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MULTIPLIER OPERATORS
ON WEIGHTED FUNCTION SPACES

YUN-SHIOW CHEN, LUNG-KEE CHEN AND DASHAN FAN

ABSTRACT. We prove that certain multiplier operators
are bounded in weighted Hardy spaces provided that the
multipliers are defined in Herz spaces.

Suppose 0 < a < 00,1 <a <ooand 0 <p < oo. Let K&P be the
Herz spaces which consists of all functions f € L*(R™) with the norm
or quasi-norm

s 1/a p\ 1/p
||f|Kgm—|f||La(Rn)+< 3 (( /A |f|“> 2>) |

k=—o0

where Aj, = {2F < |z| < 281}, —00 < k < co. The spaces K&P were
first introduced by Herz [3]. These spaces are relative to both Hardy
spaces [4] and multiplier operators [1].

Suppose 1 € C§°(R") with 0 <7 < 1, n(§) =1 on 1/2 < [{] < 2
and suppn C {1/4 < |¢| < 4}. Let m be a function on R" and denote
ms (&) = m(6&)n(§) where & > 0. The multiplier operator T'f is defined
by

Tf(&) =m(&)f(8)-

In [1], Baernstein and Sawyer studied the boundedness of the multi-
plier operators on the Hardy spaces where the multiplier m is defined
on the Herz spaces, more precisely, they proved that if m satisfies

sup ||7hs]|x < o0
6>0

where X = K?(l/p_l)’p for 0 < p < 1 and X is a certain subspace
of Kf’l for p = 1, then the operator T'f is bounded on HP spaces,
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0 < p < 1. The hypotheses of the multipliers on the Herz spaces is
sharp in the sense that X cannot be replaced by any larger space of Herz
spaces and also it is easy to check that any multiplier of Hérmander
types of order N is in the Herz spaces KéV’Q, ie.,

sup ||| g2 < 00.
§>0 2

Recently, Onneweer and Quek extended the Baernstein and Sawyer’s
results to the case of mixed-norm type. Instead of assuming m is in
the Herz spaces, they obtained the HP boundedness of T'f by assuming
that m is in some mixed-norm type space, see [5, 6].

The main purpose of this paper is to study the boundedness of
multiplier operators on the weighted Hardy spaces where the multiplier
is defined on the Hertz spaces.

Let D, be the collection of positive measures with doubling condi-
tions, that is, u € Dg, ¢ > 0, if p is a positive measure on R" such that
there exists a constant C' > 0 with the property that for all £ > 1 and
r > 0 we have

p({le = xo| < tr}) < Ctiu({|z — x| <7})

where the constant C' is independent of g € R™. Suppose W is a
positive function. A tempered distribution f in R™ is in the weighted
Hardy spaces Hj, (R") if

p 1/p
1|2z, (rmy = (/( sup |<I>t*f(y)\) W(x) dx) < 00

(y;t)el (z)
where ® is a smooth function with [® # 0, ®,(z) = ¢t "®(¢t 'z) and
I(@) ={(y,t) [ |z =yl < t}.
A function a(z) is called an N-atom on Hj (R") if
(i) the a(z) is supported on a ball B;
(ii) [lalloo < CW (B)~Y/P where W(B) = [, W (z) dx;
(iii) [z%a(z)dz =0 for |a| < N.

Theorem A [7]. Suppose W (x) is a positive function and define a
measure du(zx) = W(x)dx. Assume that p € Dy for some ¢ > 0, that
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0 <p <1 and that N = [qn/p — 1]. Then for every f € HY,(R™) there
is a sequence {ar} of N-atoms, N > N, such that

F=2 war and |Ifl5e gy = D 1A

We will write W € RH,. if W satisfies the reverse Hélder condition of
degree v, 0o > 1 > 1, that is, there is a constant C > 0 such that

1 Lr 1
— W(zx)" dx SC—/Wasdm
(1 [overe) <o [we
for all balls B on R™.

Definition. W is called an A, weight if, for co > ¢ > 1,

<I;7| /B wiz) dx) (ﬁ /B W ()~ 1/ @D d:c)ql <

for every ball B in R", for ¢ =1
MW(z) < W(x) ae.

where M is the classical Hardy-Littlewood maximal function, and

A = 4,

q=>1

Remark. 1) We denote W € D, if 1 € D,,,, where dy is defined by
W (z) dx for x € R™.

2) Suppose W is an A, weight, co > ¢ > 1. Then W € D,,, see [2,
p. 396].

In this paper we establish the following theorem.

Theorem. Assume W € Dy, N Ax N RH, for some ¢ > 1,
oo >1r > 1. Then T maps HYj,(R™) boundedly to HY,(R™), provided

sup ||m6HK"(q/IJ+1/7‘—1),p < 00
>0 1
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where 0 < p < 1.

Remark. 1) Suppose the hypothesis in the above theorem
W e DpgNAsxNRH,,

is replaced by W € D, N RH,. Then the multiplier operator 7' maps
HY,(R™) boundedly to L}, (R™), 0 < p < 1. That the extra hypothesis
W € Ay stands in the theorem is due to the characterization of the
weighted Hardy space in terms of singular integrals, see [8, p. 87].

2) If one defines RH,., where r = co, as usual, by
1
WXl < 77 | W(z)d
1Ql Jg

for every ball @, then it is easy to see that W (z) is a constant function
almost everywhere. Therefore, the boundedness of T on the weighted
Hardy spaces is exactly the same as the boundedness of T on the Hardy
spaces. These results can be found in [1].

Next we write a theorem which is a special case of Theorem 3b in [1,
p. 21] which we will need in our proof. Here we should remark that the
proof of the theorem depends on the ideas in paper [1].

Theorem B [1]. For every fized € > 0, if
(1) sup 75| e < 00,
§>0 !
then T maps H'(R™) boundedly to H*(R").
On the other hand, it is clearly seen that

Imlloo < / ()| dz < sup [[ig | e
§>0 1

Hence, by Plancherel’s theorem, T is a bounded operator on L?(R™).
Applying the interpolation theorem between the L? boundedness and
Theorem B, one has the following:
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Theorem C. Suppose m is a function satisfying (1).  Then
ITfllzrrry < CfllLe(rny, for 1 < p < oco.

Take and fix a function ¢ € C§°(R), supp¢ C {1/2 < |z| < 2} and
0 < ¢(x) < 1 such that Z;i_oo #(279¢) =1 for every & # 0. Then it
is clear that ¢(§)n(€) = (&) and

2
I
~—
Q>
—~
I
~
I
3
I
~—
3
—~
[\
.
7823
~—
Q>

(©)o(277¢)
= > m279u;(27¢)

where m; (&) = m(27¢)n(€) and a; (&) = a(27¢)p(€). Hence,
(2) Ta(z) = Z (K a;)(2x),

where K (€) = m; (€).

Lemma 1. Suppose a(x) is an N-atom on Hy,(R™) and is supported
on the unit ball with center at the origin. For every 8 > 0, then

() laj(@)| < Ce?NTOW(B)TVP(1 4 [a) P, 5 <1
(i) laj(@)| < CeW(B) P{277"X] <o + |2] ™ X|gpm i1 }

where X denotes a characteristic function.

Proof. For (i), by the moments of atom a, we write

a5 ()| = ] [ dte =220tz

' 9y j i IN+1
Y _ 97 ¥i +
<Cc /O/MS'(@ $)(x — 2220)[|27 2N a(2)| dz dt

lyl=N+1
< CpWNHIW(B) VP14 |z))F forj < 1.
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For (ii), let us write

a5 )| = \ [ =

By the smoothness of ¢, if |#| > 29+, one has
laj ()| < Cplz| "W (B)~*/P.

On the other hand, for every x € R"™,

la;(2)] = 297 /qz(x — wa(2u) du| < C2-ImW(B) 1.

Proof of Theorem. Let a be an N-atom on Hjj,(R™) where the
support of a is a ball B. It suffices to assume the center of B is at
the origin. Let us assume the radius of B is 1. We will remove this
assumption later. By a characterization of the weighted Hardy spaces in
terms of singular integrals (see [8, p. 87]), we need only to estimate the
L?(R™) quasi-norm of Ta since the multiplier operator of T' commutes
with those singular integrals. Therefore, by Theorem A, we have to
show | Tal|zr (gny is uniformly bounded for every N-atom a. Let us
write

P — P P
ITallzy, (rmy = 1TalZy (o1<2) + ITallzy (2152)-

For the first integral on the righthand side, we have

Tal? z/ Ta(z)|PW(z) dx
|| ”Ls‘/(mﬁ?) ‘z|§2‘ ( )| ( )

< (/M |Tal"" dx) W( I|<2(W(x)rdx))l/r

=Q.
If pr’ > 1, applying Theorem C and the hypothesis W € RH,., one has

6 < ol /le(W(x)de))l/T

<Clall, | _ Wds
T

< CW(B)"'W(B) < C.
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On the other hand, if pr’ < 1, then one can use Holder’s inequality to
raise the exponent of pr’, that is,

, 1/(s)
Q< C’(/ |TalP™*® da:) W(B),
|z|<2

where pr's > 1. Therefore,

||Ta||Lp (l2]<2) <C.

Next we compute

ITallZy, (jap>2)-

Let us denote Ay = {2F < |z| < 28*1} and write

/| 2\Tav”W dx—Z/ |Ta|PW (z
x|>

First we decompose the integral on the last equality and use (2).

/Ak TalW < Z zf"/ K+ a;(272)| W () da

j=—00

Z/A (K * a;)(@)|W(2z) de

j=—o00 k+j

—k+1

0 o
S DRTE D RTINS SNy i3
j=1

j=—o0 j=—k+2
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Therefore,
/ |TalPW (z) dx
|z >2
(3) <CY IPW(A)'?
k=1
(4) +CY IIPW(A,)'P
k=1
(5) +CY IITPW (Ag)' P
k=1

By an easy observation, one has K{"* C L' if « >0, p < 1. By (i) of
Lemma 1,

15 * alloo < 1K L1 lajllco
< C||K| jentarprsm., 2 N TOW(B) 1P,
1

‘We write

—k+1

I= Z/ (K * aj)(x)|W (277 z) da
j=—o0 / Ak+j
—k+1
<C Y YNEOW(B) TP (A)2"
J=—00
—k+1
<C Z 2j(N+1+n)W(B)fl/kaan(B)
Jj=—00
—k+1
§C2knqw(3)171/p Z 2j(N+1+n)
Jj=—00

— C2k(nq7N717n)W(B)171/p.
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Therefore,
(3) = IPW(Ap)'"
k=1

)
< Z 2kp(nq7N717n)W(B)pflzknq(lfp)W(B)lfp
k=1

IN

C

if NV is chosen large enough such that
(6) N > (nq —np —p)/p.

Next, for the term (4),

(4) = i IIPW (Ag)t P
k=1

oo

- k=1 <j=20k:+2 /Ak+J (K * a;) (@)W (27 2) de)pW(Ak)l—p

= i 2 (/Akﬂ_|(Kj*%‘)($)W(2‘ja:)d:c)pW(Ak)1—p

j=—o00 k=—j+2

> f_oj (f U ) )W) d:c)pvv(Alj)l-P.

j=—o0l

Here we decompose the convolution function K * a; into three parts.

Kisae) = 3 [ ala—pK 6 d

(7) ZZZ—_;O 1+1 o
D DRI SN S
i=—00 i=l—1 i=1+2

=1lpa+1Ig+1c.
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Hence, (4) is dominated by

(8) ji:oog </Az [[T14|W (277 x) dx)pW(Al_j)lp
1

9) +j MZ;( 5 [TT5[W (2 7x) dw) W(Ai;) "

(10) + i ( |[[1c|W (277 2) dx)pW(Alj)l_p.
7 oo [=2

Ay

Forl>2,ifi<l—2ori>1+2,y€ A;, v € Ay, then |z —y| > 271,
Therefore, by (i) of Lemma 1, I14 is bounded by

-2
<0 S W(B) VritVigis /A K ()| dy

S C2j(N+1)2ilﬁW(B>71/p”mj||I;(IL(Q/P+1/T*1),17
< C2j(N+1)2_ZBW(B)_1/p.
This shows (8) is bounded by

1 00

p
> Zzﬂ'P(NH)zlﬁPW(B)l( W(2 z) dm) W(A_;)'?
j=—00 1=2 Ay
1 oo
< Z Z W(B)—12—l/3p2j(N+n+1)pW(Al_j)
j=—00 [=2
1 oo
< Z 9l(=Bp+nq) 9j[(N+n+1)p—ng] <C,

/|
N

7 0o

if B is chosen large enough and N satisfies (6).

Following the same proof as in the proof of (8), one can show that
(10) is uniformly bounded. Denote A; = A;_1 U A; U A;41. Hence, (9)
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can be written as

(11)

>3(/

j=—o0 [=2

a; z—y)K;(y) dy‘W(ij) dm>pW(Alj)1

The double integrals in the above formula (11) are bounded by

/ / |aj(z — y)K;(y)| dyW (277 z) da
A, JA;
= [ ] st = w2 dels )l
A, Ja,

Applying Hélder’s inequality, (12) is not bigger than

/. ( [ oyt i) " ( [ ) l/r] 4 dy.

For j <1, employing (i) of Lemma 1 and W € RH,., the above formula
is bounded by

W(B)_l/p2j(1v+1)2jn/r2(l—j)n/7"

1
- dy) /IK dy
(Azjl Al,,| 2 )

1
—_— w
A M

< CW(B)~V/roi N+ gin/rol-1nyy (4, ) / K, (y)| dy
Ay

< CW(B) /i (N +Dgin/r Yl dy /A K, (y)] dy
1

< CW(B)1—1/p2j(N+1+n—nq)21(7L/7"—n+nq) /~ |Kj(y)‘ dy
Ay
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Therefore,

1 e8]
9)<C Z ZW(B)p712jp(N+1+nfnq)le(n/r*nﬂunQ(I*j)nq(lfp)

J=—o0 =2
wiey( [ Kwldy)

1 oo p
=C Z Z2][p(N+n+1)—nq]2nlp(1/r—1+q/p)</A |K](y)|dy>
L

j=—o0 l=2

< C\|ﬁ1j||€q,(q/p+1/r_1>,p,

if N satisfies (6). Combining all of those estimates, we show (4) is
uniformly bounded.

Finally, we need to estimate (5), i.e., Y po; IIIPW(Ag)*~P. We write
(5) as

1) 5 ([ 10 ap @l oW

p
. |(K; *aj)(x)|W(277z) d:c) W(Al_j)lfp.
j=11=j+1 1

From (7) and (13), we see

(5) = iH[T’W(Ak)lfp
k=1
(14) < Z ( |IIA|W(27]3;) dx)pW(Al_j)lfp
J=ll=j+1 Ay
o 22 ( [IIp|W (277 z) d:c)pW(Al_j)lp
j=li=j+1 /A
o] o] 7]_1‘ . p -

We sketch the proof of (14) and (16) since they are similar to the
proof of (8) and (10), respectively. In the proof of (8) and (10), we
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used inequality (i) of Lemma 1. For the proof of (14) and (16), we will

apply inequality (ii) of Lemma 1.

Forl > j+1ifi<Il—-2 0ori>1+4+2 y € A;, x € Ay, then

|z —y| > 2! > 27F1. Therefore, applying (ii) of Lemma 1,

jaj(z —y)| < CsW/(B) /P2

if | —y| > 2+, Hence, if I > j + 1, then

= / la(z — )1 ()] dy + Z/ laj(
1=—00 i=l+2

<c / (K ()| dyW (B)~V/r218
A;

< Oy |? W(B)~ 20,

Kna/p+1/r=1),p
1

Let us write

(14) + (16)

YIIE; ()l dy

< OZZ (/A (|[IT4] + |TIc|)W (277 x) dx)pW(Al_j)lp

Jj= 1J+1

SOZ Z W(B)121p'6(/14‘W(2jx)dx>pW(Az—j)1p

j=11=j+1

<C> Y wW(B) 2Py (A,_;)

j=11=j+1

< Ci i 9~ lpB—na)9—j(ng—np) <

J=ll=j+1

if 3 is large.
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For estimating (15), we write
(15) —i i (/A [IIp|W (2 7x) dx)pW(Alj)l—p
i (/ / |K;(y)l]aj(z —y)| dyW (277 )dx)

I=j+1

<5 3 (), ( memorae)

- ( | W@J‘x)wx) W) Kj<y>|dy>pw<Au>1

W (A"

-
Il
—
~
I

~
+

By applying (ii) of Lemma 1 with large § and the fact that W € RH,.,
one has

(15) Z Z (/ |K )| dyW (B)~ 1/1)(2jn/7“'—jn+2—j(ﬁ—n)/7“')

j=1l=j+1
] 1/r\ p
( |W(2_Ja:)|rd:v> ) W (AP
Ay

gcz Z W(B)p*IQIP(W/T*WJF”Q)Q*J'P(W/TfnJrnq)2(l7j)nq(17p)

| /. K ldy) WB)'

SCZ Z </ \K |dy2ln(q/17+1/r 1)> 9in(p—p/r—q)

j=1ll=j5+1

< CHijKn(q/pﬂ/r—l),p’
1

since ¢/p+1/r —1> 0.
So far we have proved that if W € D,,, N RH,, then

ITallge, (rny < C
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for any N-atom, a, with support in a unit ball. To remove the
assumption “the radius of ball is 1,” suppose an N-atom a is supported
on a ball B, with radius s, center at origin, and let as(x) = a(sz). Note
that the support of ay is a unit ball, By, and as(§) = s "a(s~1¢). Let
us write

. :/ m(s~1)ag(€)e™ TE de

From the hypothesis of the multiplier m(¢),
sup (s || k7 (a/pt1/r—1).0 < 00,
6>0

one concludes that if the support of an N-atom b is in a unit ball, then
S
1T°0|| 2, (rny < C

where C' is independent on s.

On the other hand, write W(z) = W (sx). Since W € D, it is clear
to see W, € Dyq and Wy also satisfy the reverse Holder condition RH,.
if W does. More precisely, if

<é /B (W(as)rdx)l/r SCﬁ /B W () dz

for all balls B on R™ with center at origin, then

<ﬁ / |Ws($)|rdx>1/r<0ﬁ [ wita) da

for all balls B on R™ with center origin where C' again is independent
on s. Hence, if b is an N-atom with respect to weight W and with
support on a unit ball, then

(18) 17812z, () < C.
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Recall that the support of as(x) is in a unit ball By and By is a ball
with center 0 and radius s. Since

las(z)]|oo = [la(sx)|oo < C’W(Bs)*l/P

and
W(Bs) = W(z)dex = s" W (sy) dy
BS Bl
=s" Ws(y) dy = s"Ws(By),
B,
we have
las(z)]|oo < Cs™™PW,(By) =M.
It implies

Is"/Pay(@)l|lo < CWy(B1)~/7
where s"/Pag(z) is an N-atom with respect to weight W, and with
support Bj.
Therefore, applying (17) and (18),

/|Ta(x)\pW(;v) dx = / |T%as(s™ 2)|PW () dx
= s"/|TSaS(a:)|pW5(x) dx
- / (T2 5™ P (2)|PW () d < C.
This completes the proof of the Theorem.

Conclusion. Comparing the main theorem in this paper with
Theorems 3a and 3b in [1] raises several questions which we are not
presently able to answer.

(1) The results in the main theorem with W (2) = 1 in this paper are
weaker than those in Theorem 3a in [1]. Does a sharper result than the
one implied by the theorem hold in the nonweighted case, i.e., Theorem
3a in [1]?

(2) There is a clear difference between the results for the H? multipli-
ers for 0 < p < 1 and for p = 1 in the paper [1]. Does such a difference
also exist in the case of the weighted Hardy spaces in this paper?
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(3) The authors, Baernstein and Sawyer, were able to prove the
sharpness of their results in [1]. Does a comparable sharpness result
hold for the theorem in this paper?
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