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MULTIPLIER OPERATORS
ON WEIGHTED FUNCTION SPACES

YUN-SHIOW CHEN, LUNG-KEE CHEN AND DASHAN FAN

ABSTRACT. We prove that certain multiplier operators
are bounded in weighted Hardy spaces provided that the
multipliers are defined in Herz spaces.

Suppose 0 ≤ α < ∞, 1 ≤ a < ∞ and 0 < p < ∞. Let Kα,p
a be the

Herz spaces which consists of all functions f ∈ La(Rn) with the norm
or quasi-norm

‖f‖Kα,p
a
= ‖f‖La(Rn) +

( ∞∑
k=−∞

((∫
Ak

|f |a
)1/a

2kα
)p)1/p

,

where Ak = {2k ≤ |x| < 2k+1}, −∞ < k < ∞. The spaces Kα,p
a were

first introduced by Herz [3]. These spaces are relative to both Hardy
spaces [4] and multiplier operators [1].

Suppose η ∈ C∞
0 (R

n) with 0 ≤ η ≤ 1, η(ξ) = 1 on 1/2 ≤ |ξ| ≤ 2
and supp η ⊂ {1/4 ≤ |ξ| ≤ 4}. Let m be a function on Rn and denote
mδ(ξ) = m(δξ)η(ξ) where δ > 0. The multiplier operator Tf is defined
by

T̂ f(ξ) = m(ξ)f(ξ).

In [1], Baernstein and Sawyer studied the boundedness of the multi-
plier operators on the Hardy spaces where the multiplier m is defined
on the Herz spaces, more precisely, they proved that if m satisfies

sup
δ>0

‖m̂δ‖X < ∞

where X = K
n(1/p−1),p
1 for 0 < p < 1 and X is a certain subspace

of K0,1
1 for p = 1, then the operator Tf is bounded on Hp spaces,
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0 < p ≤ 1. The hypotheses of the multipliers on the Herz spaces is
sharp in the sense thatX cannot be replaced by any larger space of Herz
spaces and also it is easy to check that any multiplier of Hörmander
types of order N is in the Herz spaces KN,2

2 , i.e.,

sup
δ>0

‖m̂δ‖KN,2
2

< ∞.

Recently, Onneweer and Quek extended the Baernstein and Sawyer’s
results to the case of mixed-norm type. Instead of assuming m is in
the Herz spaces, they obtained the Hp boundedness of Tf by assuming
that m is in some mixed-norm type space, see [5, 6].

The main purpose of this paper is to study the boundedness of
multiplier operators on the weighted Hardy spaces where the multiplier
is defined on the Hertz spaces.

Let Dq be the collection of positive measures with doubling condi-
tions, that is, µ ∈ Dq, q > 0, if µ is a positive measure on Rn such that
there exists a constant C > 0 with the property that for all t ≥ 1 and
r > 0 we have

µ({|x− x0| ≤ tr}) ≤ Ctqµ({|x− x0| ≤ r})
where the constant C is independent of x0 ∈ Rn. Suppose W is a
positive function. A tempered distribution f in Rn is in the weighted
Hardy spaces Hp

W (R
n) if

‖f‖Hp
W

(Rn) =
( ∫

Rn

(
sup

(y,t)∈Γ(x)

|Φt ∗ f(y)|
)p

W (x) dx
)1/p

< ∞

where Φ is a smooth function with
∫
Φ �= 0, Φt(x) = t−nΦ(t−1x) and

Γ(x) = {(y, t) | |x− y| < t}.
A function a(x) is called an N -atom on Hp

W (R
n) if

(i) the a(x) is supported on a ball B;

(ii) ‖a‖∞ ≤ CW (B)−1/p where W (B) =
∫
B
W (x) dx;

(iii)
∫
xαa(x) dx = 0 for |α| ≤ N .

Theorem A [7]. Suppose W (x) is a positive function and define a
measure dµ(x) = W (x) dx. Assume that µ ∈ Dq for some q > 0, that
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0 < p ≤ 1 and that Ñ = [qn/p− 1]. Then for every f ∈ Hp
W (R

n) there
is a sequence {ak} of N-atoms, N ≥ Ñ , such that

f =
∑

λkak and ‖f‖p
Hp

W
(Rn)

≈
∑

|λk|p.

We will write W ∈ RHr if W satisfies the reverse Hölder condition of
degree r, ∞ > r > 1, that is, there is a constant C > 0 such that(

1
|B|

∫
B

(W (x)r dx
)1/r

≤ C
1
|B|

∫
B

W (x) dx

for all balls B on Rn.

Definition. W is called an Aq weight if, for ∞ > q > 1,(
1
|B|

∫
B

W (x) dx
)(

1
|B|

∫
B

W (x)−1/(q−1) dx

)q−1

≤ c

for every ball B in Rn, for q = 1

MW (x) ≤ W (x) a.e.

where M is the classical Hardy-Littlewood maximal function, and

A∞ =
⋃
q≥1

Aq.

Remark. 1) We denote W ∈ Dnq if µ ∈ Dnq, where dµ is defined by
W (x) dx for x ∈ Rn.

2) Suppose W is an Aq weight, ∞ > q ≥ 1. Then W ∈ Dnq, see [2,
p. 396].

In this paper we establish the following theorem.

Theorem. Assume W ∈ Dnq ∩ A∞ ∩ RHr for some q ≥ 1,
∞ > r > 1. Then T maps Hp

W (R
n) boundedly to Hp

W (R
n), provided

sup
δ>0

‖m̂δ‖Kn(q/p+1/r−1),p
1

< ∞
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where 0 < p ≤ 1.

Remark. 1) Suppose the hypothesis in the above theorem

W ∈ Dnq ∩A∞ ∩RHr,

is replaced by W ∈ Dnq ∩RHr. Then the multiplier operator T maps
Hp
W (R

n) boundedly to LpW (R
n), 0 < p ≤ 1. That the extra hypothesis

W ∈ A∞ stands in the theorem is due to the characterization of the
weighted Hardy space in terms of singular integrals, see [8, p. 87].

2) If one defines RHr, where r =∞, as usual, by

‖W (·)χQ‖∞ ≤ 1
|Q|

∫
Q

W (x) dx

for every ball Q, then it is easy to see that W (x) is a constant function
almost everywhere. Therefore, the boundedness of T on the weighted
Hardy spaces is exactly the same as the boundedness of T on the Hardy
spaces. These results can be found in [1].

Next we write a theorem which is a special case of Theorem 3b in [1,
p. 21] which we will need in our proof. Here we should remark that the
proof of the theorem depends on the ideas in paper [1].

Theorem B [1]. For every fixed ε > 0, if

(1) sup
δ>0

‖m̂δ‖Kε,1
1

< ∞,

then T maps H1(Rn) boundedly to H1(Rn).

On the other hand, it is clearly seen that

‖m‖∞ ≤
∫

|m̂(x)| dx ≤ sup
δ>0

‖m̂δ‖Kε,1
1

.

Hence, by Plancherel’s theorem, T is a bounded operator on L2(Rn).
Applying the interpolation theorem between the L2 boundedness and
Theorem B, one has the following:
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Theorem C. Suppose m is a function satisfying (1). Then
‖Tf‖Lp(Rn) ≤ C‖f‖Lp(Rn), for 1 < p < ∞.

Take and fix a function φ ∈ C∞
0 (R), suppφ ⊂ {1/2 < |x| < 2} and

0 ≤ φ(x) ≤ 1 such that
∑∞
j=−∞ φ(2−jξ) = 1 for every ξ �= 0. Then it

is clear that φ(ξ)η(ξ) = φ(ξ) and

m(ξ)â(ξ) =
∞∑

j=−∞
m(ξ)η(2−jξ)â(ξ)φ(2−jξ)

≡
∞∑

j=−∞
mj(2−jξ)âj(2−jξ)

where mj(ξ) = m(2jξ)η(ξ) and âj(ξ) = â(2jξ)φ(ξ). Hence,

(2) Ta(x) =
∞∑

j=−∞
2jn(Kj ∗ aj)(2jx),

where K̂j(ξ) = mj(ξ).

Lemma 1. Suppose a(x) is an N-atom on Hp
W (R

n) and is supported
on the unit ball with center at the origin. For every β > 0, then

|aj(x)| ≤ Cβ2j(N+1)W (B)−1/p(1 + |x|)−β, j ≤ 1;(i)

|aj(x)| ≤ CβW (B)−1/p{2−jnχ||x|≤2j+1 + |x|−βχ|x|>2j+1}(ii)

where χ denotes a characteristic function.

Proof. For (i), by the moments of atom a, we write

|aj(x)| =
∣∣∣∣
∫

φ̂(x− 2jz)a(z) dz
∣∣∣∣

≤ C
∑

|γ|=N+1

∫ 1

0

∫
|z|≤1

|(∂γ φ̂)(x− 2jzt)||2jz|N+1|a(z)| dz dt

≤ Cβ2j(N+1)W (B)−1/p(1 + |x|)−β for j ≤ 1.
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For (ii), let us write

|aj(x)| =
∣∣∣∣
∫
|z|≤1

φ̂(x− 2jz)a(z) dz
∣∣∣∣.

By the smoothness of φ̂, if |x| ≥ 2j+1, one has

|aj(x)| ≤ Cβ|x|−βW (B)−1/p.

On the other hand, for every x ∈ Rn,

|aj(x)| = 2−jn
∣∣∣∣
∫

φ̂(x− u)a(2−ju) du
∣∣∣∣ ≤ C2−jnW (B)−1/p.

Proof of Theorem. Let a be an N -atom on Hp
W (R

n) where the
support of a is a ball B. It suffices to assume the center of B is at
the origin. Let us assume the radius of B is 1. We will remove this
assumption later. By a characterization of the weighted Hardy spaces in
terms of singular integrals (see [8, p. 87]), we need only to estimate the
Lp(Rn) quasi-norm of Ta since the multiplier operator of T commutes
with those singular integrals. Therefore, by Theorem A, we have to
show ‖Ta‖Lp

W
(Rn) is uniformly bounded for every N -atom a. Let us

write
‖Ta‖p

Lp
W

(Rn)
= ‖Ta‖p

Lp
W

(|x|≤2)
+ ‖Ta‖p

Lp
W

(|x|>2)
.

For the first integral on the righthand side, we have

‖Ta‖p
Lp

W
(|x|≤2)

=
∫
|x|≤2

|Ta(x)|pW (x) dx

≤
( ∫

|x|≤2

|Ta|pr′ dx
)1/r′( ∫

|x|≤2

(W (x)r dx)
)1/r

≡ Ω.
If pr′ > 1, applying Theorem C and the hypothesis W ∈ RHr, one has

Ω ≤ C‖a‖ppr′
( ∫

|x|≤2

(W (x)r dx)
)1/r

≤ C‖a‖ppr′
∫
|x|≤2

W (x) dx

≤ CW (B)−1W (B) ≤ C.
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On the other hand, if pr′ ≤ 1, then one can use Hölder’s inequality to
raise the exponent of pr′, that is,

Ω ≤ C

(∫
|x|≤2

|Ta|pr′s dx
)1/(sr′)

W (B),

where pr′s > 1. Therefore,

‖Ta‖p
Lp

W
(|x|≤2)

≤ C.

Next we compute

‖Ta‖p
Lp

W
(|x|>2)

.

Let us denote Ak = {2k ≤ |x| < 2k+1} and write

∫
|x|>2

|Ta|pW (x) dx =
∞∑
k=1

∫
Ak

|Ta|pW (x) dx

≤
∞∑
k=1

( ∫
Ak

|Ta|W
)p( ∫

Ak

W

)1−p

=
∞∑
k=1

( ∫
Ak

|Ta|W
)p

W (Ak)1−p.

First we decompose the integral on the last equality and use (2).

∫
Ak

|Ta|W ≤
∞∑

j=−∞
2jn

∫
Ak

|Kj ∗ aj(2jx)|W (x) dx

=
∞∑

j=−∞

∫
Ak+j

|(Kj ∗ aj)(x)|W (2−jx) dx

=
−k+1∑
j=−∞

· · ·+
0∑

j=−k+2

· · ·+
∞∑
j=1

· · · ≡ I + II + III.
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Therefore,

∫
|x|>2

|Ta|pW (x) dx

≤ C

∞∑
k=1

IpW (Ak)1−p(3)

+ C

∞∑
k=1

IIpW (Ak)1−p(4)

+ C

∞∑
k=1

IIIpW (Ak)1−p.(5)

By an easy observation, one has Kα,p
1 ⊂ L1 if α ≥ 0, p ≤ 1. By (i) of

Lemma 1,

‖Kj ∗ aj‖∞ ≤ ‖Kj‖L1‖aj‖∞
≤ C‖Kj‖Kn(q/p+1/r−1),p

1
2j(N+1)W (B)−1/p.

We write

I =
−k+1∑
j=−∞

∫
Ak+j

|(Kj ∗ aj)(x)|W (2−jx) dx

≤ C
−k+1∑
j=−∞

2j(N+1)W (B)−1/pW (Ak)2jn

≤ C

−k+1∑
j=−∞

2j(N+1+n)W (B)−1/p2knqW (B)

≤ C2knqW (B)1−1/p
−k+1∑
j=−∞

2j(N+1+n)

= C2k(nq−N−1−n)W (B)1−1/p.
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Therefore,

(3) =
∞∑
k=1

IpW (Ak)1−p

≤
∞∑
k=1

2kp(nq−N−1−n)W (B)p−12knq(1−p)W (B)1−p

≤ C

if N is chosen large enough such that

(6) N > (nq − np− p)/p.

Next, for the term (4),

(4) =
∞∑
k=1

IIpW (Ak)1−p

≤
∞∑
k=1

( 0∑
j=−k+2

∫
Ak+j

|(Kj ∗ aj)(x)|W (2−jx) dx
)p

W (Ak)1−p

≤
1∑

j=−∞

∞∑
k=−j+2

( ∫
Ak+j

|(Kj ∗ aj)(x)|W (2−jx) dx
)p

W (Ak)1−p

=
1∑

j=−∞

∞∑
l=2

( ∫
Al

|(Kj ∗ aj)(x)|W (2−jx) dx
)p

W (Al−j)1−p.

Here we decompose the convolution function Kj ∗aj into three parts.

(7)

Kj ∗ aj(x) =
∞∑

i=−∞

∫
Ai

aj(x− y)Kj(y) dy

=
l−2∑
i=−∞

· · ·+
l+1∑
i=l−1

· · ·+
∞∑

i=l+2

· · ·

≡ IIA + IIB + IIC .
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Hence, (4) is dominated by

1∑
j=−∞

∞∑
l=2

( ∫
Al

|IIA|W (2−jx) dx
)p

W (Al−j)1−p(8)

+
1∑

j=−∞

∞∑
l=2

( ∫
Al

|IIB|W (2−jx) dx
)p

W (Al−j)1−p(9)

+
1∑

j=−∞

∞∑
l=2

( ∫
Al

|IIC |W (2−jx) dx
)p

W (Al−j)1−p.(10)

For l ≥ 2, if i ≤ l− 2 or i ≥ l+2, y ∈ Ai, x ∈ Al, then |x− y| ≥ 2l−1.
Therefore, by (i) of Lemma 1, IIA is bounded by

l−2∑
i=−∞

∫
Ai

|aj(x− y)| |Kj(y)| dy

≤ C

l−2∑
i=−∞

W (B)−1/p2j(N+1)2−lβ
∫
Ai

|Kj(y)| dy

≤ C2j(N+1)2−lβW (B)−1/p‖m̂j‖p
K

n(q/p+1/r−1),p
1

≤ C2j(N+1)2−lβW (B)−1/p.

This shows (8) is bounded by

1∑
j=−∞

∞∑
l=2

2jp(N+1)2−lβpW (B)−1

( ∫
Al

W (2−jx) dx
)p

W (Al−j)1−p

≤
1∑

j=−∞

∞∑
l=2

W (B)−12−lβp2j(N+n+1)pW (Al−j)

≤
1∑

j=−∞

∞∑
l=2

2l(−βp+nq)2j[(N+n+1)p−nq] ≤ C,

if β is chosen large enough and N satisfies (6).

Following the same proof as in the proof of (8), one can show that
(10) is uniformly bounded. Denote Ãl = Al−1 ∪Al ∪Al+1. Hence, (9)
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can be written as

(11)
1∑

j=−∞

∞∑
l=2

( ∫
Al

∣∣∣∣
∫
Ãl

aj(x− y)Kj(y) dy
∣∣∣∣W (2−jx) dx

)p
W (Al−j)1−p.

The double integrals in the above formula (11) are bounded by

(12)

∫
Al

∫
Ãl

|aj(x− y)Kj(y)| dyW (2−jx) dx

=
∫
Ãl

∫
Al

|aj(x− y)|W (2−jx) dx|Kj(y)| dy.

Applying Hölder’s inequality, (12) is not bigger than

∫
Ãl

[( ∫
Al

|aj(x− y)|r′ dx
)1/r′( ∫

Al

|W (2−jx)|r dx
)1/r]

|Kj(y)| dy.

For j ≤ 1, employing (i) of Lemma 1 and W ∈ RHr, the above formula
is bounded by

W (B)−1/p2j(N+1)2jn/r2(l−j)n/r

·
(

1
|Al−j |

∫
Al−j

|W (y)|r dy
)1/r ∫

Ãl

|Kj(y)| dy

≤ CW (B)−1/p2j(N+1)2ln/r
1

|Al−j |
∫
Al−j

|W (y)| dy
∫
Ãl

|Kj(y)| dy

≤ CW (B)−1/p2j(N+1)2ln/r2(j−1)nW (Al−j)
∫
Ãl

|Kj(y)| dy

≤ CW (B)1−1/p2j(N+1+n−nq)2l(n/r−n+nq)

∫
Ãl

|Kj(y)| dy.
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Therefore,

(9) ≤ C

1∑
j=−∞

∞∑
l=2

W (B)p−12jp(N+1+n−nq)2lp(n/r−n+nq)2(l−j)nq(1−p)

·W (B)1−p
( ∫

Ãl

|Kj(y)| dy
)p

= C

1∑
j=−∞

∞∑
l=2

2j[p(N+n+1)−nq]2nlp(1/r−1+q/p)

( ∫
Ãl

|Kj(y)| dy
)p

≤ C‖m̂j‖p
K

n(q/p+1/r−1),p
1

,

if N satisfies (6). Combining all of those estimates, we show (4) is
uniformly bounded.

Finally, we need to estimate (5), i.e.,
∑∞
k=1 III

pW (Ak)1−p. We write
(5) as

(13)
∞∑
k=1

∞∑
j=1

( ∫
Ak+j

|(Kj ∗ aj)(x)|W (2−jx) dx
)p
W (Ak)1−p

=
∞∑
j=1

∞∑
l=j+1

( ∫
Al

|(Kj ∗ aj)(x)|W (2−jx) dx
)p

W (Al−j)1−p.

From (7) and (13), we see

(5) =
∞∑
k=1

IIIpW (Ak)1−p

≤
∞∑
j=1

∞∑
l=j+1

( ∫
Al

|IIA|W (2−jx) dx)pW (Al−j)1−p(14)

+
∞∑
j=1

∞∑
l=j+1

( ∫
Al

|IIB |W (2−jx) dx
)p

W (Al−j)1−p(15)

+
∞∑
j=1

∞∑
l=j+1

( ∫
Al

|IIC |W (2−jx) dx
)p

W (Al−j)1−p.(16)

We sketch the proof of (14) and (16) since they are similar to the
proof of (8) and (10), respectively. In the proof of (8) and (10), we
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used inequality (i) of Lemma 1. For the proof of (14) and (16), we will
apply inequality (ii) of Lemma 1.

For l ≥ j + 1 if i ≤ l − 2, or i ≥ l + 2, y ∈ Ai, x ∈ Al, then
|x− y| > 2l ≥ 2j+1. Therefore, applying (ii) of Lemma 1,

|aj(x− y)| ≤ CβW (B)−1/p2−lβ

if |x− y| ≥ 2j+1. Hence, if l ≥ j + 1, then

|IIA|+ |IIC |

≤
l−2∑
i=−∞

∫
Ai

|aj(x− y)||Kj(y)| dy +
∞∑

i=l+2

∫
Ai

|aj(x− y)||Kj(y)| dy

≤ C

∫
Ai

|Kj(y)| dyW (B)−1/p2−lβ

≤ C‖m̂j‖p
K

n(q/p+1/r−1),p
1

W (B)−1/p2−lβ.

Let us write

(14) + (16)

≤ C

∞∑
j=1

∞∑
j+1

( ∫
Al

(|IIA|+ |IIC |)W (2−jx) dx
)p

W (Al−j)1−p

≤ C

∞∑
j=1

∞∑
l=j+1

W (B)−12lpβ
( ∫

Ai

W (2−jx) dx
)p

W (Al−j)1−p

≤ C

∞∑
j=1

∞∑
l=j+1

W (B)−12−lpβ2jnpW (Al−j)

≤ C

∞∑
j=1

∞∑
l=j+1

2−l(pβ−nq)2−j(nq−np) ≤ C

if β is large.
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For estimating (15), we write

(15) =
∞∑
j=1

∞∑
l=j+1

( ∫
Al

|IIB |W (2−jx) dx
)p

W (Al−j)1−p

≤
∞∑
j=1

∞∑
l=j+1

( ∫
Al

∫
Ãl

|Kj(y)||aj(x− y)| dyW (2−jx) dx
)p

·W (Al−j)1−p

≤
∞∑
j=1

∞∑
l=j+1

(( ∫
Ãl

( ∫
Al

|aj(x− y)|r′ dx
)1/r′

·
( ∫

Al

|W (2−jx)|r dx
)1/r)

|Kj(y)| dy
)p

W (Al−j)1−p.

By applying (ii) of Lemma 1 with large β and the fact that W ∈ RHr,
one has

(15) ≤
∞∑
j=1

∞∑
l=j+1

(∫
Ãl

|Kj(y)| dyW (B)−1/p(2jn/r
′−jn + 2−j(β−n)/r′)

·
( ∫

Al

|W (2−jx)|r dx
)1/r)p

W (Al−j)1−p

≤ C
∞∑
j=1

∞∑
l=j+1

W (B)p−12lp(n/r−n+nq)2−jp(n/r−n+nq)2(l−j)nq(1−p)

·
( ∫

Ãl

|Kj(y)| dy
)p

W (B)1−p

≤ C
∞∑
j=1

∞∑
l=j+1

( ∫
Ãl

|Kj(y)| dy2ln(q/p+1/r−1)

)p
2jn(p−p/r−q)

≤ C‖m̂j‖p
K

n(q/p+1/r−1),p
1

,

since q/p+ 1/r − 1 > 0.
So far we have proved that if W ∈ Dnq ∩RHr, then

‖Ta‖Lp
W

(Rn) ≤ C
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for any N -atom, a, with support in a unit ball. To remove the
assumption “the radius of ball is 1,” suppose an N -atom a is supported
on a ball Bs with radius s, center at origin, and let as(x) = a(sx). Note
that the support of as is a unit ball, B1, and âs(ξ) = s−nâ(s−1ξ). Let
us write

(17)

Ta(x) =
∫

m(ξ)â(ξ)eix·ξ dξ

=
∫

m(s−1ξ)âs(ξ)eis
−1x·ξ dξ

≡ T sas(s−1x).

From the hypothesis of the multiplier m(ξ),

sup
δ>0

‖m̂δ‖Kn
1 (q/p+1/r−1),p < ∞,

one concludes that if the support of an N -atom b is in a unit ball, then

‖T sb‖Lp
W

(Rn) ≤ C

where C is independent on s.

On the other hand, write Ws(x) =W (sx). Since W ∈ Dnq it is clear
to see Ws ∈ Dnq and Ws also satisfy the reverse Hölder condition RHr
if W does. More precisely, if

(
1
|B|

∫
B

(W (x)r dx
)1/r

≤ C
1
|B|

∫
B

W (x) dx

for all balls B on Rn with center at origin, then

(
1
|B|

∫
B

|Ws(x)|r dx
)1/r

≤ C
1
|B|

∫
B

Ws(x) dx

for all balls B on Rn with center origin where C again is independent
on s. Hence, if b is an N -atom with respect to weight Ws and with
support on a unit ball, then

(18) ‖T sb‖Lp
Ws

(Rn) ≤ C.
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Recall that the support of as(x) is in a unit ball B1 and Bs is a ball
with center 0 and radius s. Since

‖as(x)‖∞ = ‖a(sx)‖∞ ≤ CW (Bs)−1/p

and
W (Bs) =

∫
BS

W (x) dx = sn
∫
B1

W (sy) dy

= sn
∫
B1

Ws(y) dy = snWs(B1),

we have
‖as(x)‖∞ ≤ Cs−n/pWs(B1)−1/p.

It implies
‖sn/pas(x)‖∞ ≤ CWs(B1)−1/p

where sn/pas(x) is an N -atom with respect to weight Ws and with
support B1.

Therefore, applying (17) and (18),∫
|Ta(x)|pW (x) dx =

∫
|T sas(s−1x)|pW (x) dx

= sn
∫

|T sas(x)|pWs(x) dx

=
∫

|T ssn/pas(x)|pWs(x) dx ≤ C.

This completes the proof of the Theorem.

Conclusion. Comparing the main theorem in this paper with
Theorems 3a and 3b in [1] raises several questions which we are not
presently able to answer.

(1) The results in the main theorem with W (x) = 1 in this paper are
weaker than those in Theorem 3a in [1]. Does a sharper result than the
one implied by the theorem hold in the nonweighted case, i.e., Theorem
3a in [1]?

(2) There is a clear difference between the results for the Hp multipli-
ers for 0 < p < 1 and for p = 1 in the paper [1]. Does such a difference
also exist in the case of the weighted Hardy spaces in this paper?
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(3) The authors, Baernstein and Sawyer, were able to prove the
sharpness of their results in [1]. Does a comparable sharpness result
hold for the theorem in this paper?
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