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ORBIFOLD SPECTRAL THEORY

CARLA FARSI

ABSTRACT. In this paper we study Sobolev spaces for
smooth closed orientable Riemannian orbifolds. In particu-
lar we prove the Sobolev embedding theorem, the Rellich-
Kondrakov theorem and Poincare’s inequalities. From these
theorems we derive properties of the spectrum of the Lapla-
cian. In particular, Weil’s asymptotic formula and estimates
from below of the eigenvalues of the Laplacian are proved in
analogy with the manifold case.

0. Introduction. In this paper we study spectral theory for closed
orientable orbifolds. (In the literature orbifolds are also called V-
manifolds.) Orbifold Hilbert Sobolev spaces H2

k were first introduced
by Chiang in [5]. Other orbifold Sobolev spaces are also considered
in [12]. After defining general Sobolev spaces for closed orientable
orbifolds, we establish Sobolev embedding theorems and the Rellich-
Kondrakov theorem. By using these theorems we prove, in analogy
with the manifold case, Weil’s asymptotic formula for the eigenvalues
of the orbifold Laplacian. We also prove Poincare’s inequalities. Our
presentation of this material follows closely [9], [1], which deal with
the manifold case. By proving more refined Sobolev inequalities we
also obtain estimates from below of the eigenvalues of the Laplacian,
generalizing the results of [4] to the orbifold case.

This paper is the starting point of an ongoing project aiming at
generalizing several well-known results of spectral theory for manifolds
to orbifolds.

We will now recall a few basic definitions used throughout the paper
[10], [5], [7]. Unless otherwise specified, all our orbifolds are assumed
to be both smooth and Riemannian.

A closed orientable orbifold, M , can be covered by a finite number
of charts (Ωl, φl)l=1,... ,N , where Ωl = Ω̃l/Gl with Ω̃l homeomorphic to
Rn and Gl a finite subgroup of SO(n). The local lifts of the changes
of charts are assumed to be smooth.
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A partition of unity {ηl}l=1,... ,N subordinate to the cover {Ωl}l=1,... ,N

and to the shrinkage {Vl}l=1,... ,N of {Ωl}l=1,... ,N is constructed in
analogy with the manifold case by using a family of Gl-invariant
functions µ̃l on Ω̃l such that µ̃l = 1 on Ṽl and µ̃l = 0 outside Ω̃l.
This defines functions µl on M with µl = 1 on Vl and µl = 0 outside
Ωl. Moreover

ηl =
µl∑N

j=1 µj

, l = 1, . . . , N,

N∑
j=1

ηj = 1.

By choosing a Gl-invariant metric g̃l
ij on Ω̃l and using a standard

partition of unity construction, one gets a metric g on M in analogy
with the manifold case.

Now, given any function u ∈ C∞(M), one can define the integral of
u over M by

∫
M

u dv(x) =
def

N∑
l=1

1
|Gl|

∫
Ω̃l

η̃l(x̃)ũ(x̃)det (g̃l
ij(x̃)) dx̃,

where ∼ means lift to Ω̃l.

1. Sobolev spaces for orbifolds. The Sobolev spaces H2
k were

introduced by Chiang in [5]. More in general, one can define the
Sobolev spaces Hp

k as follows.

Definition 1.1. Let M be an orbifold. Define the space Cp
k(M) by

Cp
k(M) =

{
u ∈ C∞(M) | sup

j=0,... ,k

∫
M

|∇ju|p dv(x) < ∞
}
.

The Sobolev space Hp
k (M) is the completion of Cp

k(M) with respect to
the norm

‖u‖Hp
k
=

k∑
j=0

( ∫
M

|∇ju|p dv(x)
)1/p

.

Remark 1.2. (a) If M is compact, then Cp
k(M) = C∞(M) for all k

and p ≥ 1, and Hp
k (M) does not depend on the metric.
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(b) Hp
k (M) is a closed subspace of Lp(M).

Proposition 1.3. (a) H2
k(M) is a Hilbert space when equipped with

the norm ‖.‖k (equivalent to ‖.‖Hp
k
) defined by

‖u‖k =

√√√√ k∑
j=0

∫
M

|∇ju|2 dv(x).

The scalar product 〈, 〉 associated to the given norm is defined by

〈u, v〉 =
k∑

j=1

∫
M

〈∇ju,∇jv〉 dv(x).

(b) If p > 1, Hp
k (M) is reflexive.

2. Sobolev embedding theorems. We will establish Sobolev em-
bedding theorems for orbifolds, generalizing existing Sobolev embed-
ding theorems for manifolds. Propositions 2.1 and 2.2 will deal with
particular cases of the main theorem. This generalizes Chiang’s results
in [5] for H2

k . For Sobolev inequalities of Gallot type, see [12].

Proposition 2.1. Let M be a closed orientable orbifold of dimension
n. Suppose that the embedding H1

1 (M) ⊂ Ln/(n−1)(M) is continuous.
Then, for any real numbers p, q with 1 ≤ q < n and 1/p = 1/q − 1/n,
the embedding Hq

1 (M) ⊂ Lp(M) is continuous.

Proof. Let p and q be as above, and let A ∈ R be such that

‖u‖Ln/(n−1) ≤ A‖u‖H1
1

for all u ∈ H1
1 (M).

For u ∈ C∞(M), let φ = |u|p(n−1)/n. By continuity and Holder’s
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inequality we have (where we set p′ = [p(n−1)/n]−1), q′ = (q/(q−1)),

(‖u‖Lp)p(n−1)/n = ‖φ‖L(n−1)/n ≤ A‖φ‖H1
1

= A

∫
M

(|∇φ|+ |φ|) dv(x)

=
Ap(n−1)

n

∫
M

|u|p′ |∇u| dv(x) +A

∫
M

|u|p′+1 dv(x)

≤ Ap(n−1)
n

( ∫
M

|u|p′q′
dv(x)

)1/q′( ∫
M

|∇u|q dv(x)
)1/q

+A

(∫
M

|u|p′q′
dv(x)

)1/q′( ∫
M

|u|q dv(x)
)1/q

.

Since

p′q′ =
(
p(n− 1)

n
− 1

)
q′

=
(
p(n− 1)

n
− 1

)(
1− 1

q

)−1

=
(
p(n− 1)

n
− 1

)(
1− 1

p
− 1

n

)−1

=
(
p(n− 1)

n
− 1

)(
pn− n− p

pn

)−1

= p,

we have that

‖u‖p(n−1)/n
Lp ≤ ‖u‖p/q′

Lp

{
Ap(n− 1)

n

( ∫
M

|∇u|q dv(x)
)1/q

+A

(∫
M

|u|q dv(x)
)1/q}

.

Since p(n − 1)/n − p/(q′) = 1, it follows that ‖u‖Lp ≤ (Ap(n −
1)/n)‖u‖Hq

1
for all u ∈ C∞(M). As C∞(M) is dense in Hq

1 (M), we are
done.

Proposition 2.2. Let M be a closed orientable orbifold of dimension
n. Suppose that the embedding Hq0

1 (M) ⊂ Lp0(M) is valid for any
p0, q0 ∈ R such that 1 ≤ q0 < n and 1/p0 = 1/q0 − 1/n > 0. Then
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for any real member p, q, such that 1 ≤ q < n and integers m, k such
that 0 ≤ m < k satisfying 1/p = 1/q − (k −m)/n > 0, the embedding
Hq

k(M) ⊂ Hp
m(M) is continuous.

Proof. Let r ∈ N. Then

|∇|∇rψ|| ≤ |∇r+1ψ|, ∀ψ ∈ C∞(M).

(Proof as in [1, p. 36].) Suppose first that k − m = 1, so that
1/p = 1/q − 1/n. In this case the embedding Hq

1 (M) ⊂ Lp(M) is
continuous by hypothesis so A ∈ R exists such that, for all φ ∈ Hq

1 (M):

‖φ‖Lp ≤ A(‖∇φ‖Lq + ‖φ‖Lq ).

For φ = |∇rψ|, ψ ∈ C∞(M), we get

(1)
‖∇rψ‖Lp ≤ A(‖∇|∇rψ‖Lq + ‖∇rψ‖Lq )

≤ A(‖∇r+1ψ‖Lq + ‖∇rψ‖Lq).

Now apply (1) for r = k − 1, k − 2, . . . , 0, to find

‖∇k−1ψ‖Lp ≤ A(‖∇kψ‖Lq + ‖∇k−1ψ‖Lq )
‖∇k−2ψ‖Lp ≤ A(‖∇k−1ψ‖Lq + ‖∇k−2ψ‖Lq)

...
...

...
‖ψ‖Lp ≤ A(‖∇ψ‖Lq + ‖ψ‖Lq ).

Hence,

(2) ‖ψ‖Hp
k−1

≤ 2A‖ψ‖Hq
k

for all k.

Now suppose that k −m = 2 so that 1/p = 1/q − 2/n. Define p1 by
1/p1 = 1/p + 1/n. Notice that 1/p = 1/p1 − 1/n = 1/q − 2/n so that
1/p1 = 1/q−1/n and hence, by (2), the embeddingHq

k(M) ⊂ Hp1
k−1(M)

is continuous for all k. Now observe that 1/p = 1/p1 − 1/n so that by
(2) the embedding Hp1

k−1(M) ⊂ Hp
k−2(M) is continuous for all k. It

follows that the embedding Hq
k(M) ⊂ Hp

k−2(M) is continuous for all
k. By repeating the above construction sufficiently many times, the
theorem follows.
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Theorem 2.3 (Sobolev inequality or Sobolev embedding theorem).
For any real numbers p, q such that 1 ≤ q < n and integers m, k such
that 0 ≤ m < k satisfying 1/p = 1/q − (k −m)/n > 0, the embedding
Hq

k(M) ⊂ Hp
m(M) is continuous.

Proof. Because of Proposition 2.1 and Proposition 2.2, we only need
to show that the embedding H1

1 (M) ⊂ Ln/(n−1)(M) is continuous.
Firstly, for p = n/(n− 1) and u ∈ C∞(M) (we use the same notation
as in the introduction in the formulas below)

‖u‖Lp(M) =
∥∥∥∥

N∑
l=1

ηlu

∥∥∥∥
Lp(M)

≤
N∑

l=1

‖ηlu‖Lp(M) =
N∑

l=1

( ∫
Ωl

|ηlu|p dv
)1/p

,

as µl = 0 on Ωc
l . Since ηlu is supported on Ωl and M is compact, we

have∫
Ωl

|ηlu|p dv(x) ≤ C

|Gl|
∫

Ω̃l

|η̃lũ|pdet g̃l
ij(x̃) dx̃ for some C > 0.

Moreover, the inequality aδij ≤ g̃l
ij ≤ bδij for all l, i, j holds because

M is compact. Hence,∫
Ωl

|ηlu|p dv(x) ≤ Cbn

|Gl|
∫

Ωl

|η̃lũ|p dx̃.

By [1, p. 39], we know that for 1 ≤ q < n, 1/p = 1/q − 1/n and
v ∈ Hq

1 (R
n):

‖v‖Lp(Rn) ≤ k(n, q)‖∇v‖Hq
1 (Rn).

Therefore, since Ω̃l ≈ Rn and q = 1,
∫

Ωl

|ηlu|p dv(x) ≤ Cbnk(n, q)
|Gl|

∫
Ω̃l

|∇(η̃lũ)| dx̃

=
Cbnk(n, q)

|Gl|
∫

Ω̃l

(η̃l|∇ũ|+ |ũ||∇η̃l|) dx̃

≤ D(‖∇u‖L1(M) + ‖u∇ηl‖L1(M))
≤ D(‖∇u‖L1(M) +B‖u‖L1(M)),
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for some B,D > 0. It follows that the embedding H1
1 (M) ⊂ Lp(M),

p = (n/(n− 1)) is continuous.

Theorem 2.4 (Rellich-Kondrakov). Let M be a closed orientable
orbifold. Then for any integers j ≥ 0, m ≥ 0 and any real numbers
q ≥ 1 and p such that 1 ≤ p < nq(n − mq), the embedding of
Hq

j+m(M) into Hp
j (M) is compact, i.e., bounded subsets of Hq

j+m(M)
are precompact in Hp

j (M). In particular, for any 1 ≤ q < n and p ≥ 1
such that 1/p > 1/q − 1/n, the embedding of Hq

1 (M) into Lp(M) is
compact.

Proof. We will do the proof for m = 1, j = 0. Let {fm}m∈N be a
bounded sequence in Hq

1 (M). Consider the functions (notation as in
the introduction and in the proof of Theorem 2.3), hl

m(x̃) = (η̃lf̃m)(x̃),
defined on Ω̃l ≈ Dn, where Dn is the unit disk. The set Al of
these functions is bounded in Hq

1 (D
n). Since Al is precompact [1,

p. 55], a subsequence which is Cauchy in Lp(Dn) exists. By repeating
this operation, we may select a subsequence {fm′}m′∈N such that
{η̃lf̃m′}m′∈N is Cauchy in Lp(Ω̃l) for every l. But {ηlfm′}m′∈N is
also Cauchy in Lp(M) for every l. Therefore, {fm′}m′∈N is Cauchy in
Lp(M) as

∫
M

|fm′ − fn′ |p dv(x) =
∫

M

∣∣∣∣
N∑

l=1

ηl(fm′ − fn′)|p dv(x)

≤
N∑

l=1

∫
M

|ηl(fm′ − fn′)|p dv(x).

Hence the embedding Hq
1 (M) ⊂ Lp(M) is compact. Since, by

the Sobolev embedding theorem, the embedding Hr
k(M) ⊂ Hq

1 (M)
is continuous for 1/q = 1/r − (k − 1)/n, and the composition of a
continuous embedding with a continuous and compact one yields a
compact embedding, we have that the embedding Hr

1 (M) ⊂ Lp(M) is
compact for 1 ≥ 1/p > 1/r − 1/n > 0. To prove the general case,
one applies a similar argument, using the fact that the embedding
Hq

j+m(Dn) ⊂ Hp
j (D

n) is compact for m, q, j, p as in the statement
of the theorem (cf. [9, p. 25]).
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3. Properties of eigenvalues.

Theorem 3.1. Let M be a closed orientable orbifold. The eigen-
values of the Laplacian are nonnegative and form a discrete set. The
eigenfunctions, corresponding to the eigenvalue λ0 = 0, are the constant
functions and ker (∆−λI) is finite-dimensional for all λ ∈ R. The first
nonzero eigenvalue λ1 is equal to µ, defined by µ =

def
inf {‖∇ϕ‖2

L2 | ϕ ∈
A} where A = {ϕ ∈ H2

1 (M) such that ‖ϕ‖L2 = 1 and
∫

M
ϕdv(x) = 0}.

Proof. For the first two statements, see [5, Theorem 2.5]. To prove
that λ1 = µ, let {ϕi}i∈N be a sequence in A such that ‖∇ϕi‖2

L2 → µ
for i → +∞. By Rellich-Kondrakov’s theorem (Theorem 2.4), a
subsequence {ϕj}j∈N of {ϕi}i∈N exists such that ϕj → ϕ0 strongly
in L2(M), i.e., limj→+∞ ‖ϕj − ϕ0‖L2 = 0. Hence ‖ϕj − ϕ0‖L1 → 0
as j → +∞ since M is closed, and then ϕ0 satisfies ‖ϕ0‖L2 = 1 and∫
ϕ0 dv(x) = 0. Since H2

1 (M) is reflexive, a subsequence, which we still
call {φk}k∈N, of {φk}k∈N exists, such that φk → φ̃0 weakly in H2

1 (M).
Hence φk → φ̃0 strongly. Also,

‖ϕ0‖H2
1
≤ lim

k→+∞
inf ‖ϕk‖H2

1

and

‖ϕ0‖2
L2 ≤ lim

k→+∞
‖∇ϕk‖2

L2 = µ,

so the minimum is attained.

Now writing Euler’s equation of our variational problem, α, β ∈ C
exist such that, for all ψ ∈ H2

1 (M),
∫

M

∇νϕ0∇νψ dv(x) = α

∫
M

ϕ0ψ dv(x) + β

∫
M

ψ dv(x).

By choosing ψ = 1, we get β = 0, and by choosing ψ = ϕ0, we get
α = µ. So ϕ0 ∈ H2

1 (M) and satisfies weakly ∆ϕ0 = µϕ0.

By regularity [5, Theorem 2.5], ϕ0 ∈ C∞(M). Thus µ is an eigenvalue
of ∆ and ϕ0 an eigenfunction.

Conversely, let γ be an eigenfunction satisfying ∆γ = λ1γ,
∫
γ dv(x) =

0, then λ1 = ‖∇γ‖2
L2‖γ‖−2

L2 ≥ µ.
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Theorem 3.2 (Weil’s asymptotic formula) (cf. [3, p. 156]). Let
M be a closed orientable orbifold, with eigenvalues of the Laplacian
0 = λ0 < λ1 ≤ λ2 ≤ . . . , each distinct eigenvalue repeated according to
its multiplicity. Then, for

N(λ) =
∑

λj≤λ

1,

we have
N(λ) ∼ ωnV λn/2/(2π)n,

as λ tends to +∞. In the latter formula, V denotes the volume of M
and ωn is the volume of the unit disk in dimension n.

Proof. We wish to estimate

+∞∑
j=1

e−λjt,

as the heat kernel H is given by

H(x, y, t) =
+∞∑
j=1

e−λjtφj(x)φj(y),

where φj is an eigenfunction of the Laplacian, with eigenvalue λj , of
norm one [5]. Let O = {Ωl}l=1,... ,N be an orbifold cover of M and
U = {Ul}l=1,... ,N a shrinkage of O. By [5], we have that on lifted
orbifold charts Ω̃l, l = 1, . . . , N , H(x̃, ỹ, t) = K(x̃, ỹ, t) + k(x̃, ỹ, t)
where k(x̃, ỹ, t) is a bounded Gl-invariant function and K(x̃, ỹ, t) is the
heat kernel on Ω̃l satisfying the boundary condition K(x̃, ỹ, t) = 0 for
x̃ or ỹ belonging to the boundary of Ũl (cf. also [10], [2]). Hence we
can substitute K + k for H in the above formula, and we obtain

+∞∑
j=1

e−λjt ∼ V

4πtn/2
,

as t → 0. The Karamata theorem now implies Weil’s theorem [3], [6].
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4. Poincare inequalities. We will first prove Poincare’s inequality
for q > 1.

Theorem 4.1 (Poincare inequality for q > 1). Let M be a closed
orientable orbifold, and let 1 < q < n be a real number. Then, for any
u ∈ Hq

1 (M), we have
(∫

M

|u− ū|q dv(x)
)1/q

≤ A

( ∫
M

|∇u|q dv(x)
)1/q

,

for some A > 0 and ū = (1/V )
∫

M
u dv(x).

Proof. We only need to prove that

Infu∈H
∫

M

|∇u|q dv(x) > 0,

where

H =
{
u ∈ Hq

1 (M) such that
∫

M

|u|q dv(x) = 1 and
∫

M

u dv(x) = 0
}
.

Let {uk}k∈N be a sequence of elements of H such that

lim
n→+∞

∫
M

|∇uk|q dv(x) = Inf
u∈H

∫
M

|∇u|q dv(x).

By using Rellich-Kondrakov’s theorem and the fact that Hq
1 (M) is

reflexive for q > 1, a subsequence {uk′}k′∈N of {uk}k∈N exists which
converges weakly in Hq

1 (M) and strongly in Lq(M) ∩ L1(M). Let
v = limk′→+∞ uk′ . The strong convergence in Lq(M) ∩ L1(M) implies
v ∈ H, while the weak convergence yields∫

M

|∇v|q dv(x) ≤ lim
k′→+∞

∫
M

|∇uk′ |q dv(x).

Therefore, Infu∈H
∫

M
|∇u|q dv(x) > 0 is attained by v.

Theorem 4.2 (Poincare inequality for q = 1). Let M be a closed
orientable orbifold. Then a positive constant A > 0 exists such that,
for any u ∈ H1

1 (M),( ∫
M

|u− ū| dv(x)
)

≤ A

( ∫
M

|∇u| dv(x)
)
,



ORBIFOLD SPECTRAL THEORY 225

where ū = (1/V )
∫
M
u dv(x).

Proof. Let G(x, y) be Green’s function on M , G : M × M → R
and G(x, y) ∈ Hm+2

2 (M). By definition, G inverts ∆ on the orthogonal
complement of its kernel. Let u ∈ C∞(M) be such that

∫
M
u dv(x) = 0.

We then have, for any x ∈ M ,

u(x) =
∫

M

∆G(x, y)u(y) dv(y).

By Green’s formulas

|u(x)| ≤
∫

M

|∇yG(x, y)||∇u(y)| dv(y),

and so
∫

M

|u(x)| dv(x) ≤
∫

M

∫
M

|∇yG(x, y)||∇u(y)| dv(x) dv(y).

To finish the proof, we will show that there is a C > 0 such that
∫

M

|∇yG(x, y)| dv(y) ≤ C.

The Green functionG can be defined in the following way. LetH(x, y, t)
be the fundamental solution of the heat equation. Then [5]

H(x, y, t) =
+∞∑
i=0

e−λitφi(x)φi(y),

where {φj} is an orthonormal base for L2(M) and ∆φj = λjφj . Now

G =
∫ +∞

0

e−tH dt.

First of all, we will prove that the latter integral converges. Let
O = {Ωl}l=1,... ,N be an orbifold cover of M and U = {Ul}l=1,... ,N

a shrinkage of O. By [5], we have that on lifted orbifold charts Ω̃l,
l = 1, . . . , N , H(x̃, ỹ, t) = K(x̃, ỹ, t) + k(x̃, ỹ, t) where k(x̃, ỹ, t) is
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a bounded Gl-invariant function with bounded derivatives (cf. also
[2] and [10]), and K(x̃, ỹ, t) is the heat kernel on Ω̃l satisfying the
boundary condition K(x̃, ỹ, t) = 0 for x̃ or ỹ belonging to the boundary
of Ũl. Hence the integral

∫ +∞
0

e−tH dt converges, as
∫ +∞
0

e−tK dt and∫ +∞
0

e−tk dt both converge. An easy computation then shows that
G(φj) = λ−1

j φj which ends the proof of the integral formula for G.

Therefore, we can locally estimate ∇G on Ũl by using the standard
manifold estimates which yield up to a constant arising from the k-
term. Hence,

|∇ỹG(x̃, ỹ)| ≤ C

r̃n−1
,

where r̃ is the distance of x̃ from ỹ.

Hence, for x̃ ∈ Ũl, ∫
Ũl

|∇ỹG̃(x̃, ỹ)| dỹ,

is bounded, and so is
∫

M
|∇yG(x, y)| dv(x). Now the proof can be

completed by applying compactness.

A sharper Sobolev-Poincare’s inequality can be obtained by combin-
ing Theorems 2.3 and 4.2.

Corollary 4.3 (Poincare-Sobolev inequality). Let M be a closed
orientable orbifold. Then, for any u ∈ H1

1 , we have

‖u− ū‖Ln/(n−1) ≤ B‖∇u‖L1

for some B > 0 depending only on n.

Proof. By Theorem 2.3,

‖u− ū‖Ln/(n−1) ≤ A‖u− ū‖H1
1

= A

(∫
M

|u− ū| dv(x) +
∫

M

|∇u| dv(x)
)
,

for some A > 0.
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Now, by applying Theorem 4.2, we get

‖u− ū‖Ln/(n−1) ≤ A(A′ + 1)‖∇u‖L1

for some A′ > 0.

5. More Sobolev inequalities. In this section we will present two
additional Sobolev inequalities (Lemmas 5.1 and 5.2). We will then
derive from Lemma 5.1 an estimate from below on the first eigenvalue
of the Laplacian (Proposition 5.3). Our proof parallels the one given
by Li in the manifold case [11].

Lemma 5.1. Let M be a closed orientable orbifold of dimension
n ≥ 3. Then for some D > 0 we have

D‖f‖2
L2n/(n−2) ≤ ‖∇f‖2

L2 ,

for all f ∈ H2
1 (M) such that

∫
M

sgn (f)|f |2/(n−2) dv(x) = 0.

Proof. Consider the function g = sgn (f)|f |[2(n−1)/(n−2)]. By hypoth-
esis

∫
M

sgn (g)|g|1/(n−1) dv(x) = 0. By a variational argument, the last
equality implies

‖g‖Ln/(n−1) = inf
a∈R

‖g − a‖Ln/(n−1) .

Hence, by Corollary 4.3,

‖f‖[2n(n−1)/(n−2)]

L2n/(n−2) = ‖g‖n
Ln/(n−1)

≤ Bn‖∇g‖n
L1

= Bn

∥∥∥∥2(n− 1)
n− 2

fn/(n−2)∇f

∥∥∥∥
n

L1

.

By Holder’s inequality,

‖f‖[2n(n−1)/(n−2)]

L2n/(n−2) ≤ Bn 2(n− 1)
n− 2

‖f‖n2/(n−2)

L2n/(n−2)‖∇f‖n
L2 .
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Now, by dividing both sides by ‖f‖n2/(n−2)

L2n/(n−2) , we obtain

‖f‖n
L2n/(n−2) ≤ Bn 2(n− 1)

n− 2
‖∇f‖n

L2 .

Lemma 5.2. Let M be a closed orientable orbifold of dimension
n ≥ 3. Then for some E > 0 depending only on n, we have

E‖∇f‖2
L2 ≥ [‖f‖2

L2n/(n−2) − V −(2/n)‖f‖2
L2 ],

for all f ∈ H2
1 (M). (V is the volume of M .)

Proof. First note that, for some k ∈ R,
∫

M

sgn (f − k)|f − k|2/(n−2) dv(x) = 0.

(We can assume k > 0, otherwise we are done by Lemma 5.1.) Now,
by Lemma 5.1,

(∗)

‖∇f‖2
L2 ≥ D‖f − k‖2

L2n/(n−2)

≥ D
[
2−(n+2)/(n−2)‖f‖2n/(n−2)

L2n/(n−2) − V k2n/(n−2)
](n−2)/n

≥ D
[
2−(n+2)/n‖f‖2

L2n/(n−2) − V (n−2)/nk2
]
.

Set M+ = {x ∈ M |(f−k)(x) > 0} and M− = {x ∈ M |(f−k)(x) < 0}.
Then ∫

M+

|f − k|2/(n−2) dv(x) =
∫

M−
|f − k|2/(n−2) dv(x).

But∫
M+

|f − k|2/(n−2) dv(x) ≤ 2α

∫
M+

f2/(n−2) dv(x)− V+k
2/(n−2),

where α = 3 if n = 3, 4, and α = (n− 2)/(n− 4) if n ≥ 5. Also
∫

M−
|f − k|2/(n−2) dv(x) ≥ 2βV−k2/(n−2) −

∫
M−

|f |2/(n−2) dv(x),
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where β = (n− 4)/(n− 2) if n = 3, 4 and β = 0 if n ≥ 4.

Therefore, since
∫

M+
|f − k|2/(n−2) dv(x) =

∫
M−

|f − k|2/(n−2) dv(x),

2α

∫
M+

f2/(n−2) dv(x)−V+k
2/(n−2) ≥ 2βV−k2/(n−2)−

∫
M−

|f |2/(n−2) dv(x),

which implies

∫
M−

|f |2/(n−2) dv(x) + 2α

∫
M+

|f |2/(n−2) dv(x)

≥ 2βV−k2/(n−2) + V+k
2/(n−2) = (2βV− + V+)k2/(n−2).

Hence,
‖f‖2/(n−2)

L2/(n−2) ≥ 2−α+βV k2/(n−2).

By applying Holder’s inequality, we obtain

‖f‖2/(n−2)
L2 V (n−3)/(n−2) ≥ 2−α+βV k2/(n−2),

‖f‖2
L2V (n−3) ≥ 2(−α+β)(n−2)V (n−2)k2.

Combining this last inequality with (∗) ends the proof.

Proposition 5.3. Let M be a closed orientable orbifold of dimension
n ≥ 3. Then

λ1 ≥ V −2/nA

(n− 1)2
,

where λ1 is the first nonzero eigenvalue of the Laplacian on L2(M), V
is the volume of M , A is equal to D (of Lemma 5.1) for n ≥ 5, while
A = B−2 (of Corollary 4.3) for n = 3, 4.

Proof. Let f ∈ L2(M) satisfy ∆f = λ1f with
∫

M
f = 0. Suppose

first that n = 3 or 4. Consider the function g = sgn (f)|f |n−1. Clearly∫
M

sgn (g)|g|1/(n−1) dv(x) = 0. Therefore, by a variational argument,

‖g‖L(n−1)/n = inf
a∈R

‖g − a‖Ln/(n−1) .
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By Corollary 4.3,

‖f‖n(n−1)
Ln = ‖g‖n

Ln/(n−1) ≤ Bn‖∇g‖n
L1

= (n− 1)nBn‖fn−2∇f‖n
L1 .

Moreover, by Holder’s inequality and the eigenfunction property of f ,

‖fn−2∇f‖n
L1 ≤ ‖f‖n(n−1)

Ln V λ
n/2
1 .

Hence,

λ1 ≥ V −2/nB−2

(n− 1)2
.

Now let n ≥ 5, and define the function g = sgn (f)|f |(n−2)/2. Clearly∫
M

sgn (g)|g|2/(n−2) dv(x) = 0. Hence, by Lemma 5.1,

(∗∗) D‖f‖n−2
Ln = D‖g‖2

L2n/(n−2) ≤ ‖∇g‖2
L2 .

Moreover,

‖∇g‖2
L2 =

∫
M+

|∇f (n−2)/2|2 +
∫

M−
|∇|f |(n−2)/2|2,

where M+ = {x ∈ M | f(x) > 0} and M− = {x ∈ M | f(x) < 0}.
Since f (n−2)/n = 0 on ∂M+ and ∂M−, integration by parts yields

‖∇g‖2
L2 =

∫
M+

f (n−2)/2∆(f (n−2)/2) +
∫

M−
|f |(n−2)/2∆|f |(n−2)/2.

Now

∆(f (n−2)/2) = − (n− 2)
2

(n− 4)
2

f (n−6)/2|∇f |2 + (n− 2)
2

f (n−4)/2∆f

=
(n− 2)

2

[
− (n− 4)

2
f (n−6)/2|∇f |2 + λ1f

(n−2)/2

]
.
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Therefore,

‖∇g‖2
L2 =

∫
M+

f (n−2)/2∆(f (n−2)/2) +
∫

M−
|f |(n−2)/2∆|f (n−2)/2|

=
∫

M+

f (n−2)/2

{
(n− 2)

2

[
− (n− 4)

2
f (n−6)/2|∇f |2

+ λ1f
(n−2)/2

]}

+
∫

M−
|f |(n−2)/2

{
(n− 2)

2

[
− (n− 4)

2
|f |(n−6)/2|∇f |2

+ λ1|f |(n−2)/2

]}

≤ (n− 2)
2

λ1‖f‖n−2
Ln−2 .

By substituting into (∗∗), one obtains

(n− 1)
2

λ1‖f‖n−2
Ln−2 ≥ D‖f‖n−2

Ln .

Finally, by using Holder’s inequality, one gets

λ1V
2/n (n− 2)

2
≥ D.

6. Eigenvalues estimates. We will first prove a weaker form of a
Sobolev inequality and then use it to give an estimate from below of
the eigenvalues of the Laplacian. In the manifold case such estimates
were proved in [4].

Lemma 6.1. Let M be a closed orientable orbifold of dimension
n ≥ 3. Then a constant K exists such that

∫
M

|∇f |2 dv(x) ≥ K

( ∫
M

|f |2
)(n+2)/n( ∫

M

|f |
)−4/n

for any f ∈ H1
2 (M) such that

∫
M
f dv(x) = 0.
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Proof. By Lemma 5.2, a constant E > 0 exists such that

‖∇f‖2
L2 ≥ E[‖f‖2

L2n/(n−2) − V −2/n‖f‖2
L2 ],

where V is the volume of M . Since
∫

M
f dv(x) = 0, by Theorem 3.1

‖∇f‖2
L2 ≥ λ1‖f‖2

L2 ,

where λ1 is the first nonzero eigenvalue of the Laplacian. Moreover, by
Proposition 5.3,

λ1 ≥ MV −2/n,

for some M > 0. Therefore, by combining the above inequalities, we
get

‖∇f‖2
L2 ≥ E[‖f‖2

L2n/(n−2) − V λ−1
1 ‖∇f‖2

L2 ]

≥ E[‖f‖2
L2n/(n−2) − V 1+(2/n)M−1‖∇f‖2

L2 ].

That is,
‖∇f‖2

L2 ≥ K‖f‖L2n/(n−2) ,

for some K > 0. By Holder’s inequality, with p = (n− 2)/(n+ 2) and
q = −(n− 2)/4, we get

‖f‖L2n/(n−2) =
( ∫

M

|f |(2n+4)/(n−2)−(4/(n−2))

)(n−2)/(2n)

≥
( ∫

M

|f |2 dv(x)
)(n+2)/(2n)( ∫

M

|f |
)−(2/n)

.

Theorem 6.2. Let M be a closed orientable orbifold of dimension
n ≥ 2. Let λk be the k-th nonzero eigenvalue of the Laplacian. Then a
constant α exists such that

λk ≥ αK
k

V
,

where K is as in Lemma 6.1.

Proof. Let H(x, y, t) be the fundamental solution of the heat equa-
tion. Then [5]

H(x, y, t) =
+∞∑
i=0

e−λitφi(x)φi(y),
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where {φj} is an eigenfunction orthonormal base for L2(M). Since
λ0 = 0 with φ0 = V −1/2, we can define the function G(x, y, t) by

G(x, y, t) = H(x, y, t)− 1
V

=
+∞∑
i=1

e−λitφi(x)φi(y).

By [5, Proposition 4.1], H and G converge uniformly together with
their derivatives of all orders for t > 0. H and G are also C∞ functions
in all their arguments. Clearly G satisfies the semigroup property

G(x, y, s+ t) =
∫

M

G(x, z, s)G(z, y, t) dv(z).

Moreover, as
∫

M
φj(y) dv(y) = 0 for i ≥ 1, we have

∫
M
G(x, y, t) dv(y) =

0. Also∫
M

|G(x, y, t)| dv(y) ≤
∫

M

(|H(x, y, t)|+ V −1) dv(y) < +∞,

as
∫

M
|H| < +∞. By the semigroup property,

G′(x, x, t) =
∫

M

G′(x, y, t/2)G(x, y, t/2) dv(y)

=
∫

M

∆yG(x, y, t/2)G(x, y, t/2) dv(y).

Integration by parts yields

G′(x, x, t) = −
∫

M

|∇G(x, y, t/2)|2 dv(y).

By Lemma 6.1, we obtain

−G′(x, x, t) ≥ K

( ∫
M

|G|2
)(n+2)/n( ∫

M

|G|
)−4/n

≥ KQ−4/n

(∫
M

|G(x, y, t/2)|2 dv(y)
)(n+2)/n

,

for some Q > 0. Now the semigroup property of G implies

−G′(x, x, t)(G(x, x, t))−(n+2)/n ≥ Q−4/nK.
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Integrating both sides of the above inequality and using the fact that
G(x, x, t) → ∞ as t → 0, we have

(n/2)G−2/n(x, x, t) ≥ Q−4/nKt.

Hence,

G(x, x, t) ≤
(
2
n
Q−4/nKt

)−n/2

= Q2K−n/2t−n/2

(
n

2

)n/2

.

Integrating both sides with respect to x and using the expansion
formula for G, we have

+∞∑
i=0

e−λit ≤ α(Kt)−n/2V.

Let t = 1/λk. Since λi/λk ≤ 1 for i ≤ k, we have

α

(
K

λk

)−n/2

V ≥
+∞∑
i=1

e−λi/λk ≥
k∑

i=1

e−λi/λk ≥ ke−1,

which proves the theorem.
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