1 =
( |p|+ 1
3(|p|+ 1 + q)

)1/2

ω(z) = ω0(z) = z
[(1− λ)ε2 + λε1]− ε1ε2z
1− [(1− λ)ε1 + λε2]z ,

|ε1| = |ε2| = 1

ε1 = t0 − e−iϕ0/2(a∓ b), ε2 = −e−iϕ0/2(ia± b),

a = t0 cos
ϕ0

2
, b =

√
1− t20 sin2 ϕ0

2
, λ =

b± a
2b

t0 =
[
2q(p2 + 2)− 3p2

3(q − 1)(p2 − 4q)

]1/2

,

cos
ϕ0

2
=
p

2

[
q(p2 + 8)− 2(p2 + 2)
2q(p2 + 2)− 3p2

]

ω(z) = ω2(z) = z
t2 + z
1 + t2z

, t2 =
( |p| − 1
3(|p| − 1− q)

)1/2

.

The sets Dk, k = 1, 2, . . . , 12 are defined as follows:

D1 :=
{
(p, q) : |p| ≤ 1

2
, |q| ≤ 1

}
,

D2 :=
{
(p, q) :

1
2
≤ |p| ≤ 2,

4
27

(|p|+ 1)3 − (|p|+ 1) ≤ q ≤ 1
}
,
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D3 :=
{
(p, q) : |p| ≤ 1

2
, q ≤ −1

}
,

D4 :=
{
(p, q) : |p| ≥ 1

2
, q ≤ −2

3
(|p|+ 1)

}
,

D5 := {(p, q) : |p| ≤ 2, q ≥ 1},
D6 :=

{
(p, q) : 2 ≤ |p| ≤ 4, q ≥ 1

12
(p2 + 8)

}
,

D7 :=
{
(p, q) : |p| ≥ 4, q ≥ 2

3
(|p| − 1)

}
,

D8 :=
{
(p, q) :

1
2
≤ |p| ≤ 2,

− 2
3
(|p|+ 1) ≤ q ≤ 4

27
(|p|+ 1)3 − (|p|+ 1)

}
,(6)

D9 :=
{
(p, q) : |p| ≥ 2, −2

3
(|p|+ 1) ≤ q ≤ 2|p|(|p|+ 1)

p2 + 2|p|+ 4

}
,

D10 :=
{
(p, q) : 2 ≤ |p| ≤ 4,

2|p|(|p|+ 1)
p2 + 2|p|+ 4

≤ q ≤ 1
12

(p2 + 8)
}
,

D11 :=
{
(p, q) : |p| ≥ 4,

2|p|(|p|+ 1)
p2 + 2|p|+ 4

≤ q ≤ 2|p|(|p| − 1)
p2 − 2|p|+ 4

}
,

D12 :=
{
(p, q) : |p| ≥ 4,

2|p|(|p| − 1)
p2 − 2|p|+ 4

≤ q ≤ 2
3
(|p| − 1)

}
.

As one can see from the formulae (5) all the extremal functions except
ω0(z) have real coefficients. Therefore, if one considers the problem of
the sharp bound for the functional (2) within the subclass Ωr ⊂ Ω
consisting of functions ω(z) which have real coefficients, the bound will
be different if (p, q) ∈ D10 ∪D11 \ {±2, 1}, where the extremal function
is ω0(z).

The corresponding sharp result is presented in Theorem 1. We
also give the applications for the class of holomorphic bounded and
nonvanishing functions in the unit disk as well as for the class of
bounded starlike functions, where we apply some deep result of Barnard
and Lewis [1].

Let us mention finally that our Theorem A and Theorem 1 are very
useful for other classes of holomorphic functions which are defined by
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subordination.

Theorem 1. If ω ∈ Ωr, then for any real numbers p and q the
following sharp estimate holds

(7) Ψ(ω) ≤ G(p, q)
where
(8)

G(p, q)=




1 for (p, q)∈D1 ∪D2

|q| for (p, q)∈∪7
k=3Dk

2
3
(|p|+1)

( |p|+1
3(|p|+1+q)

)1/2

for (p, q)∈D8∪D0
9∪D00

9

1 +
1
27

(p2−4)3

(p2−4q)2 for (p, q)∈D0
10∪D0

11 \ {±2, 1}
2
3
(|p| − 1)

( (|p|−1)
3(|p|−1−q)

)1/2

for (p, q)∈D0
12∪D00

12

.

The sets D0
9, D

00
9 , D

0
10, D

0
11, D

0
12, D

00
12 are defined as follows:

(9)

D0
9 =

{
(p, q) : 2 ≤ |p| ≤ p0, −2

3
(|p|+ 1) ≤ q ≤ q0(p)

}
,

D00
9 =

{
(p, q) : |p| ≥ p0, −2

3
(|p|+ 1) ≤ q ≤ 2

p2 − 1
p2 + 3

}
,

D0
10 =

{
(p, q) : 2 ≤ |p| ≤ 4, q0(p) ≤ q ≤ 1

12
(p2 + 8)

}
,

D0
11 =

{
(p, q) : 4 ≤ |p| ≤ p0, q0(p) ≤ q ≤ − 1

12
(|p|− 1)(p2− 4|p|− 8)

}
,

D0
12 =

{
(p, q) : 4 ≤ |p| ≤ p0, − 1

12
(|p|− 1)(p2− 4|p|− 8)

≤ q ≤ 2
3
(|p|− 1)

}
,

D00
12 =

{
(p, q) : |p| ≥ p0, 2 p

2 − 1
p2 + 3

≤ q ≤ 2
3
(|p| − 1)

}
.
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The number p0 ∈ (4.51, 4.52) is the root of the equation p3−4p2−5p+
12 = 0, and the function q = q0(p) is the unique root of the equation
(t = p2 − 4q):

(10) 81t3 − 3(p− 2)(2p2 + 19p+ 26)t2

+ (p2 − 4)2(p2 + 2p− 8)t− (p2 − 4)4 = 0.

The extremal function for (p, q) ∈ D0
10 ∪D0

11 has the form

(11) ω(z) = ωr
0(z) = z

x0 + (1/2)px0z + z2

1 + (1/2)px0z + x0z2
, x0 =

2
3
p2 − 4
p2 − 4q

.

Proof. We can restrict ourselves to the case p > 2 and (p, q) ∈
D+

10 ∪D+
11 \ {2, 1}, where

(12)
D+

10 =
{
(p, q) : 2 ≤ p ≤ 4,

2p(p+ 1)
p2 + 2p+ 4

≤ q ≤ 1
12

(p2 + 8)
}

D+
11 =

{
(p, q) : p ≥ 4,

2p(p+ 1)
p2 + 2p+ 4

≤ q ≤ 2p(p− 1)
p2 − 2p+ 4

}
.

Note that in the case under consideration we have (p2 − 4q) > 0.

In order to find the maximum of (2) we will use the Caratheodory
inequalities [3], which for the class Ωr take the form:

(13)

−1 ≤ c1 ≤ 1
−(1− c21) ≤ c2 ≤ 1− c21

−(1− c21)2 + c22 − c1c22 ≤ c3(1− c21)
≤ (1− c21)2 − c22 − c1c22.

If c1 = ±1, then Ψ(ω) = |q|. Putting c1 = x ∈ (−1, 1), c2 = y ∈
[−(1− x2), (1− x2)] we have by (13) the following inequality:

(c3 + pc1c2 + qc31) ≤ 1− x2 − y2

1− x + pxy + qx3.

Denoting

(14) Φ(x, y) := − 1
1− x y

2 + pxy + (1− x2 + qx3),
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we easily find

(15) max
−(1−x2)≤y≤1−x2

Φ(x, y)

=



Φ(x,−(1− x2)) := H1(x) if y0 ≤ −(1− x2)

Φ(x, y0) := H2(x) if −(1− x2) ≤ y0 ≤ 1− x2

Φ(x, 1− x2) := H3(x) if y0 ≥ 1− x2

where
y0 =

1
2
px(1− x).

Taking into account that p > 2, we obtain from (15):

(16)
H1(x) = (q + p+ 1)x3 − (p+ 1)x,

if − 1 ≤ x ≤ −2
p+ 2

and p > 2;

(17)

H2(x) =
(
q − 1

4
p2

)
x3 +

(
1
4
p2 − 1

)
x2 + 1,

if
−2
p+ 2

≤ x ≤ 1 and p ∈ (2, 4],

and
−2
p+ 2

≤ x ≤ 2
p− 2

and p ≥ 4;

(18) H3(x) = (q − p+ 1)x3 + (p− 1)x,
2

p− 2
≤ x ≤ 1, p ≥ 4.

After the determination of the maximal values of H1(x), H2(x) and
H3(x) in the corresponding intervals for x, and taking into account that
(p, q) ∈ D+

10 ∪D+
11 \ {2, 1}, we find

(19)

max
−1≤x≤−2/(p+2)

H1(x) = H1

(
−

√
p+ 1

3(q + p+ 1)

)

=
2
3
(p+ 1)

√
p+ 1

3(p+ 1 + q)
,

for all (p, q) ∈ D+
10 ∪D+

11;
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(20)

max
−2/(p+2)≤x≤1

H2(x) = H2

(
x0 =

2
3
p2 − 4
p2 − 4q

)
= 1 +

1
27

(p2 − 4)3

(p2 − 4q)2
,

for p ∈ (2, 4] and (p, q) ∈ D+
10 \ {2, 1};

(21)

max
−2/(p+2)≤x≤2/(p−2)

H2(x)

=




H2

(2
3
p2 − 4
p2 − 4q

)
for (p, q)∈D+

11 and

q ≤ − 1
12

(p− 1)(p2 − 4p− 8)

H2

( 2
p− 2

)
for (p, q)∈D+

11 and

q ≥ − 1
12

(p− 1)(p2 − 4p− 8),

(22)
max

2/(p−2)≤x≤1
H3(x)

=




H3

( 2
p− 2

)
for (p, q)∈D+

11 and

q ≤ − 1
12

(p−1)(p2− 4p− 8)

H3

(√
p−1

3(p−1−q)
)

for (p, q) ∈ D+
11 and

=
2
3
(p−1)

√
p−1

3(p−1−q) q ≥ − 1
12

(p−1)(p2− 4p− 8)

.

One can observe thatH2(2/(p−2)) = H3(2/(p−2)). Then, comparing
(21) and (22) we find that for p ≥ 4 and (p, q) ∈ D+

11, we have

(23)
max{maxH2(x),maxH3(x)}

=




2
3
(p− 1)

√
p− 1

3(p− 1− q) if q ≥ − 1
12

(p−1)(p2− 4p− 8)

1 +
1
27

(p2 − 4)3

(p2 − 4q)2
if q ≤ − 1

12
(p−1)(p2− 4p− 8)

.
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Now we have to compare (23) and the maximal value of H1(x), i.e.,

2
3
(p+ 1)

√
p+ 1

3(p+ 1 + q)
for p ≥ 4, (p, q) ∈ D+

11,

and maximal value of H1(x) with

1 +
1
27

(p2 − 4)3

(p2 − 4q)2
for p ∈ (2, 4] and (p, q) ∈ D+

10.

The inequality

2
3
(p− 1)

√
p− 1

3(p− 1− q) ≥ 2
3
(p+ 1)

√
p+ 1

3(p+ 1 + q)

holds for (p, q) ∈ D+
11 and q ≥ −(1/12)(p− 1)(p2 − 4p− 8) if and only

if p ≥ p0 and q ≥ 2[(p2 − 1)/(p2 + 3)].

The simple considerations prove that the equation

(24) 1 +
1
27

(p2 − 4)3

(p2 − 4q)2
=

2
3
(p+ 1)

√
p+ 1

3(p+ 1 + q)

has for fixed p ∈ (2, 4] and q ∈ [(2p(p+1))/(p2+2p+4); (1/12)(p2+8)] as
well as for fixed p ∈ (4, p1) and q ∈ [(2p(p+1))/(p2+2p+4),−(1/12)(p−
1)(p2 − 4p − 8)] exactly one solution q = q0(p) (the number, p1,
p1 > p0 is the unique root of the equation (2p(p+1))(p2 +2p+4)−1 =
−(1/12)(p− 1)(p2 − 4p− 8).

After some calculations one can reduce the equation (24) to the
equation of the third degree (10) where we put t = (p2 − 4q).

The number p0 ∈ (4.51; 4.52) being the root of the equation p3−4p2−
5p+12 = 0 is this particular value of p for which the curves q = q0(p),
q = 2(p2 − 1)/(p2 + 3) and q = −(1/12)(p− 1)(p2 − 4p− 8) meet.

Taking into account (19), (20) and (23), we get (8).

The extremal function for p, q ∈ (D0
10 ∪D0

11) has the form

(25)
ω(z) = ωr

0(z) = c
(r)
1 z + c(r)

2 z2 + c(r)
3 z3 + · · ·

= z
(
τ − z
1− τz

)(
τ̄ − z
1− τ̄ z

)
, |τ | < 1,
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where




c
(r)
1 = x0 =

2
3
p2 − 4
p2 − 4q

c
(r)
2 =

1
2
px0(1− x0)

c
(r)
3 = 1− x2

0 −
y20

1− x0
= 1− x2

0 −
1
4
p2x2

0(1− x0).

Comparing the coefficients in (25) we can determine the value of τ
and the final form (11) of the extremal function follows. This ends the
proof of Theorem 1.

2. (a) Now we will apply Theorem 1 to get the sharp bound,
depending on t = − log a0, for |a3| within the class Br

0 of holomorphic
functions in |z| < 1 of the form

(26) f(z) = e−t + a1z + a2z
2 + . . . , t > 0, |z| < 1,

which satisfy the condition 0 < |f(z)| < 1, |z| < 1, and have real
coefficients.

It is well known that

(27) f ∈ Br
0 ⇐⇒ f(z) = exp

{
− t 1− ω(z)

1 + ω(z)

}
, ω ∈ Ωr.

Comparison of the coefficients in (27) together with (26) and (1)
implies

(28)



a1 = 2te−tc1

a2 = 2te−t(c2 + (t− 1)c21)

a3 = 2te−t
{
c3 + 2(t− 1)c1c2 +

1
3
(2t2 − 6t+ 3)c31

}
.
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Theorem 2. If f ∈ Br
0, then we have the following sharp estimates

(29)

|a3| ≤




2te−t for t ∈ (0, t1]
2
√
2

3
e−t(2t− 1)3/2 for t ∈ [t1, t2]

2
√
2

3
te−t(2t− 3)3/2(−t2 + 6t− 6)−1/2 for t ∈ [t2, t3]

2
3
te−t(2t2 − 6t+ 3) for t ∈ [t3,+∞).

The numbers t1 = 1.65 . . . , t2 = 3.30 . . . , t3 = 3.82 . . . are the roots
of the equations

(30)



16t3 − 33t2 + 12t− 2 = 0
8t4 − 40t3 + 50t2 − 18t+ 3 = 0
2t2 − 10t+ 9 = 0,

respectively.

Proof. By the formula (28) the estimate of |a3| is equivalent to the
value of the bound of functional (2) for ω ∈ Ωr with p = 2(t− 1) and
q = (1/3)(2t2 − 6t+ 3).

Therefore, the extremal values for |a3| follow from (8). For the
determination of the numbers t1, t2 and t3 we have to find the points
of intersection of the parabola

(31) q =
1
6
(p2 − 2p− 2), p ≥ −2

and the boundary curves of the sets Dk given by (9). The parabola
(31) starts at the point (−2, 1) and intersects the curves:

q =
4
27

(p+ 1)3 − (p+ 1);

q = 2
p2 − 1
p2 + 3

and q =
2
3
(p− 1).

The curve q = 2(p2 − 1)/(p2 + 3) intersects with parabola (31) for
p = p̂ ∈ (4.6; 4.7).
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The above results together with the estimates for B0 given in [4]
imply (29) and (30), which ends the proof.

Remark. One can observe by comparing the estimates (29) for the
class Br

0 with those for the class B0 [4] that they are the same except
for the interval 3.30 . . . ≤ t ≤ 3.47 . . . .

(b) An interesting application of Theorem A is the coefficient problem
within the class of bounded univalent and starlike functions in the unit
disk |z| < 1.

For fixed M > 1, let S∗
M denote the class of holomorphic, univalent

functions in |z| < 1 of the form:

(32) F (z) = z + a2z
2 + a3z

3 + · · · , |z| < 1,

which satisfy the conditions

|F (z)| < M and Re
zF ′(z)
F (z)

> 0 for |z| < 1.

For this class of functions very little is known about the coefficient’s
estimate.

Namely, we have sharp bound

|a2| ≤ 2(1− a), a =
1
M

∈ (0, 1)

and the sign of equality holds for the so-called Pick functions PM (z)

(33) PM (z) = z +A2z
2 +A3z

3 + . . . , |z| < 1

which maps the disk |z| < 1 onto the disk |w| < M minus the segment
[−M,−M(2M − 1− 2

√
M(M − 1))].

In [1] Barnard and Lewis proved a very interesting result that, if
f ∈ S∗

M , then

(34) log
F (z)
z

≺ log
PM (z)
z

,

that is, log(F (z)/z) = log(PM (ω(z))/ω(z)), ω ∈ Ω.
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Comparison of the coefficients in (34) together with (1) and (32)
implies

(35)



a2 = A2c1

a3 = A2c2 +A3c
2
1

a4 = A4c
3
1 + 2A3c1c2 +A2c3,

where

(36)



A2 = 2(1− a)
A3 = (1− a)(3− 5a)

A4 = 2(1− a)(2− 8a+ 7a2),

a =
1
M

∈ (0, 1).

Therefore, we have

Theorem 3. If F ∈ S∗
M , then we have the following estimates

(37) |a3| ≤
{
(1− a)(3− 5a) for a ∈ (0, (1/5)]
2(1− a) for a ∈ [(1/5), 1]

(38)

|a4| ≤




2(1− a)(2− 8a+ 7a2) for a ∈
(
0,

7
59

]
2 5

3

3/2(1−a)(1−5a)3/2(2−8a+7a2)√
(1− 7a) (1 + 3a)

for a ∈
[ 7
59
, a∗1

]
4
√
3

9
(1−a)1/2(4−5a)3/2(6−7a)−1/2 for a ∈ [a∗1, a∗2]

2(1− a) for a ∈ [a∗2, 1)

,

where a∗1 ∈ (0.12, 0.13), a∗2 ∈ (0.23, 0.24) are the unique roots of the
equations

175a3 − 305a2 + 148a− 14 = 0
500a3 − 1011a2 + 609a− 94 = 0,

respectively.
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Proof. The estimate (37) was given in [1] and follows from (35) and
(36) by direct calculations. In order to obtain (38) we apply Theorem A
and the result of Barnard and Lewis (34).

The use of the formulae (35) and (36) and the investigation of the
points of intersections yield the curve

q =
1
25

(7p2 − 2p− 7), p ≥ −2,

with boundaries of Dk given by (6), ending the proof of Theorem A.

Remark. It seems that the bounds (37) and (38) are sharp forM ≥ 5
and M ≥ (59/7), respectively.

(c) Another interesting class of functions for which the coefficient
problem is still unsolved is the class of α-strongly starlike functions,
0 < α ≤ 1, e.g., [2, 5].

Namely, we say that a holomorphic function F of the form (32) is
α-strongly starlike, 0 < α ≤ 1, F ∈ S∗〈a〉, if it satisfies the condition∣∣∣∣ arg zF ′(z)

F (z)

∣∣∣∣ < απ2 , |z| < 1.

It is well known that

|a2| ≤ 2α and |a3| ≤



α for α ∈

(
0,
1
3

]
3α2 for α ∈

[1
3
, 1

]
,

and these bounds are sharp.

Applying Theorem A, we obtain

Theorem 4. If F ∈ S∗〈α〉, α ∈ (0, 1], then the following sharp
estimates hold

(39) |a4| ≤




2
3
α for α ∈

(
0,

√
2
17

]
2α
9
(17α2 + 1) for α ∈

[√ 2
17
, 1

] .
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The extremal functions are given by the equations

zF ′(z)
F (z)

=
(
1 + z3

1− z3
)α

and
zF ′(z)
F (z)

=
(
1 + z
1− z

)α

,

respectively.

Remark. The estimates (38) and (39) were already obtained in [6].
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