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EXISTENCE OF THREE SOLUTIONS TO INTEGRAL
AND DISCRETE EQUATIONS VIA THE

LEGGETT WILLIAMS FIXED POINT THEOREM

RAVI P. AGARWAL AND DONAL O’REGAN

ABSTRACT. Criteria are developed for the existence of
three nonnegative solutions to integral and discrete equations.
The strategy involves using the Leggett Williams fixed point
theorem.

1. Introduction. In this paper we present results which guarantee
the existence of three nonnegative solutions to integral and discrete
equations. The results we establish are new since this is the first paper,
to our knowledge, that discusses the existence of three nonnegative
solutions to integral equations. In addition, the results in this paper
contain almost all results in the recent papers [3 6, 8, 9] on the
existence of three solutions to higher order differential and difference
equations since we make full use of the properties of the concave
functional on the cone. Indeed, if we assume the conditions in [3 6, 8,
9], then the conditions in this paper are trivially satisfied.

For the remainder of the introduction we present some preliminaries
which will be needed in Sections 2 and 3. Let E = (E, ‖.‖) be a
Banach space and C ⊂ E a cone. By a concave nonnegative continuous
functional ψ on C we mean a continuous mapping ψ : C → [0,∞) with

ψ(λx+ (1− λ)y) ≥ λψ(x) + (1− λ)ψ(y)
for all x, y ∈ C and λ ∈ [0, 1].

Let K,L, r > 0 be constants with C and ψ as defined above. We let

CK = {y ∈ C : ‖y‖ < K}

and
C(ψ, r, L) = {y ∈ C : ψ(y) ≥ r and ‖y‖ ≤ L}.
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We now state the Leggett Wiliams fixed point theorem [5, 6].

Theorem 1.1. Let E = (E, ‖.‖) be a Banach space, C ⊂ E a
cone of E and R > 0 a constant. Suppose a concave nonnegative
continuous functional ψ exists on C with ψ(y) ≤ ‖y‖ for y ∈ CR,
and let A : CR → CR be a continuous, compact map. Assume there are
numbers r, L and K with 0 < r < L < K ≤ R such that

(H1) {y ∈ C(ψ,L,K) : ψ(y) > L} �= ∅ and ψ(Ay) > L for all
y ∈ C(ψ,L,K);

(H2) ‖Ay‖ < r for all y ∈ Cr;

(H3) ψ(Ay) > L for all y ∈ C(ψ,L,R) with ‖Ay‖ > K.

Then A has at least three fixed points y1, y2 and y3 in CR. Furthermore,
we have

y1 ∈ Cr, y2 ∈ {y ∈ C(ψ,L,R) : ψ(y) > L}
and

y3 ∈ CR \ (C(ψ,L,R) ∪ Cr).

2. Integral equations. In this section we discuss the integral
equation

(2.1) y(t) = h(t) +
∫ 1

0

k(t, s)f(y(s)) ds for t ∈ [0, 1].

The following conditions will be assumed:

(2.2) f : [0,∞) −→ [0,∞) is continuous and nondecreasing

(2.3)
kt(s) = k(t, s) ∈ L1[0, 1] with kt ≥ 0

a.e. on [0, 1], for each t ∈ [0, 1]

(2.4) the map t �−→ kt is continuous from [0, 1] to L1[0, 1]

(2.5)
∃ r > 0 with |h|0 + f(r) sup

t∈[0,1]

∫ 1

0

k(t, s) ds < r

(here |h|0 = sup
t∈[0,1]

|h(t)|)
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(2.6){∃M, 0 < M < 1, κ ∈ L1[0, 1] and an interval [a, b] ⊆ [0, 1], a < b,

such that k(t, s) ≥ Mκ(s) ≥ 0 for t ∈ [a, b] and a.e. s ∈ [0, 1]

(2.7) k(t, s) ≤ κ(s), t ∈ [0, 1], a.e. s ∈ [0, 1]

(2.8)

{
h ∈ C[0, 1] with h(t) ≥ 0 for t ∈ [0, 1]
and min

t∈[a,b]
h(t) ≥ M |h|0

(2.9) ∃L > r with min
t∈[a,b]

[
h(t) + f(L)

∫ b

a

k(t, s) ds
]
> L

and

(2.10) ∃R ≥ LM−1 with |h|0 + f(R) sup
t∈[0,1]

∫ 1

0

k(t, s) ds ≤ R.

Theorem 2.1. Suppose (2.2) (2.10) hold. Then (2.1) has three
nonnegative solutions y1, y2 and y3 in C[0, 1] with

|y1|0 < r, y2(t) > L for t ∈ [a, b]

and

|y3|0 > r with min
t∈[a,b]

y3(t) < L.

Proof. Let

E = (C[0, 1], |.|0) and C = {u ∈ C[0, 1] : u(t) ≥ 0 for t ∈ [0, 1]}.

Now let A : C → C be defined by

(2.11) Ay(t) = h(t) +
∫ 1

0

k(t, s)f(y(s)) ds for t ∈ [0, 1];
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here y ∈ C. It is immediate (see (2.2), (2.3) and (2.4)) from the results
in [7] that

A : C −→ C is continuous and completely continuous.

For y ∈ C let
ψ(y) = min

t∈[a,b]
y(t).

Next choose and fix K so that

(2.12) LM−1 ≤ K ≤ R;

this is possible since R ≥ LM−1. Let

Cr = {y ∈ C : |y|0 < r}, CR = {y ∈ C : |y|0 < R}

and
C(ψ,L,K) = {y ∈ C : ψ(y) ≥ L and |y|0 ≤ K},
C(ψ,L,R) = {y ∈ C : ψ(y) ≥ L and |y|0 ≤ R}.

First notice condition (H2) of Theorem 1.1 holds since, for y ∈ Cr, we
have from (2.2), (2.5) and (2.11) that

|Ay|0 ≤ |h|0 + f(r) sup
t∈[0,1]

∫ 1

0

k(t, s) ds < r.

Also A : CR → CR since if y ∈ CR,

|Ay|0 ≤ |h|0 + f(R) sup
t∈[0,1]

∫ 1

0

k(t, s) ds ≤ R.

Next we show (H1) of Theorem 1.1 holds. First notice if

u(t) =
L+K

2
for t ∈ [0, 1]

then u ∈ {y ∈ C(ψ,L,K) : ψ(y) > L}. Also if y ∈ C(ψ,L,K) then
ψ(y) = mint∈[a,b] y(t) ≥ L and |y|0 ≤ K, so

y(t) ∈ [L,K] for t ∈ [a, b].
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This together with (2.9) yields

ψ(Ay) = min
t∈[a,b]

(
h(t) +

∫ 1

0

k(t, s)f(y(s)) ds
)

≥ min
t∈[a,b]

(
h(t) +

∫ b

a

k(t, s)f(y(s)) ds
)

≥ min
t∈[a,b]

(
h(t) + f(L)

∫ b

a

k(t, s) ds
)
> L,

so condition (H1) of Theorem 1.1 is satisfied. Finally, to see that (H3)
of Theorem 1.1 holds, let y ∈ C(ψ,L,R) with |Ay|0 > K. First notice
(2.7) and (2.11) imply

|Ay|0 ≤ |h|0 +
∫ 1

0

κ(s)f(y(s)) ds

and this together with (2.6), (2.8) and (2.12) yields

ψ(Ay) = min
t∈[a,b]

(
h(t) +

∫ 1

0

k(t, s)f(y(s)) ds
)

≥ M |h|0 +M

∫ 1

0

κ(s)f(y(s)) ds

≥ M |Ay|0 > MK ≥ L.

Thus condition (H3) of Theorem 1.1 holds. Now apply Theorem 1.1.

Remark 2.1. Notice (2.3) and (2.4) can be replaced by any conditions
which guarantee that the map A : C → C is continuous and completely
continuous.

To illustrate how Theorem 2.1 can be applied to nth (n ≥ 2) order
boundary value problems, we consider the Lidstone boundary value
problem

(2.13)
{
(−1)ny(2n) = φ(t)f(y) t ∈ [0, 1],
y(2i)(0) = 0, y(2i)(1) = 0 0 ≤ i ≤ n− 1.
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The Green’s function gn(t, s) for the boundary value problem

(2.14)
{
y(2n) = 0 on [0, 1]
y(2i)(0) = 0, y(2i)(1) = 0 0 ≤ i ≤ n− 1

satisfied (see [1, 9]),

(2.15) (−1)ngn(t, s) ≤ 1
6n−1

s(1− s) for (t, s) ∈ [0, 1]× [0, 1]

and

(2.16)

(−1)ngn(t, s) ≥ 1
4n

(
3
32

)n−1

s(1− s) for (t, s) ∈
[
1
4
,
3
4

]
× [0, 1].

Theorem 2.2. Assume the following conditions hold:

(2.17) f : [0,∞) −→ [0,∞) is continuous and nondecreasing

(2.18)

φ ∈ C(0, 1) with φ > 0 on (0, 1) and
∫ 1

0

t(1− t)φ(t) dt < ∞

(2.19)



limt→0+ t2(1− t)φ(t) = 0 if

∫ 1

0

(1− t)φ(t) dt = ∞
and

limt→1− t(1− t)2φ(t) = 0 if
∫ 1

0

tφ(t) dt = ∞

∃r > 0 with f(r) sup
t∈[0,1]

∫ 1

0

(−1)ngn(t, s)φ(s) ds < r

(2.20)

∃L > r with f(L) min
t∈[(1/4),(3/4)]

∫ 3/4

1/4

(−1)ngn(t, s)φ(s) ds > L

(2.21)
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and

(2.22) ∃R ≥ L

[
4n

(
32
3

)n−1 1
6n−1

]

with

f(R) sup
t∈[0,1]

∫ 1

0

(−1)ngn(t, s)φ(s) ds ≤ R.

Then (2.13) has three nonnegative solutions y1, y2 and y3 in C[0, 1]
with

|y1|0 < r, y2(t) > L for t ∈
[
1
4
,
3
4

]

and

|y3|0 > r with min
t∈[(1/4),(3/4)]

y3(t) < L.

Proof. Let A : C → C (here C is as defined in Theorem 2.1) be
defined by

Ay(t) =
∫ 1

0

(−1)ngn(t, s)φ(s)f(y(s)) ds for y ∈ C.

The results in [1] guarantee that

A : C −→ C is continuous and completely continuous.

Now apply Theorem 2.1 (with Remark 2.1) with

k(t, s) = (−1)ngn(t, s)φ(s), h ≡ 0, a =
1
4
, b =

3
4

and

κ(s) =
1

6n−1
s(1− s), M =

1
4n

(
3
32

)n−1

6n−1.

Notice (2.15) and (2.16) guarantee that (2.6) and (2.7) hold.
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3. Discrete equations. In this section we discuss the discrete
equation

(3.1) y(i) = h(i) +
N∑

j=0

k(i, j)f(y(j)) for i ∈ {0, 1, . . . , T} = T+;

here N,T ∈ N = {1, 2, . . . } and T ≥ N . Throughout this section we
let C(T+,R) denote the class of maps w continuous on T+ (discrete
topology) with norm |w|0 = supi∈T+ |w(i)|. The following conditions
will be assumed:

(3.2) f : [0,∞) −→ [0,∞) is continuous and nondecreasing

(3.3) k(i, j) ≥ 0 for (i, j) ∈ T+ ×N+ (here N+ = {0, 1, . . . , N} )

(3.4) ∃r > 0 with |h|0 + f(r) max
i∈T+

N∑
j=0

k(i, j) < r

(3.5)
{∃M, 0 < M < 1, W ⊆ N+ and k0 : T+ −→ [0,∞)
with k(i, j) ≥ Mk0(j) ≥ 0 for (i, j) ∈ W ×N+

(3.6) k(i, j) ≤ k0(j) for (i, j) ∈ T+ ×N+

(3.7)
{
h ∈ C(T+,R) with h(i) ≥ 0 for i ∈ T+

and h(i) ≥ M |h|0 for i ∈ W

∃L > r with min
i∈W

[
h(i) + f(L)

∑
j∈W

k(i, j)
]
> L

(3.8)

and

∃R ≥ LM−1 with |h|0 + f(R) max
i∈T+

N∑
j=0

k(i, j) ≤ R.

(3.9)
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Theorem 3.1. Suppose (3.2) (3.9) hold. Then (3.1) has three
nonnegative solutions y1, y2 and y3 in C(T+,R) with

|y1|0 < r, y2(i) > L for i ∈ W

and
|y3|0 > r with min

i∈W
y3(i) < L.

Proof. Let
E = (C(T+,R), |.|0)

and
C = {y ∈ C(T+,R) : y(i) ≥ 0 for i ∈ T+}

and let A : C → C be given by

(3.10) Ay(i) = h(i) +
N∑

j=0

k(i, j)f(y(j)) for i ∈ T+,

here y ∈ C. Now [2] guarantees that

A : C −→ C is continuous and completely continuous.

For y ∈ C, let
ψ(y) = min

i∈W
y(i).

Next choose and fix K so that

LM−1 ≤ K ≤ R.

Let
Cr = {y ∈ C : |y|0 < r}, CR = {y ∈ C : |y|0 < R}

and
C(ψ,L,K) = {y ∈ C : ψ(y) ≥ L and |y|0 ≤ K},
C(ψ,L,R) = {y ∈ C : ψ(y) ≥ L and |y|0 ≤ R}.

Now if y ∈ Cr then (3.4) and (3.10) imply

|Ay|0 ≤ |h|0 + f(r)
(
max
i∈T+

N∑
j=0

k(i, j)
)
< r,
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so condition (H2) of Theorem 1.1 holds. Similarly it is immediate (see
(3.9)) that A : CR → CR. If

u(i) =
L+K

2
for i ∈ T+,

then u ∈ {y ∈ C(ψ,L,K) : ψ(y) > L}. In addition, if y ∈ C(ψ,L,K)
then ψ(y) ≥ L and |y|0 ≤ K, so

y(i) ∈ [L,K] for i ∈ W.

This together with (3.8) yields

ψ(Ay) = min
i∈W

(
h(i) +

N∑
j=0

k(i, j)f(y(j))
)

≥ min
i∈W

(
h(i) +

∑
j∈W

k(i, j)f(y(j))
)

≥ min
i∈W

(
h(i) + f(L)

∑
j∈W

k(i, j)
)
> L,

so condition (H1) of Theorem 1.1 is satisfied. Now let y ∈ C(ψ,L,R)
with |Ay|0 > K. Notice

|Ay|0 ≤ |h|0 +
N∑

j=0

k0(j)f(y(j))

and this together with (3.5) yields

ψ(Ay) = min
i∈W

(
h(i) +

N∑
j=0

k(i, j)f(y(j))
)

≥ M |h|0 +M
N∑

j=0

k0(j)f(y(j))

≥ M |Ay|0 > MK ≥ L.

Thus condition (H3) of Theorem 1.1 holds. Now apply Theorem 1.1.
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Consider the (n, p) discrete problem (n ≥ 2, p ≥ 1),

(3.11)




∆ny(k) + f(k, y(k)) = 0, k ∈ {0, 1, . . . , N} = N+

∆iy(0) = 0, 0 ≤ i ≤ n− 2,
∆py(N + n− p) = 0, 1 ≤ p ≤ n− 1 is fixed;

here N ∈ {1, 2, . . . }. Recall [2, 3] the Green’s function G(i, j) for the
problem

(3.12)




−∆ny(k) = 0 on N+

∆iy(0) = 0, 0 ≤ i ≤ n− 2
∆py(N + n− p) = 0, 1 ≤ p ≤ n− 1 is fixed

satisfies (here T = N + n),

(3.13) G(i, j) ≤ (N + n)(n−1)

(n− 1)!
(N + n− p− 1− j)(n−p−1)

(N + n− p)(n−p−1)

for (i, j) ∈ T+ ×N+, and

(3.14) G(i, j) ≥
[
1− N (p)

(N + 1)(p)

]
(N + n− p− 1− j)(n−p−1)

(N + n− p)(n−p−1)

for (i, j) ∈ W × N+; here W = {n − 1, n, . . . , N + n − p} and
t(m) = t(t− 1) . . . (t−m+ 1).

Theorem 3.2. Let T = N + n, W = {n− 1, n, . . . , N + n− p} and
assume the following conditions hold:

(3.15) f : [0,∞) −→ [0,∞) is continuous and nondecreasing

∃r > 0 with f(r) max
i∈T+

N∑
j=0

G(i, j) < r(3.16)

∃L > r with f(L)min
i∈W

∑
j∈W

G(i, j) > L(3.17)

and

∃R ≥ L

[(
1− N (p)

(N + 1)(p)

)
(n− 1)!

(N + n)(n−1)

]−1

(3.18)
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with

f(R) max
i∈T+

N∑
j=0

G(i, j) ≤ R.

Then (3.11) has three nonnegative solutions y1, y2 and y3 in C(T+,R)
with

|y1|0 < r, y2(i) > L for i ∈ W

and

|y3|0 > r with min
i∈W

y3(i) < L.

Proof. Let A : C → C (here C is as defined in Theorem 3.1) be
defined by

Ay(i) =
N∑

j=0

G(i, j)f(y(j)) for i ∈ T+,

here y ∈ C. We will now apply Theorem 3.1 with

k(i, j) = G(i, j), h ≡ 0, T = N + n,

W = {n− 1, . . . , N + n− p},
together with

k0(j) =
(N + n)(n−1)

(n− 1)!
(N + n− p− 1− j)(n−p−1)

(N + n− p)(n−p−1)

and

M =
[
1− N (p)

(N + 1)(p)

]
(n− 1)!

(N + n)(n−1)
.

Notice (3.13) and (3.14) guarantee that (3.5) and (3.6) hold.
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