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A COEFFICIENT PROBLEM
FOR UNIVALENT FUNCTIONS RELATED TO

TWO-POINT DISTORTION THEOREMS

RICHARD GREINER AND OLIVER ROTH

ABSTRACT. We discuss a class of coefficient functionals
over the set of normalized univalent functions on the unit disk.
These functionals are related to symmetric, linearly invariant
two-point distortion theorems for univalent functions due to
Kim and Minda. Each of these theorems is necessary and
sufficient for univalence. A special case is a distortion theo-
rem of Blatter. Our approach is based on an application of
Pontryagin’s maximum principle to the Loewner differential
equation. In the same fashion, two-point distortion theorems
for bounded univalent functions are obtained. Related coeffi-
cient functionals are discussed, too.

1. Introduction. Let S be the customary class of normalized
univalent functions

f(z) = z + a2z
2 + a3z

3 + · · ·

on the unit disk D := {z ∈ C : |z| < 1} into C, and consider for a fixed
number p ∈ R the functional Jp : S → R defined by

(1) Jp(f) = Jp(a2, a3) := Re
(
a3 +

p− 3
3

a2
2

)
+

p+ 1
3

|a2|2.

Every function F ∈ S maximizing Jp over S is called an extremal
function for Jp.

The coefficient functional Jp is related to the following one-parameter
family of symmetric, linearly invariant two-point distortion theorems
for (not necessarily normalized) univalent functions on the unit disk
due to Blatter [1] and Kim and Minda [7].

Theorem 1.1. Let p > 0 be a real number such that the Koebe
function K(z) := z/(1− z)2 ∈ S maximizes the functional (1) over the
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class S. If g is a (not necessarily normalized) univalent function on
the unit disk D, then

(2)
|g(a)− g(b)| ≥ C(p, dD(a, b))[(1− |a|2)p|g′(a)|p

+ (1− |b|2)p|g′(b)|p]1/p

for all a, b ∈ D where dD denotes the hyperbolic metric in D and

(3) C(p, d) :=
1
2

sinh(2d)
[2 cosh(2pd)]1/p

.

The inequality (2) is sharp for all a, b ∈ D.

Condition (2) is necessary and sufficient for univalence. Whereas
the fact that (2) is sufficient for univalence is almost immediate,
the necessity of (2) for univalence is the hard part of the proof of
Theorem 1.1.

Theorem 1.1 has its origin in a paper by Blatter [1] who showed that
inequality (2) holds for all univalent functions g on D in the case p = 2
by using the classical coefficient inequalities |a2| ≤ 2, |a3 − a2

2| ≤ 1
and Loewner’s [9] result |a3| ≤ 3 for functions in S. Hence p = 2 is a
possible choice in (2).

It is easy to see that if the Koebe functionK maximizes the functional
(1) over S for one p ≥ 1, then it also maximizes (1) over S for all larger
values of p. Kim and Minda [7] proved, using an inequality of Jenkins,
that the Koebe function K maximizes the functional (1) in the class S
for p = 3/2, i.e., every p ≥ 3/2 is a possible choice in (2). The limit case
p → ∞ constitutes an invariant form of the Koebe distortion theorem
(cf. [7, p. 144]). On the other hand, Ruscheweyh has shown numerically,
using the Schaeffer-Spencer formulas for the coefficient body

V3 := {(a2, a3) : f ∈ S, f(z) = z + a2z
2 + a3z

3 + · · · },

that for p = 1 the Koebe function is not an extremal function for
the functional (1) in the class S. Since the righthand side of (2) is
a decreasing function of p for p ≥ 1, Kim and Minda [7] posed the
problem to find the smallest number p > 1 such that the Koebe function
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maximizes the functional (1) in the class S. We shall show that this
optimal value is

p = p0 :=
1
2
2e3 + 1
e3 − 1

.= 1.07859,

by establishing the following Theorem 1.2 which gives a complete
picture of the functional (1) for all p ∈ R.

Recently Jenkins [6] used the general coefficient theorem to show that
(2) is true if and only if p ≥ 1 whereas the method of Kim and Minda
together with Theorem 1.2 only establishes inequality (2) if p ≥ p0.

Theorem 1.2. Let F ∈ S maximize the functional (1) over S for
fixed p ∈ R. Then C \ F (D) is an analytic Jordan arc extending to
infinity.

(a) If p ≥ p0, then F (z) = ±K(±z).

(b) If p ≤ p1 := 3/(4 log 2)− 1/2 .= 0.58202, then F (z) = ±iK(∓iz).

(c) If p1 < p < p0, then F is not a rotation of the Koebe function.
More precisely, there is a function F0 ∈ S such that the complement of
the image domain C \ F0(D) is a curved analytic Jordan arc and F is
one of the four functions ±F0(±z), ±F0(±z̄).

We study the problem of maximizing the coefficient functional (1)
for fixed p ∈ R over S by the use of Pontryagin’s maximum principle
applied to the Loewner differential equation in combination with some
intricate but elementary calculations. Obviously, the problem is equiv-
alent to maximizing the functional (1) over the coefficient body V3.
However, although Schaeffer and Spencer [15] determined the bound-
ary ∂V3 quite explicitly, their formulas seem to be too complicated to
be useful to tackle the problem in this way the extremal functions for
(1) lie on the ‘complicated’ part of ∂V3. On the other hand, certain
analogies between Pontryagin’s maximum principle and the Schaeffer-
Spencer variational method (cf. [14]) have motivated our approach.

2. Pontryagin’s maximum principle. The coefficient body V3

can be described as the so-called reachable set of a control system
arising from Loewner’s differential equation [9]. In fact, if we consider
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FIGURE 1. A plot of max(a2,a3)∈V3 Re (a3+((p−3)/3)a2
2)+((p+1)/3)|a2|2

as a function of p for 0 ≤ p ≤ 2. The thick parts correspond to rotations of
the Koebe functions.

for a fixed measurable function u : [0,∞) → R the initial value problem

(4)

d

dt
a2(t) = − 2e−te−iu(t), a2(0) = 0,

d

dt
a3(t) = − 4e−te−iu(t)a2(t)

− 2e−2te−2iu(t), a3(0) = 0,

and denote the corresponding solution by a2(t, u(·)), a3(t, u(·)), then
the so-called entire reachable set

R := {(a2(∞, u(·)), a3(∞, u(·))) : u : [0,∞) → R measurable}
of (4) is dense in V3. See, for instance [3, Chapter 3].

Fix p ∈ R and let F (z) = z +A2z
2 +A3z

3 + · · · ∈ S be an extremal
function for the functional Jp in S, i.e.,
(5) max

f∈S
Jp(f) = Jp(F ).

Then C \ F (D) consists of one or two piecewise analytic Jordan arcs
(cf. [3, p. 304]) and it follows from Loewner’s theory that a function
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u0 : [0,∞) → R exists with at most one point of discontinuity (which
will be a discontinuity of the first kind) such that A2 = a2(∞, u0(·))
and A3 = a3(∞, u0(·)). In particular,

(6) max
(a2,a3)∈R

Jp(a2, a3) = Jp(A2, A3),

and the extremal problem (5) in the class S is reduced to the ordinary
optimal control problem (6). The standard approach of optimal control
theory to deal with an extremal problem of type (6) is the Pontryagin
maximum principle which we shall now describe briefly for functionals
Jp(a2, a3) on V3.

We denote by Ψ̄2(t), Ψ̄3(t) the solution of the adjoint equation to (4)
along u0(·), that is,

(7)

d

dt
Ψ̄2(t) = 4e−te−iu0(t)Ψ̄3(t), Ψ̄2(∞) =

∂Jp

∂a2
(A2, A3),

d

dt
Ψ̄3(t) = 0, Ψ̄3(∞) =

∂Jp

∂a3
(A2, A3),

where in our case

(8)

∂Jp

∂a2
(A2, A3) = − 3− p

3
A2 +

p+ 1
3

A2,

∂Jp

∂a3
(A2, A3) =

1
2
.

Then, we define the Hamiltonian function H : [0,∞]× R → R by

(9)
H(t, u) := Re [−2e−te−iuΨ̄2(t)− 4e−te−iua2(t, u0(·))Ψ̄3(t)

− 2e−2te−2iuΨ̄3(t)].

The initial value problems (4) and (7) imply that

(10) 4a2(t, u0(·))Ψ̄3(t) + 2Ψ̄2(t) ≡: A

is independent on t and therefore the Hamiltonian may be written as

(11)
H(t, u) = HA(t, u)

:= − e−t(ReA cosu+ ImA sinu+ 2e−t cos2 u) + e−2t.
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Inserting (8) into (10) for t = ∞ implies the important relation

(12) A =
2(2p+ 1)

3
ReA2 − 2

3
i ImA2.

Now, Pontryagin’s maximum principle (cf. [2, pp. 162 167]) reads as
follows.

Theorem 2.1. For fixed p ∈ R, let F (z) = z+A2z
2+A3z

3+ · · · ∈ S
be an extremal function for the functional Jp, let u0 : [0,∞) → R
be a piecewise continuous function with at most one point of dis-
continuity which is of first kind such that A2 = a2(∞, u0(·)) and
A3 = a3(∞, u0(·)), and let A ∈ C be given by (12). Then

(13) max
u∈R

HA(t, u) = HA(t, u0(t)) for all t ∈ [0,∞].

We shall use the necessary condition (13) of Theorem 2.1 to prove
Theorem 1.2. It turns out that, for A ∈ C \ (R ∪ iR), condition
(13) determines the function u0, i.e., F ∈ S uniquely. Therefore, it is
convenient to introduce the following notion.

Definition 2.2. A function f(z) = z + a2z
2 + a3z

3 + · · · ∈ S is
called A-admissible for some A ∈ C if a piecewise continuous function
u0 : [0,∞) → R exists with at most one point of discontinuity which is
of first kind such that a2 = a2(∞, u0(·)), a3 = a3(∞, u0(·)) and which
satisfies (13) for HA given by (11).

Therefore, Theorem 2.1 tells us that every extremal function F (z) =
z +A2z

2 + · · · ∈ S for the functional Jp is A-admissible for A given by
(12).

Definition 2.3. A function f(z) = z + a2z
2 + · · · ∈ S is called a

critical point of the functional (1) if f is A-admissible for

(14) A =
2(2p+ 1)

3
Re a2 − 2

3
i Im a2.
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Obviously, this is a necessary condition for a function to be extremal
for the functional Jp. Note that a function f ∈ S is a critical point if
and only if −f(−z), respectively f(z̄), is a critical point.

The strategy of the proof of Theorem 1.2 is as follows. We will
show first (Lemmas 3.1 and 3.2) that an extremal function for Jp can
be A-admissible only for A ∈ C \ (−4, 4) and that for A ∈ iR or
A ∈ R\ (−4, 4) the only A-admissible functions are certain rotations of
the Koebe function. If f is a critical point of the functional Jp which
is A-admissible for the remaining case A ∈ C \ (R ∪ iR), then A lies
on a curve contained in the annulus 1/3 < |A| < 4e3/(e3 − 1) and
p1 < p < p0 (cf. Lemmas 3.4 and 3.5). Therefore, if p ≥ p0, then only
a rotation of the Koebe function can be a critical point. From this it
readily follows that the only extremal functions are K(z) and −K(−z).
Similarly, if p ≤ p1, then the only extremal functions are ±iK(∓iz).
Finally, if p ∈ (p1, p0), then no rotation of the Koebe function can be
extremal. This will be shown in Lemma 3.6. In this case the maximal
value of the functional Jp can be calculated numerically.

Remark 1. From the Schiffer variational theory for univalent functions
we know that every extremal function F ∈ S for the functional Jp for
fixed p ∈ R is a solution of the Schiffer differential equation

(15)
[
zF ′(z)
F (z)

]2 1 +Af(z)
f(z)2

= z2 +Az +B0 +Az−1 + z−2,

where 2B0 = Jp(F ) and A is given by (12), cf. [3].

Remark 2. There is an intimate connection between Pontryagin’s
maximum principle (13) and the Schiffer differential equation (15), cf.
[14]. A function f ∈ S is A-admissible if and only if it admits a
piecewise analytic extension to D such that{

zf ′(z)
f(z)

}2 1 +Af(z)
f(z)2

is positive on |z| = 1, except for one or two points.

Remark 3. In terms of the Schiffer differential equation, the notion
of A-admissibility was used by Pfluger in his study of the Fekete-Szegő
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functional a3 − λa2
2 for λ ∈ C in [11], [12], [13]. The critical points

are exactly those functions which satisfy the extremality condition in
Pfluger’s terminology. Using an interesting global topological argu-
ment, Pfluger shows that, for λ �= 1, there are exactly two functions
satisfying the extremality condition, i.e., exactly two critical points. In
the case of the functional (1) we shall show that this is only true for
p /∈ (p1, p0). Consequently, the global reasoning of Pfluger cannot be
adopted for our situation.

3. Proof of Theorem 1.2. According to Theorem 2.1 every
extremal function for Jp is A-admissible. We will show first that we
can restrict ourselves to the case A /∈ R∪ iR in the sequel. Otherwise,
a rotation of the Koebe function will be extremal for (1).

Lemma 3.1. Let f ∈ S be an A-admissible function.

(a) If A ∈ iR \ {0}, then f(z) = ±iK(∓iz).

(b) If A ∈ R and |A| ≥ 4, then f(z) = ±K(±z).

Proof. (a) If ReA = 0, then the Hamiltonian function (11) becomes

HA(t, u) = − 2e−t

(
ImA

2
sin u− e−t sin2 u

)
− e−2t

= 2e−2t

(
sin u− 1

4
etImA

)2

− e−2t − (ImA)2

8
.

Consider the case ImA > 0. For fixed t ≥ 0, the function u �→
HA(t, u) attains its maximum at u = u0(t) if and only if sinu0(t) = −1,
i.e., u0(t) = −π/2. Thus f(z) = iK(−iz). If ImA < 0 a similar
argument shows that f(z) = −iK(iz).

(b) If A ∈ R, then the Hamiltonian function (11) takes the form

(16)
HA(t, u) = − e−t(ReA cosu+ 2e−t cos2 u) + e−2t

= − 2e−2t

(
cosu+

ReA
4

et

)2

+ e−2t +
(ReA)2

8
.

Therefore, if A ≥ 4 or A ≤ −4, (13) and (11) imply u0(t) = π or
u0(t) = 0, respectively, which leads to f(z) = ±K(±z).
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Now we rule out the existence of an extremal function which is A-
admissible for some A ∈ (−4, 4).

Lemma 3.2. Let F (z) = z + A2z
2 + A3z

3 + · · · ∈ S be an extremal
function of (1), and let A be defined by (12). Then A /∈ (−4, 4).

Proof. If A ∈ (−4, 4), then the Hamiltonian function (11) has the
form (16). We first consider the case A = 0. Then u0 only takes the
values π/2 and −π/2, i.e.,

F (z) = fµ(z) =
z

1 + 2µiz − z2
= z − 2iµz2 + · · ·

for some −1 ≤ µ ≤ 1. Now the relation 0 = ImA = −2ImA2/3 = 4µ/3
leads to µ = 0. This implies F (z) = f0(z) := z/(1 − z2). However, f0

is never an extremal function for the functional Jp because Jp(f0) =
1 < 7/3 = Jp(f±1). Thus, A = 0 is not possible.

If A ∈ (−4, 4) \ {0}, then for fixed t ≥ 0 the function u �→ HA(t, u)
attains its maximum if and only if u = u0(t) where

(17) cosu0(t) =
{−(ReA/4)et for 0 ≤ t ≤ log |4/ReA|,
−signReA for t ≥ log |4/ReA|.

Equation (4) for u(t) = u0(t) leads to

ReA2 = − 2
∫ ∞

0

e−t cosu0(t) dt =
ReA
2

(
log

∣∣∣∣ 4
ReA

∣∣∣∣ + 1
)
.

Since ReA �= 0, we obtain from (12)

(18) |A| = 4 exp
(
2(p− 1)
2p+ 1

)
,

i.e., in particular −1/2 ≤ p < 1. Using equation (4) for u(t) = u0(t)
and (12) we calculate

(19)
Jp(F ) = Re (A3 −A2

2) +
2p+ 1

3
A2

2

= 1− 4
∫ ∞

0

e−2t(cosu0(t))2 dt+
3

4(2p+ 1)
A2.
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Inserting (17) and (18), we find

(20) Jp(F ) = 1 + 2 exp
(
4(p− 1)
2p+ 1

)
.

To finish the proof of Lemma 3.2, we therefore only have to present for
each p ∈ [−1/2, 1) a function F̂ ∈ S with Jp(F̂ ) > 1 + 2 exp(4(p −
1)/(2p + 1)). Evidently, F̂ (z) = −iK(iz) is a suitable choice for
p < p2 := (4− log(3/2))/(4 + 2 log(3/2)) .= 0.74716.

The case p2 ≤ p < 1 is more delicate. By composing a Pick function

Pm(z) :=
m(1− z)2 + 2z − (1− z)

√
m2(1− z)2 + 4mz

2z
, m > 1,

with a Mobius transform

Mt(z) := e−it/2 z + 1
1− e−itz

, t ∈ R,

we construct a univalent mapping fm,t,u := Fm(Mt(eiuz)), u ∈ R, from
the unit disk onto the right half-plane minus a circular slit emerging
from the origin tangentially to the positive real axis. Hence, (fm,t,u)2

is a univalent slit-mapping. After renormalization we obtain a function
Fm,t,u(z) = z + a2(m, t, u)z2 + a3(m, t, u)z3 + · · · ∈ S with coefficients

a2(m, t, u) =
ei(u−t)

2m
[3 + (4m− 3)eit],

a3(m, t, u) =
e2i(u−t)

m2
[2 + (6m− 5)eit + (3m2 − 6m+ 3)e2it].

For p ∈ [p2, 1), we choose the function F̂ := Fmp,tp,up
with

tp :=
6(1− p)

π
, up := 3tp/2,

mp :=
3p+ 1− 4 cos tp − 3(p+ 1) cos 2tp

2− 4p(cos tp + cos 2tp)
.

Notice that mp > 1 for p2 < p < 1. A straightforward calculation using
the Taylor expansion shows

Jp(F̂ ) =
1

6(−3p− 1 + 4 cos tp + 3(p+ 1) cos 2tp)
× [4− 8p+ 11(p+ 1) cos tp + 4(10p+ 3) cos 2tp

+ 2(17p+ 3) cos 3tp + 4(4p− 3) cos 4tp + 3(p− 3) cos 5tp]

≥ 8p+ 1
3

+
2(4p2 − 11p+ 7)

3
tp

2.
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Finally,

8p+ 1
3

+
24(4p2 − 11p+ 7)

π2
(1− p)2 > 1 + 2 exp

(
4(p− 1)
2p+ 1

)

if p2 < p < 1 since the difference of these two functions is strictly
monotonically decreasing and equality holds for p = 1. The assertion
follows.

In the next lemma we shall deal only with A-admissible (not neces-
sarily extremal) functions. We parametrize A in terms of  ∈ (0, 1] and
ϕ ∈ (−π, π] by

(21) A = A( , ϕ) :=
(
 +

1
 

)
eiϕ + 2e−iϕ.

(This is the parametrization used by Schaeffer and Spencer [15, Chap-
ter 13]). In view of Lemma 3.2, we only have to consider the case
A ∈ C \ (−4, 4) for A-admissible functions.

Lemma 3.3. If A ∈ C \ (−4, 4), then a uniquely determined A-
admissible function fA(z) = z+ a2(A)z2 + · · · ∈ S exists. C \ fA(D) is
a single analytic arc extending to ∞, and

(22)
2a2(A) = 4e−iϕ −A log(1 +  2 + 2 e−2iϕ)

+A log(1−  2) + Ā log
1 +  

1−  
.

Equation (22) is exactly formula (13.5.8) in [15] for the part of the
coefficient body V3 which corresponds to one-slit mappings.

Proof. We show that, for A ∈ C \ (−4, 4), equation (13) determines
the function u0 and hence a2(A) uniquely. If A ∈ iR or A ∈ R, |A| ≥ 4,
this and (22) have already been proved in Lemma 3.1. If A = ±4, then
(22) has to be understood in the limit  → 1. Otherwise, we have
to maximize the trigonometric polynomial (11) for fixed A /∈ R ∪ iR.
This will be done by completing the square in (11) employing a clever
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idea that was used by Tammi [16] and Haario [4] in their study of the
functional Re (a3 − a2

2 + Ca2), C ∈ C.

We fix t ≥ 0, choose a parameter q > 0 (to be determined later)
and use the identity cos2 u = (q + 1) cos2 u + q sin2 u − q to write the
Hamiltonian HA in the form

HA(t, u) = − e−t(ReA cosu+ ImA sinu+ 2e−t(q + 1) cos2 u
+ 2e−tq sin2 u− 2e−tq) + e−2t

= − 2e−2t

(
cosu+

ReA
4(q + 1)

et

)2

(q + 1)

− 2e−2t

(
sinu+

ImA

4q
et

)2

q

+ 2e−2tq + e−2t +
(ReA)2

8(q + 1)
+

(ImA)2

8q

≤ 2e−2tq + e−2t +
(ReA)2

8(q + 1)
+

(ImA)2

8q
=: f(t, q)

with equality if and only if

(23) cosu = − ReA
4(q + 1)

et and sinu = − ImA

4q
et.

Now we choose q = q0(t) as follows. The function q �→ fq(t, q) is
monotonically increasing on (0,∞) because fqq(t, q) > 0. Moreover,
limq→0 fq(t, q) = −∞ and limq→∞ fq(t, q) = 2e−2t, i.e., q �→ fq(t, q)
has exactly one zero q0(t) > 0 which is uniquely determined by A. The
function t �→ q0(t) is continuously differentiable and strictly increasing
because of

d

dt
q0(t) =

4e−2t

fqq(t, q0(t))
> 0.

Now fq(t, q0(t)) = 0 implies(
ReA

4(q0(t) + 1)
et

)2

+
(

ImA

4q0(t)
et

)2

= 1,

which shows that u0(t) is given by

cosu0(t) = − ReA
4(q0(t) + 1)

et and sin u0(t) = − ImA

4q0(t)
et.
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Thus u0 is uniquely determined by A. In particular, t �→ u0(t) is a real
analytic function and cosu0(t) �= 0 and sinu0(t) �= 0 for all t ≥ 0. The
maximal property of u0(t) implies Hu(t, u0(t)) = 0 for all t ≥ 0, i.e.,

(24)
ImA

sinu0(t)
− ReA

cosu0(t)
= 4e−t > 0.

The properties of q0(t) show that t �→ u0(t) is a monotone function,
and differentiation of (24) leads to the following equation for the inverse
function u �→ t(u)

−4
dt

du
(u)e−t(u) = ImA

cosu
sin2 u

+ReA
sin u
cos2 u

.

This formula can be used to express

a2(∞, u0(·)) = −2
∫ ∞

0

e−te−iu0(t) dt

in terms of u0(0), u0(∞) and A only. Using (24) for t = 0 and t = ∞,
one can express u0(0) and u0(∞) as a function of A and this leads
finally to (22).

To finish the proof of Lemma 3.3, we have to show that fA is a one-
slit mapping. This follows from a result of Kufarev [8] because u′

0(t) is
bounded on [0,∞). In fact, differentiation of (24) leads to

|u′
0(t)| =

∣∣∣∣ 4e−t sinu0(t) cosu0(t)
(ReA/ cosu0(t)) + 4e−t cos2 u0(t)

∣∣∣∣
≤ 4

−4e−t − (ReA/ cosu0(t))

= −4
sinu0(t)
ImA

≤ 4
|ImA| .

We now characterize the critical points of the functional Jp which are
A-admissible for A /∈ (−4, 4).

Lemma 3.4. If f is a critical point of the functional Jp which is
A-admissible for A = A( , ϕ) ∈ C \ (−4, 4), then f( , ϕ) = 0 where

(25)
f( , ϕ) := − 4 sinϕ− (1 +  )2 cosϕ Im log(1 +  2 + 2 e−2iϕ)

− (1−  )2 sinϕ Re log(1 +  2 + 2 e−2iϕ)
+ 2(1−  )2 sinϕ log(1−  ) + 3(1−  )2 sinϕ.
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Moreover, if A /∈ iR, then p = p( , ϕ) where

(26) p( , ϕ) =
3
4

ReA( , ϕ)
Re a2(A( , ϕ))

− 1
2
.

Proof. Inserting (22) into (14) we see that

−3 ImA( , ϕ) = 2 Im a2(A( , ϕ)).

A straightforward calculation using (21) shows that this equation
is equivalent to f( , ϕ) = 0. Inserting (22) into (14) and taking
the real part, we obtain 3ReA( , ϕ) = 2(2p + 1)Re a2(A( , ϕ)). If
ReA( , ϕ) �= 0, then Re a2(A( , ϕ)) �= 0 and p = p( , ϕ) follows.

Obviously, f( ,±π/2) = 0 if and only if  = 1/3 and ϕ = ∓π/2
corresponds to ∓iK(±iz). Moreover, f(1, ϕ) = 0 if and only if ϕ = 0 or
ϕ = π which corresponds toK(z) or −K(−z) and p(1, 0) = p(1, π) = 1.
By symmetry it is therefore sufficient to study the equation f( , ϕ) = 0
in detail for 0 <  < 1 and 0 ≤ ϕ < π/2 and to calculate p( , ϕ)
for f( , ϕ) = 0. Obviously, f( , 0) = 0 for all 0 <  < 1 and ϕ = 0
corresponds to a2(A) = 2, i.e., to the Koebe function K(z). However,
for certain values of  another critical point may occur.

Lemma 3.5. If f( , ϕ) = 0 with 0 <  < 1 and 0 ≤ ϕ < π/2, then
either

(a) ϕ = 0 and p( , ϕ) = (3 + 2 + 3 2)/(8 ) ∈ (1,∞) or

(b) ϕ > 0. In that case 1/3 <  < (1− e−3/2)/(1 + e−3/2) .= 0.63515
and ϕ = ϕ( ) is a differentiable and strictly decreasing mapping onto
(0, π/2). The function p = p( , ϕ( )) is differentiable and strictly
increasing and takes its values in (p1, p0).

Proof. We only have to prove (b). To make computations easier we
adopt the following transformations. We introduce functions

g(v, x) :=
1
v
− 4− 1

v

√
1 + x

1− x
T +

1
2
L,

q(v, x) := 1− v − v

√
1− x

1 + x
T − 1

2
L− log v,
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FIGURE 2. The locus of the zeros of f(�, ϕ) consisting of two curves in the
�-ϕ-plane (on the top) and the values of p as a function of � along these curves
(on the bottom). The thick parts correspond to the Koebe function.

defined on (v, x) ∈ (0, 1) × (−1, 1) where we used the shorthand
notations

T := arctan
√
1− x2

(1 + v)/(1− v) + x
, L := log

(1 + v2) + (1− v2)x
2

.

The following estimate on T will be useful later

(27)
(1− v)

√
1− x2

2
< T <

√
1− x2

(1 + v)/(1− v) + x
.

The first inequality in (27) may be obtained by comparing the partial
derivatives with respect to v for fixed x, the second one readily follows
from arctan y < y for y > 0.
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For fixed x we compute

(28) lim
x→1−

g(v, x) = −3− log v, lim
x→1−

q(v, x) = 1− v.

Hence, both functions g and q may be continuously extended to the
rectangle X := (0, 1)× (−1, 1].

By the transformation

(29) v = v( ) :=
(
1−  

1 +  

)2

, x = x(ϕ) := cos 2ϕ,

we define a bijection ( , ϕ) �→ (v( ), x(ϕ)) of (0, 1) × [0, π/2) onto X.
A straightforward calculation leads to the relations

(30)
sinϕ g(v( ), x(ϕ)) =

−1
(1−  )2

f( , ϕ),

q(v( ), x(ϕ)) =
3

2p( , ϕ) + 1

between f and p and the new functions g and q. Therefore, we ought
to minimize q(v, x) for (v, x) ∈ X with g(v, x) = 0.

We claim that the locus of the zeros of g(v, x) is a curve γ : t �→
(t, x(t)), t ∈ (e−3, 1/4], with

lim
t→1/4+

γ(t) = (1/4,−1), lim
t→e−3−

γ(t) = (e−3, 1),

where x′(t) < 0 is continuous. The existence of such a curve γ is guar-
anteed by the implicit function theorem since the partial derivatives

(31)
gv(v, x) =

1
v2

(
− 1 +

√
1+x

1−x
T

)
,

gx(v, x) =
(1 + x)(1− v)− 2

√
(1+x)/(1−x)T

2v(1− x2)
,

of g are negative on (0, 1)× (−1, 1) by (27) and

lim
v→0+

g(v, x) = +∞, lim
v→1−

g(v, x) = −3,
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for fixed x. A computation of the limit limx→−1+ g(v, x) = 1/v − 4
for fixed v together with (28) proves the statement about the end-
points of γ.

Now we shall prove that q(v, x) is decreasing on γ. To do so, we
consider

(32)
dq

dt
(t, x(t)) = qv(t, x(t)) + qx(t, x(t))x′(t).

Differentiation of the identity g(t, x(t)) = 0 leads to

x′(t) = −2(1− x2)
v

−1 +
√
(1+x)/(1−x)T

(1− v)(1 + x)− 2
√
(1+x)/(1−x)T

∣∣∣∣ v=t
x=x(t)

and allows us to replace x′(t) on the righthand side of (32). With (31)
and the formulas

qv(v, x) = −1−
√

1− x

1 + x
T,

qx(v, x) = − (1− x)(1− v)− 2v
√

(1− x)/(1 + x)T
2(1− x2)

for the partial derivatives of q, we obtain
(33)
dq

dt
(t, x(t)) =

−1 + x− v − xv

v

× v − 1 + v
√
(1−x)/(1+x)T +

√
(1+x)/(1−x)T

(v − 1)(1 + x) + 2
√

(1+x)/(1−x)T

∣∣∣∣ v=t
x=x(t)

.

Another application of (27) shows (dq/dt)(t, x(t)) < 0. Hence,

1− e−3 = q(e−3,−1) ≤ q(v, x) < q(1/4, 1) = log 4

on γ, since q is continuous on X.

Translating our result via (29) and (30) to the functions f( , ϕ) and
p( , ϕ) we obtain the assertion.

In view of Lemmas 3.2, 3.4 and 3.5 (b), any function other than
a rotation of the Koebe function might be extremal for (1) only if
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p1 < p < p0. This function, which we denote by F0, is A( , ϕ( ))-
admissible for  ∈ (1/3, (1−e−3/2)/(1+e−3/2)) such that p = p( , ϕ( )),
i.e., uniquely determined up to symmetry, and maps the unit disk onto
the complement of a single analytic Jordan arc extending to ∞. To
finish the proof of Theorem 1.2, we show

Lemma 3.6. If p1 < p < p0, then Jp(F0) > Jp(±K(±z)) =
(8p+ 1)/3 and Jp(F0) > Jp(±iK(∓iz)) = 7/3.

Proof. Fix p ∈ (p1, p0) and, by Lemma 3.5 (b),  ∈ (1/3, (1 −
e−3/2)/(1+e−3/2)) such that p = p( , ϕ( )). The value of the functional
Jp for the A( , ϕ)-admissible function F0 can be expressed in terms of
A( , ϕ) only. In fact, the reasoning in the proof of Lemma 3.3 to
show that the second coefficient of F0 can be expressed as a function
of A( , ϕ) applied to (19) for F = F0 leads to the remarkably simple
formula

Jp(F0) =
1
 
+  + cos 2ϕ.

We adopt the notations in the proof of Lemma 3.5. Then, using the
transformation (29), Jp(F0) > (8p+ 1)/3 is equivalent to

(34) j(v, x) :=
4− 4v

3 + v + x− xv
< q(v, x)

where v = v( ), x = x(ϕ( )). We shall prove (34) for any (v, x) ∈ X.
For v ∈ (0, 1) fixed

lim
x→1−

j(v, x)− q(v, x) = 0,

using (28). Now by the aid of (27) we estimate the difference of the
partial derivatives

jx(v, x)− qx(v, x) = − 4(1− v)2

(3 + v + x− vx)2

+
(1− x)(1− v)− 2v

√
(1−x)/(1+x)T

2(1− x2)

=
(1− v)2

2

(
1

1 + x
− 8

(3 + v + x− vx)2

)
≥ 0.
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This proves (34).

Similarly, the inequality Jp(F0) > 7/3 is equivalent to j(t, x(t)) <
6/5, where t = v( ) ∈ (e−3, 1/4). To prove this we show that the
lefthand side is an increasing function in t:
(35)
dj

dt
(t, x(t)) = jv(t, x(t)) + jx(t, x(t))x′(t)

=
8(1 + v − x+ vx)
v(3 + v + x− xv)2

× (1 + v + x− vx)
√
(1+x)/(1− x)T − (1− v + x− vx)

1− v + x− xv − 2
√
(1+x)/(1−x)T

.

The numerator and denominator of the second fraction are positive
by the estimate (27) on T . This, together with j(1/4, v(1/4)) =
j(1/4,−1) = 6/5 gives the assertion.

4. Remarks.

1. For p > 0 we denote the maximum of the functional Jp in (1) by
Mp. An examination of the proof of Theorem 1.1 in [7] shows that (2)
remains valid for any univalent function f on D if C(p, d) is replaced
by

(36)

C̃(p, d) :=
1

2P (p)
sinh(2P (p)d)

[2 cosh(2pP (p)d)]1/p
,

P (p) :=

√
6Mp − 2

16p
.

For p ≥ p0 we have P (p) = 1 by Theorem 1.2 and therefore C̃(p, d) =
C(p, d).

For smaller values of p the new distortion theorem will not be sharp.
Nevertheless, we now obtain two-point distortion theorems of a similar
fashion as (2) also for 0 < p < 1. A straightforward calculation shows
C̃(p, d) < C(p, d) for all d > 0 and p ≥ 1/3 as soon as Mp > (8p+1)/3.
We omit the details.
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2. Kim and Minda [7, Theorem 1], studied the functional

Kp(f) = Kp(a2, a3) :=
∣∣∣∣a3 +

p− 3
3

a2
2

∣∣∣∣ + p

3
|a2|2, p ∈ R, f ∈ S,

and computed its maximum value. Regardless of its similarity to Jp,
this functional is easier to handle since (12) now has to be replaced by
A = 4p/3ReA2. For large values of |p| a rotation of the Koebe function
is extremal, K if p ≥ 3/2, respectively −K(−z) if p ≤ 0, whereas in
the intermediate case a two-slit mapping K0 is extremal, which doesn’t
belong to the ‘complicated’ part of ∂V3. This allows us to calculate
Kp(K0) = 1 + 2 exp((2p− 3)/p) as has been done by Kim and Minda
using Jenkin’s description of the part of ∂V3 which belongs to two-slit
mappings or similarly as the reasoning which leads to (20).

3. In [10] Ma and Minda proved the following analogue of Theo-
rem 1.1 for nonnormalized bounded univalent functions.

Theorem 4.1. If g is univalent on D and g(D) ⊆ D, then

dD(g(a), g(b)) ≥ 1
4
log

(
[1 + e−4pdD(a,b)]1/p +∆p(g, a, b)

[1 + e−4pdD(a,b)]1/p + e−4dD(a,b)∆p(g, a, b)

)

for all a, b ∈ D and all p ≥ 3/2, where

∆p(g, a, b) :=
[(

[(1− |a|2)|g′(a)|/(1− |g(a)|2)]
1− [(1− |a|2)|g′(a)|/(1− |g(a)|2)]

)p

+
(

[(1− |b|2)|g′(b)|/(1− |g(b)|2)]
1− [(1− |b|2)|g′(b)|/(1− |g(b)|2)]

)p]1/p

.

The proof relies on the following coefficient inequality for bounded
univalent functions established by Ma and Minda [10].

Theorem 4.2. If f(z) = a1z + a2z
2 + a3z

3 + · · · is univalent on D
and f(D) ⊆ D, then for p ≥ 3/2,

(37)
∣∣∣∣3

[
a3

a1
−

(
a2

a1

)2]
+

p+ |a1|
1− |a1|

(
a2

a1

)2∣∣∣∣ + 1 + p

1− |a1|
∣∣∣∣a2

a1

∣∣∣∣
2

≤ (8p+ 1 + |a1|)(1− |a1|).
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Equality holds if and only if f is a rotation of the Pick function.

Using the procedure in Section 3, we can show that the constant 3/2
in Theorem 4.2 can be replaced by

(38) pb(|a1|) := 1
2
· 2e

3 + 1
e3 − 1

− 1
2
· e

3 + 2
e3 − 1

|a1|,

but by no smaller number. Thus Theorem 4.1 remains valid for all
univalent functions g : D → D and all p ≥ pb(g) where

pb(g) :=
1
2
· 2e

3 + 1
e3 − 1

− 1
2
· e

3 + 2
e3 − 1

·max
z∈D

|g′(z)|(1− |z|2)
1− |g(z)|2 .

4. We close this paper by briefly considering the extremal problem

(39) max
(a2,a3)∈V3

Ic(a2, a3)

for the functional

(40) Ic(a2, a3) = Re (a3 − ca2
2) + c|a2|2, c ∈ R fixed,

which looks very similar to the functional (1).

The extremal problem (39) has been studied by Jakubowski and
Zyskowska [5]. They obtained the sharp upper bound for c /∈ [1/2, 1]
and a nonsharp upper bound for c ∈ [1/2, 1] by an application of the
Landau-Valiron lemma. Using the same method as for the functional
(1), we can complete their results.

Theorem 4.3. Let F ∈ S be an extremal function for Ic for fixed
c ∈ R. Then C \F (D) is an analytic Jordan arc extending to infinity.

(a) If c ≥ c0 := e/(2e− 2) .= 0.790988, then F (z) = ±iK(∓iz).

(b) If c ≤ 1/2, then F (z) = ±K(±z).

(c) If 1/2 < c < c0 then F is not a rotation of the Koebe function.
More precisely, there is a function F0 ∈ S such that C \ F0(D)
is a curved analytic Jordan arc and there are exactly four extremal
functions, namely ±F0(±z) and ±F0(±z̄).
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FIGURE 3. A plot of max(a2,a3)∈V3 Re (a3 − ca2
2) + c|a2|2 as a function of c

for 0.5 ≤ c ≤ 0.9. The Jakubowski-Zyskowska estimate is shown dashed.

5. We are not able to give an explicit formula forMp = maxf∈S Jp(f)
if p1 < p < p0. However, the differential equations (33) and (35) for
q(t) and j(t), t ∈ (e−3, 1/4] can be solved numerically and lead, after
the substitution p(t) := 3/(2q(t)) − 1/2, Mp(t) := 4/j(t) − 1, to a
parametrization of the curve (p,Mp(t)), p1 < p < p0, in terms of t
which has been used to produce Figure 1. A similar approach has been
used for Figure 3.
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