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FACTORIZATION IN COMMUTATIVE RINGS
WITH ZERO DIVISORS, III

AHMET G. AḠARGÜN, D.D. ANDERSON AND SILVIA VALDES-LEON

ABSTRACT. Let R be a commutative ring with identity.
We continue our study of factorization in commutative rings
with zero divisors. In Section 2 we consider inert extensions
and atomicity. In Section 3 we characterize the atomic rings in
which almost all atoms are prime. In Section 4 we investigate
bounded factorization rings (BFR’s) and U-BFR’s, and in
Section 5 we study finite factorization rings (FFR’s).

1. Introduction. Throughout this paper, R will be a commutative
ring with identity. This article is the third in a series of papers [10],
[11] considering factorization in commutative rings with zero divisors.
Here we concentrate on atomic rings, especially bounded factorization
rings and finite factorization rings, which are defined below. We first
review the various forms of irreducible elements introduced in [10].

For an integral domain R, a nonzero nonunit a ∈ R is said to be
irreducible or to be an atom if a = bc, b, c ∈ R, implies b or c ∈ U(R),
the group of units of R. It is easily checked that a is an atom ⇔
(a) is a maximal (proper) principal ideal of R ⇔ a = bc implies b
or c is an associate of a. Now if R has zero divisors, these various
characterizations of being irreducible no longer need to be equivalent.
The following different forms of irreducibility are based on elements
being associates. Let a, b ∈ R. Then a and b are associates, denoted
a ∼ b if a|b and b|a, i.e., (a) = (b), a and b are strong associates,
denoted a ≈ b, if a = ub for some u ∈ U(R), and a and b are very
strong associates, denoted a ∼= b, if a ∼ b and either a = 0 or a = cb
implies c ∈ U(R). Then a nonunit a ∈ R (possibly with a = 0) is
irreducible (respectively, strongly irreducible, very strongly irreducible),
if a = bc⇒ a ∼ b or a ∼ c, respectively a ≈ b or a ≈ c, a ∼= b or a ∼= c.
And a is m-irreducible if (a) is maximal in the set of proper principal
ideals of R. A nonzero nonunit a ∈ R is very strongly irreducible
⇔ a = bc implies b or c ∈ U(R) [10, Theorem 2.5]. Now a is very
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strongly irreducible ⇒ a is m-irreducible ⇒ a is strongly irreducible
⇒ a is irreducible (where in the first implication we assume a �= 0).
But examples given in [10] show that none of these implications can
be reversed. As usual, a nonunit p ∈ R is prime if (p) is a prime ideal
of R. Finally, R is said to be atomic (respectively, strongly atomic,
very strongly atomic, m-atomic, p-atomic), if each nonzero nonunit
of R is a finite product of irreducible elements (respectively, strongly
irreducible elements, very strongly irreducible elements, m-irreducible
elements, prime elements). If R satisfies the ascending chain condition
on principal ideals, ACCP, then R is atomic [10, Theorem 3.2]; if R is
atomic, then R is a finite direct product of indecomposable rings [10,
Theorem 3.3]; and a direct product R =

∏
α∈ΛRα of rings is atomic

⇔ |Λ| <∞ and each Rα is atomic [10, Theorem 3.4.].

In Section 2 we consider (weakly) inert extensions (defined in Sec-
tion 2) and atomicity. We show that if R satisfies any of the various
forms of atomicity or ACCP, so does RS , S a regular multiplicatively
closed subset of R, in the case where R ⊂ RS is a weakly inert extension
(e.g., if S is generated by regular primes).

In Section 3 we characterize the atomic rings, which we call gener-
alized CK rings, with the property that almost all of their atoms are
prime. We show that R is a generalized CK ring if and only if R is
a finite direct product of finite local rings, SPIRs and generalized CK
domains.

In Section 4 we study bounded factorization rings (BFR’s) and U -
BFR’s. Recall that R is a BFR if, for each nonzero nonunit a ∈ R,
a natural number N(a) exists so that if a = a1 · · · an where each ai

is nonunit, then n ≤ N(a). It is easily checked that a BFR satisfies
ACCP and hence is atomic. Moreover, R is a BFR ⇔ R is atomic and,
for each nonzero nonunit a ∈ R, a natural number N(a) exists so that
if a = a1 · · · an where each ai is irreducible, then n ≤ N(a). Clearly
a BFR can contain only trivial idempotents. In his study of unique
factorization in commutative rings with zero divisors, Fletcher [14], [15]
introduced the notion of a U -decomposition. For a nonunit a ∈ R, a U -
decomposition of a is a decomposition a = (a1 · · · an)(b1 · · · bm) where
each ai, bj is irreducible, ai(b1 · · · bm) = (b1 · · · bm) for i = 1, . . . , n but
bi(b1 · · · b̂i · · · bm) �= (b1 · · · b̂i · · · bm). If we replace the condition that
each ai, bj is irreducible by each ai, bj is a nonunit, we have what we
call a U -factorization. We define a ring R to be a U -BFR if, for each
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nonzero nonunit a ∈ R, a natural number N(a) exists so that for each
U -factorization of a, a = (a1 · · · an)(b1 · · · bm), m ≤ N(a). Among
other things, we show that a finite direct product of BFD’s is a U -BFR
and that any Noetherian ring is a U -BFR.

In Section 5 we consider finite factorization rings. Recall that a
commutative ring R is a finite factorization ring, FFR, if each nonzero
nonunit a ∈ R has only a finite number of factorizations up to order and
associates. We show that if (R,M) is a finite local ring with elements
a and b such that Ra and ann (b) are not comparable, then R[X] and
R[[X]] are not FFR’s, but if (R,M) is an SPIR orM2 = 0, then R[[X]]
is an FFR.

2. Inert extensions. Following Cohn [13], we say that an extension
A ⊂ B of commutative rings is a (weakly) inert extension if, whenever
(0 �= xy ∈ A) xy ∈ A for nonzero x, y ∈ B, then xu, u−1y ∈ A for
some u ∈ U(B). Clearly an inert extension is weakly inert, but not
conversely, see Remark 2.2(b). Of course, if B is an integral domain,
the two notions coincide. For the case of integral domains, factorization
properties of inert extensions were investigated in [4]. We extend some
of these results to commutative rings with zero divisors.

Proposition 2.1. Let A ⊂ B be a weakly inert extension of
commutative rings. If 0 �= a ∈ A is irreducible (respectively, strongly
irreducible, very strongly irreducible, m-irreducible), then as an element
of B, either a is irreducible (respectively, strongly irreducible, very
strongly irreducible, m-irreducible) or a is a unit.

Proof. We may suppose that a is not a unit in B. If a = xy in B,
then a = (xu)(u−1y) where xu, u−1y ∈ A for some u ∈ U(B). First
suppose that a is irreducible in A. Then in A, a ∼ xu or a ∼ u−1y and
hence in B, a ∼ x or a ∼ y. Thus a is irreducible in B. A similar proof
holds for the case where a is strongly irreducible in A. Next suppose
that a is very strongly irreducible in A. By [10, Theorem 2.5] xu or
u−1y is a unit in A and so x or y is a unit in B. Thus by [10, Theorem
2.5] again, a is very strongly irreducible in B. A similar proof using
[10, Theorem 2.12] shows that if a is m-irreducible in A, then a is also
m-irreducible in B.
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Remark 2.2. (a) Let A ⊂ B be a weakly inert extension. Easy
examples (for instance, use Proposition 2.3) show that even in the case
where B is an integral domain, a can be irreducible in A but be a unit
in B. However, if further, U(B) ∩ A = U(A), then 0 �= a ∈ A satisfies
any of the irreducibility conditions in A⇔ it satisfies the corresponding
irreducibility condition in B.

(b) Note that in Proposition 2.1 it is necessary to assume a �= 0. If
we take A = Z2 and B = Z2 ⊕ Z2 using the diagonal embedding, then
A ⊂ B is a weakly inert extension. Here a = 0 is irreducible, strongly
irreducible, very strongly irreducible, m-irreducible and prime in A,
but none of these in B. Also, note that while A ⊂ B is a weakly inert
extension, it is not an inert extension.

(c) In Proposition 2.1 we cannot add “a is prime.” For Z4 ⊂ Z4[u],
where u2 = 0, is a weakly inert extension (but not an inert extension),
however, 2̄ is prime in Z4 but not in Z4[u].

(d) Suppose that A ⊂ B is a weakly inert extension where A is an
integral domain. Then A ⊂ B is an inert extension if and only if B
is an integral domain. Hence if A ⊂ B is an inert extension, we can
allow a = 0 in Proposition 2.1 for a irreducible, strongly irreducible,
very strongly irreducible, or prime, but not for a m-irreducible.

Let S be a regular multiplicative set of the commutative ring R.
While in general R ⊂ RS need not be (weakly) inert (even when R
is an integral domain, for example, take R = k[X2, X3], k a field and
S = {uXn | u ∈ k×, n = 0 or n ≥ 2}), we next give a case where it is.

Proposition 2.3. Let R be a commutative ring and S a multiplica-
tive set of R generated by regular primes. Then R ⊂ RS is an inert
extension.

Proof. Suppose xy ∈ R for some nonzero x, y ∈ RS . We can
write x = a/s, y = b/t where a, b ∈ R, s = p1 · · · pn, t = q1 · · · qm
where pi, qj ∈ S are primes and pi � a and qj � b in R. Then
ab = (xy)st = (xy)p1 · · · pnq1 · · · qm. Hence s|b and t|a in R. Take
u = s/t, a unit in RS . Then xu, u−1y ∈ R. Hence R ⊂ RS is an inert
extension.
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However, R ⊂ RS can be an inert extension without S being gener-
ated by primes. For example, let R = k[[Y 2, Y 3]] where k is a field, and
let S = {uY n | u ∈ U(R), n = 0 or n ≥ 2}. Then R ⊂ RS = k((Y )) is
inert, but S is not generated by primes. It is interesting to note that
R[X] ⊂ RS [X] is not inert.

Proposition 2.4. Let R be a commutative ring and S a regular
multiplicative set of R. Suppose that R ⊂ RS is a weakly inert extension
(e.g., S is generated by regular primes (Proposition 2.3) ). If R is
atomic (respectively, strongly atomic, very strongly atomic, m-atomic,
p-atomic), then so is RS . If R satisfies ACCP, so does RS.

Proof. Let r/s be a nonzero nonunit of RS . Suppose that R is atomic.
Then we can write r = a1 · · · an where each ai is an irreducible element
of R. Then r/s = (sa1/s

2)(sa2/s) · · · (san/s) where each factor is either
irreducible or a unit in RS by Proposition 2.1. Hence RS is atomic. A
similar proof holds for the other cases (in the case where R is p-atomic
we use the fact that if p is a prime in R then p/s is either a prime or
unit in RS ; here we do not need that R ⊂ RS is weakly inert). The
proof that R satisfies ACCP implies RS satisfies ACCP is identical to
the domain case [4, Theorem 2.1].

The notion of a splitting multiplicative set which played such an
important role in [4] does not have a good analog for commutative rings
with zero divisors. Recall that for an integral domain R, a saturated
multiplicative set S of R is a splitting multiplicative set if for each
0 �= x ∈ R we can write x = as where s ∈ S and aR ∩ tR = atR
for all t ∈ S. Hence the only elements of S dividing a are units. In
the case where S is generated by primes, S is a splitting set ⇔ for
each 0 �= x ∈ R we can write x = as where s ∈ S and no prime in S
divides a. Now suppose that R is a commutative ring with zero divisors
and S is generated by regular primes. Let p ∈ S be a regular prime.
Then ∩∞

n=1p
nR is a prime ideal. If 0 = ∩∞

n=1p
nR, then R is an integral

domain. So suppose 0 �= ∩∞
n=1p

nR. Let 0 �= x ∈ ∩∞
n=1p

nR. Then it is
not possible to write x = as where s ∈ S and no prime in S divides a
since a ∈ ∩∞

n=1p
nR.

We end this section with the following result.



6 A.G. AḠARGÜN, D.D. ANDERSON AND S. VALDES-LEON

Proposition 2.5. Let {Rγ} be a directed family of commutative
rings with identity. Suppose that each Rα ⊂ Rβ is a weakly inert
extension. If each Rγ is atomic (respectively, strongly atomic, very
strongly atomic, m-atomic, p-atomic), then so is R = ∪Rγ.

Proof. Suppose that each Rγ is atomic. Let 0 �= x ∈ R be a nonunit.
Now x ∈ Rα for some α. Since Rα is atomic, we can write x = x1 · · ·xn

where each xi is irreducible in Rα. It is easily checked that Rα ⊂ R is
a weakly inert extension. Hence by Proposition 2.1 each xi is either a
unit or irreducible in R. Thus R is atomic. A similar proof holds
for the strongly atomic, very strongly atomic and m-atomic cases.
Suppose that each Rα is p-atomic. Let 0 �= p ∈ Rα be a prime. For
Rα ⊂ Rβ , p is irreducible in Rα and hence irreducible or a unit in Rβ

(Proposition 2.1). Since Rβ is p-atomic, p is either a prime or unit in
Rβ . If p is a unit in some Rβ, then p is a unit in R. So suppose p is
not a unit in R. Then p is a prime in each Rβ ⊃ Rα. So if p|xy in R,
then in some Rβ ⊃ Rα, x, y ∈ Rβ and p|xy in Rβ so p|x or p|y in Rβ .
Hence, p|x or p|y in R. Thus p is a prime in R. Hence a proof similar
to the atomic case shows that R is p-atomic.

3. Generalized CK rings. Let R be a commutative ring with
identity. It is well known that an atomic ring R has every atom prime,
i.e., R is p-atomic, if and only if R is a finite direct product of UFD’s
and special principal ideal rings (SPIR’s) [10, Theorem 3.6]. In this
section we characterize the atomic rings in which almost all atoms are
prime.

Definition 3.1. R is a Cohen-Kaplansky (CK) ring if R is an atomic
ring with only a finite number of nonassociate atoms. R is a generalized
Cohen-Kaplansky (CK) ring if R is an atomic ring with only finitely
many nonassociate atoms that are not prime.

In [1, Theorem 2] it was shown that R is a CK ring if and only if R is
a finite direct product of finite local rings, SPIR’s and one-dimensional
semi-local domains D with the property that, for each nonprincipal
maximal ideal M of D, D/M is finite and DM is analytically irre-
ducible. Thus a finite direct product of CK rings is a CK ring. For a
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detailed study of CK domains, see [8]. Generalized CK domains were
introduced in [5]. Examples of generalized CK domains besides UFD’s
include Z[2

√−1], k+XK[[X]] and k+XK[X] where k ⊆ K are finite
fields. Unfortunately, the characterization of generalized CK domains
given in [5, Theorem 6] is incomplete, as pointed out to us by Picavet-
L’Hermitte, see [6] and [16]. An integral domain R is a generalized
CK domain if and only if (1) R, the integral closure of R, is a UFD,
(2) R ⊆ R is a root extension, (3) [R : R] is a principal ideal of R,
(4) R/[R : R] is finite and (5) Pic (R) = 0. Condition (5) may be
replaced by Clt(R) = 0 or each height-one prime ideal P of R with
P �⊃ [R : R] is principal.

Theorem 3.2. R is a generalized CK ring if and only if R is a finite
direct product of CK rings and generalized CK domains.

Proof. Suppose that R = R1 × · · · × Rn. A nonzero nonunit a of R
is irreducible (prime) ⇔ a = (u1, . . . , ui−1, ai, ui+1, . . . , un) where all
coordinates uj , j �= i, but one are units and that one nonunit coordinate
ai is irreducible (prime) in Ri [10, Theorem 2.15]. It easily follows that
R is a generalized CK ring ⇔ each Ri is. This gives (⇐).
(⇒). By [10, Theorem 3.3] an atomic ring is a finite direct product

of indecomposable atomic rings. Thus it suffices to show that an
indecomposable generalized CK ring is either a CK ring or an integral
domain. So let R be an indecomposable generalized CK ring and let
{a1, . . . , an} be the finite set of nonassociate nonprime atoms of R. Let
P be a minimal prime ideal of R. Then since each nonzero element of
P is a product of atoms, either P is principal or P is generated by a
subset of {a1, . . . , an}. So all the minimal prime ideals of R are finitely
generated. By [2, Theorem], R has only finitely many minimal prime
ideals P1, . . . , Pm. Let (p) be a principal prime of R.

Claim. ht (p) ≤ 1.

Proof. Suppose ht (p) > 1. Now Q = ∩∞
n=1(pn) is the unique prime

ideal directly below (p) and pQ = Q [7, Corollary 2.3]. Suppose
there is a principal prime (q) ⊆ Q. Then (q)(p) ⊆ (p)(p) ⇒ (q)(p) =
(q)(p)(p)(p) ⇒ (q)(p) = 0(p) by Nakayama’s lemma. So Q contains at
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most one principal prime ideal. Thus Q is generated by some subset
of {a1, . . . , an} and possibly a single principal prime; so Q is finitely
generated. Thus pQ(p) = Q(p) gives Q(p) = 0(p) by Nakayama’s lemma.
So ht (p) = 1.

Let M be a maximal ideal of R. Suppose that M contains a
nonminimal principal prime ideal (p). Then ht (p) = 1 so ∩∞

n=1(pn) =
Pi for some i and pPi = Pi. Since Pi is finitely generated, (Pi)M = 0M

by Nakayama’s lemma. Thus, RM is an integral domain and M
contains a unique minimal prime ideal. Suppose that M contains no
nonminimal principal prime ideal. Let P ⊆M be a prime ideal. Then
P is a finite union of principal ideals, each of which is either a height-
zero principal prime ideal or an (ai). The same follows for PM in RM .
Hence RM is a local CK ring [1, Theorem 2] and thus RM is a zero-
dimensional local ring or a one-dimensional local domain. Thus M
contains a unique minimal prime and RM is a domain unless M is also
minimal. Thus the minimal prime ideals of R are comaximal and hence
the minimal prime ideals of R/nil (R) are comaximal. So R/nil (R) is
a finite direct product of integral domains. Since R is indecomposable,
so is R/nil (R). So R/nil (R) is an integral domain, i.e., R has a unique
minimal prime ideal. If P is also maximal, R is a zero-dimensional local
CK ring. If P is not maximal, then RM is a domain for each maximal
ideal M ; i.e., PM = 0M for each maximal ideal M . Hence P = 0, so R
is an integral domain.

Remark 3.3. (a) Note that the proof of Theorem 3.2 gives another
proof of the opening statement of this section that a ring R is p-atomic
if and only if R is a finite direct product of UFD’s and SPIR’s.

(b) Since a CK ring R is a finite direct product of local rings and
integral domains, each irreducible element of R is actually strongly
irreducible. Moreover, using [10, Theorem 3.4] it is easy to characterize
the generalized CK rings that are m-atomic or very strongly atomic.

4. U-factorizations, BFR’s and U-BFR’s. Let R be a commu-
tative ring with identity. Let a ∈ R be a nonunit, possibly 0. By a
factorization of a we mean a = a1 · · · an where each ai ∈ R is a nonunit.
Let α ∈ {irreducible, strongly irreducible, m-irreducible, very strongly
irreducible, prime}. By an α-factorization of a we mean a factorization
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a = a1 · · · an where each ai is α.

Recall [14] that for a ∈ R, U(a) = {r ∈ R | ∃s ∈ R with rsa =
a} = {r ∈ R | r(a) = (a)}. A U-factorization of a is a factorization
a = (a1 · · · an)(b1 · · · bm) where ai ∈ U(b1 · · · bm) for 1 ≤ i ≤ n, we
allow {a1, . . . , an} to be empty and then write a = ( )(b1 · · · bm), and
bi /∈ U(b1 · · · b̂i · · · bm), for 1 ≤ i ≤ m. We call a1, . . . , an the irrelevant
factors and b1, . . . , bm the relevant factors. A U -factorization is called
an α-U -factorization if each ai, bj is α. An irreducible-U -factorization
of a is called a U -decomposition of a. The notion of a U -decomposition
was used by Fletcher [14, 15] in his study of unique factorization in
rings with zero divisors. Our next lemma is a slight generalization of
[14, Proposition 2].

Proposition 4.1. Any factorization of a can be rearranged to a U-
factorization of a. Hence, any α-factorization of a can be rearranged
to an α-U-factorization of a.

Proof. Let a = a1 · · · an be a factorization of a. If ai /∈ U(a1 · · ·
âi · · · an) for each i, then a = ( )(a1 · · · an) is a U -factorization of
a. So assume some ai ∈ U(a1 · · · âi · · · an). With a change of no-
tation we can take i = 1. By induction, after a change of nota-
tion, we have a2 · · · an = (a2 · · · as)(as+1 · · · an), a U -factorization of
a2 · · · an. We claim that (a1a2 · · · as)(as+1 · · · an) is a U -factorization
of a. By definition ai /∈ U(as+1 · · · âi · · · an) for s+ 1 ≤ i ≤ n and ai ∈
U(as+1 · · · an) for 2 ≤ i ≤ s. And a1 ∈ U(a2 · · · an) ⇒ a1Ra2 · · · an =
Ra2 · · · an = a2 · · · asRas+1 · · · an = a2 · · · as−1Ras(as+1 · · · an) =
a2 · · · as−1Ras+1 · · · an = · · · = Ras+1 · · · an ⇒ a1 ∈ U(as+1 · · · an).

However, the resulting U -factorization is not necessarily unique. For,
let e = (1, 0) in Z× Z. Then −e = −e · e = (−e)(e) = (e)(−e) are two
different U -factorizations derived from the factorization −e = −e · e.
If a = a1 · · · an is a factorization of a and a = ( )(a1 · · · an) is a U -
factorization, then this is the only way to convert a = a1 · · · an to a
U -factorization. Recall that R is présimplifiable if xy = x ⇒ x = 0
or y ∈ U(R). R is présimplifiable if and only if U(x) = U(R) for each
0 �= x ∈ R, or in the terminology of [15], R is a pseudo-domain. Hence,
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R is présimplifiable if and only if for each nonzero nonunit a ∈ R
each factorization a = a1 · · · an has a = ( )(a1 · · · an) as its unique
conversion to a U -factorization. Note that 0 = (a1 · · · an)(b1 · · · bm) is
a U -factorization of 0 ⇔ b1 · · · bm = 0, but b1 · · · b̂i · · · bm �= 0 for each
i = 1, . . . ,m. If R is an integral domain, any U -factorization of 0 has
the form 0 = (a1 · · · an)(0).

For a ∈ R, put L(a) = sup{n | a = a1 · · · an is a factorization of a}.
So (1) L(a) = 0⇔ a is a unit, (2) L(0) =∞ and (3) L(a) <∞ ⇒ a is
a product of irreducibles and then L(a) = sup{n | a = a1 · · · an, each
ai is irreducible}. Note that R is a BFR if and only if L(a) < ∞ for
each 0 �= a ∈ R.

For a nonunit a ∈ R put LU (a) = sup{m | a = (a1 · · · an)(b1 · · · bm)
is a U -factorization of a}. Note that for a nonunit a ∈ R, a = ( )(a),
so LU (a) ≥ 1. For a ∈ U(R), we define LU (a) = 0. Since each U -
factorization of a is a factorization of a, we have LU (a) ≤ L(a). We
say that a is U -bounded if LU (a) < ∞ and that R is a U -BFR if each
nonzero element of R is U -bounded (note that we are not assuming that
a U -BFR is atomic). Clearly a BFR is a U -BFR, in fact, a U -BFR is
a BFR if and only if it is présimplifiable (see Theorem 4.2). Note that
Z2 ⊕ Z2 is a U -BFR (for LU ((0, 1)) = LU ((1, 0)) = 1), but is not a
BFR. The following theorem gives several characterizations of BFR’s.

Theorem 4.2. For a commutative ring R the following conditions
are equivalent.

1. R is a BFR.

2. R is présimplifiable and for 0 �= a ∈ R, there is a fixed bound on
the lengths of chains of principal ideals starting at Ra.

3. R is présimplifiable and a U-BFR.

4. For each nonzero nonunit a ∈ R, natural numbers N1(a) and
N2(a) exist so that if a = (a1 · · · an)(b1 · · · bm) is a U-factorization of
a, then n ≤ N1(a) and m ≤ N2(a).

5. There is a function l : R → N0 ∪ {∞} that satisfies (i) l(a) =
∞ ⇔ a = 0, (ii) l(a) = 0 ⇔ a ∈ U(R) and (iii) l(ab) ≥ l(a) + l(b) for
a, b ∈ R.
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Proof. (1) ⇒ (2). Clearly a BFR is présimplifiable. If Ra = Ra1 �
· · · � Ran �= R is a proper ascending chain of principal ideals, then each
ai = riai+1 where ri is a nonunit. Hence a = a1 = r1a2 = r1r2a3 =
· · · = r1 · · · rn−1an. So n ≤ L(a) <∞.
(2)⇒ (3). Let a be a nonzero nonunit ofR. If a = (a1 · · · an)(b1 · · · bm)

is a U -factorization of a, then Ra = Rb1 · · · bm � Rb1 · · · bm−1 � · · · �
Rb1b2 � Rb1. Thus LU (a) <∞.
(3)⇒ (4). Let a be a nonzero nonunit of R. Since R is présimplifiable,

a U -factorization of a has the form a = ( )(b1 · · · bm). Hence we can
take N1(a) = 0 and N2(a) = LU (a).

(4) ⇒ (1). Let a be a nonzero nonunit of R. Let a = a1 · · · an be
a factorization of a. Then a = a1 · · · an can be rearranged to a U -
factorization, say a = (as1 · · · asi

)(asi+1 · · · asn
) is a U -factorization of

a. Then n = i+(n− i) ≤ N1(a)+N2(a). Hence L(a) ≤ N1(a)+N2(a).

(1) ⇒ (5). Take l(a) = L(a).

(5) ⇒ (1). Let a be a nonzero nonunit of R, and let a = a1 · · · an be
a factorization of a. Then l(a) = l(a1 · · · an) ≥ l(a1) + · · · + l(an) ≥
1 + · · ·+ 1 = n. Hence L(a) ≤ l(a) <∞.

Concerning (4) of Theorem 4.2, note that R is présimplifiable if
and only if for each nonzero nonunit a ∈ R a natural number N1(a)
exists so that if a = (a1 · · · an)(b1 · · · bm) is a U -factorization of a, then
n ≤ N1(a).

Theorem 4.3. Let R be a commutative ring and S a regular
multiplicative set of R such that R ⊂ RS is weakly inert. If R is a
BFR, then RS is a BFR.

Proof. Suppose RS is not a BFR. Let a ∈ RS be a nonzero nonunit
with L(a) = ∞. After suitable multiplication by an element of S we
can assume a ∈ R.

Suppose we have a factorization a = x1 · · ·xn of a in RS . Since
R ⊂ RS is weakly inert, we can write a = (x1u1)(x2 · · ·xnu

−1
1 )

where x1u1, x2 · · ·xnu
−1
1 ∈ R and u1 ∈ U(RS). Now x2 · · ·xnu

−1
1 =

x2(x3 · · ·xnu
−1
1 ) so there is a u2 ∈ U(RS) with x2u2 ∈ R and

x3 · · ·xnu
−1
1 u−1

2 ∈ R. Continuing, there are units u1, . . . , un−1 ∈ RS
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with x1u1, . . . , xn−1un−1, xnu
−1
1 · · ·u−1

n−1 ∈ R. Hence a = (x1u1)(x2u2)
· · · (xn−1un−1)(xnu

−1
1 · · ·u−1

n−1) is a factorization of a in R of length n.
Hence, L(a) =∞ in R, a contradiction.

The following proposition uses the functions L and LU to characterize
two forms of irreducibility.

Proposition 4.4. Let a ∈ R, R a commutative ring with identity.

1. a is irreducible ⇔ LU (a) = 1.

2. For a �= 0, a is very strongly irreducible ⇔ L(a) = 1.

Proof. (1) (⇐). Suppose LU (a) = 1. Let a = bc where b and c
are nonunits. By Proposition 4.1, we get the following possible U -
factorizations: a = ( )(bc), a = (b)(c) or a = (c)(b). Since LU (a) = 1,
the first situation cannot occur. So a = (b)(c) which implies (a) = (c)
or a = (c)(b) which implies (a) = (b). So a is irreducible.

(⇒). Assume that a is irreducible. Let a = (a1 · · · an)(b1 · · · bm) be
a U -factorization of a. Hence (a) = (b1 · · · bm) = (b1) · · · (bm), so say
(a) = (b1). Hence, if m > 1, (a) = (b1 · · · bm) � (b1 · · · bm−1) ⊆ (b1) =
(a), a contradiction.

(2) For a �= 0, L(a) = 1 ⇔ a = bc implies b or c ∈ U(R) ⇔ a is very
strongly irreducible.

We next wish to show that for R atomic and a ∈ R, LU (a) = sup{m |
a = (a1 · · · an)(b1 · · · bm) is a U -decomposition of a}. We need the
following lemma.

Lemma 4.5. Let a ∈ R be a nonunit, and let a = (a1 · · · an)(b1 · · · bm)
be a U-factorization of a.

1. If ai = a′ia
′′
i with a

′
i, a

′′
i nonunits, then a = (a1 · · · ai−1a

′
ia

′′
i ai+1 · · ·

an)(b1 · · · bm) is a U-factorization of a.
2. If bi = b′ib

′′
i with b

′
i, b

′′
i nonunits, then at least one of

(a) a = (a1 · · · an)(b1 · · · bi−1b
′
ib

′′
i bi+1 · · · bm)

(b) a = (a1 · · · anb
′
i)(b1 · · · bi−1b

′′
i bi+1 · · · bm)
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(c) a = (a1 · · · anb
′′
i )(b1 · · · bi−1b

′
ibi+1 · · · bm)

is a U-factorization of a.

3. For i < j, a = (a1 · · · âi · · · âj · · · an(aiaj))(b1 · · · bm) and
a = (a1 · · · an)(b1 · · · b̂i · · · b̂j · · · bm(bibj)) are U-factorizations of a.

Hence a = ((a1 · · · an))(b1 · · · bm) is a U-factorization of a.

Proof. (1) ai(b1 · · · bm) = (b1 · · · bm) and c|ai ⇒ c(b1 · · · bm) =
(b1 · · · bm).
(2) Suppose that the decomposition in 4.5 (2a) is not a U -factorization.

Hence b′i∈U(b1 · · · bi−1b
′′
i bi+1 · · · bm) or b′′i ∈ U(b1 · · · bi−1b

′
ibi+1 · · · bm).

Assume the former; so b′i(b1 · · · bi−1b
′′
i bi+1 · · · bm) = (b1 · · · bi−1b

′′
i bi+1

· · · bm). Hence (b1 · · · bi−1bibi+1 · · · bm) = (b1 · · · bi−1b
′′
i bi+1 · · · bm). So

ai(b1 · · · bi−1b
′′
i bi+1 · · · bm) = ai(b1 · · · bi−1bibi+1 · · · bm) = (b1 · · · bi−1bi

· bi+1 · · · bm) = (b1 · · · bi−1b
′′
i bi+1 · · · bm). Therefore a = (a1 · · · anb

′
i)

· (b1 · · · bi−1b
′′
i bi+1 · · · bm) is a U -factorization of a unless b′′i (b1 · · · bi−1 ·

bi+1 · · · bm) = (b1 · · · bi−1bi+1 · · · bm). But then (b1 · · · bi−1bi+1 · · · bm) =
(b1 · · · bi−1b

′′
i bi+1 · · · bm) = (b1 · · · bi−1bibi+1 · · · bm), a contradiction.

(3) Clear.

Theorem 4.6. Let R be a commutative ring with identity. Suppose
that R is atomic, respectively strongly atomic, very strongly atomic, m-
atomic, p-atomic. Let a be a nonunit of R. Then LU (a) = sup{t | a =
(a1 · · · as)(b1 · · · bt) is an irreducible, respectively strongly irreducible,
very strongly irreducible, m-irreducible, prime-U-factorization of a}.

Proof. We do the atomic case; the other cases are similar. Since
each U -decomposition of a is a U -factorization of a, we have LU (a) ≥
sup{t | a = (a1 · · · an)(b1 · · · bt) is a U -decomposition of a}. Let
a = (a1 · · · an)(b1 · · · bm) be a U -factorization of a. After factoring
each ai, bj into irreducibles, repeated applications of Lemma 4.5 give
a U -decomposition a = (c1 · · · cs)(d1 · · · dt) where t ≥ m. Hence
sup{t | a = (a1 · · · an)(b1 · · · bt) is a U -decomposition of a} ≥ LU (a),
and so we have equality.

Corollary 4.7. Suppose that R is atomic. Then R is a U-BFR if
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and only if for each nonzero nonunit a ∈ R a natural number N(a)
exists such that, for each U-decomposition a = (a1 · · · an)(b1 · · · bm) of
a, m ≤ N(a).

We next consider direct products of rings.

Lemma 4.8. Let R1, . . . , Rn be commutative rings, and let R =
R1 × · · · ×Rn.

1. Let a ∈ R be a nonunit, and let a = (a1 · · · as)(b1 · · · bm) be a
U-factorization of a. Then a has a U-factorization a = (a′1 · · · a′s′)(b′1
· · · b′m′) where mn ≥ m′ ≥ m and each a′i, b

′
j ∈ R1 × · · · × Rn has all

coordinates except one equal to 1Rk
, for the appropriate Rk.

2. Let a = (a1, . . . , an) ∈ R1 × · · · × Rn. Then LU (a) ≤ LU (a1) +
· · ·+ LU (an).

Proof. For c = (c1, . . . , cn) ∈ R1 × · · · × Rn, put c(i) = (1, . . . , 1, ci,
1, . . . , 1). So c = c(1) · · · c(n), each c(i) has at most one coeffi-
cient a nonunit, and if c is a nonunit at least one c(i) is a nonunit.
In the U -factorization a = (a1 · · · as)(b1 · · · bm), factor each ai, bj

into the a(k)
i , b

(k)
j ’s. By Lemma 4.5, a has a U -factorization a =

(a′1 · · · a′s′)(b′1 · · · b′m′) where each factor has all coordinates but one
equal to 1 and that coordinate is a nonunit and m ≤ m′ ≤ mn.

(2) If a is a unit, the result is obvious. So assume that a is a nonunit.
Let a = (c1 · · · cs)(d1 · · · dt) be a U -factorization of a. By (1), there is
a U -factorization a = (c′1 · · · c′s′)(d′1 · · · d′t′) where t′ ≥ t and each c′i, d

′
j

has exactly one coordinate not equal to 1. Let Ni be the number of
d′j ’s that have a nonunit in the ith coordinate. So N1 + · · ·+Nn = t′.
If ai is a unit, then Ni = 0 = LU (ai). So suppose ai is a nonunit.
Now ai = c′1i · · · c′s′id

′
1i · · · d′t′i where c′ji and d

′
ji are the ith coordinates

of c′j and d
′
j , respectively. After removing the c

′
ji’s and d

′
ji’s that are

units, we get a U -factorization ai = (c′j1i · · · c′js′′ i
)(d′k1i · · · d′kNi

i). Hence
Ni ≤ LU (ai). So t ≤ t′ = N1 + · · · + Nn ≤ LU (a1) + · · · + LU (an).
Hence LU (a) ≤ LU (a1) + · · ·+ LU (an).

Theorem 4.9. Let R1, . . . , Rn be commutative rings, n > 1, and let
R = R1 × · · · × Rn. Then R is a U-BFR ⇔ each Ri is a U-BFR and
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0Ri
is U-bounded. Hence, 0R is U-bounded.

Proof. (⇒). Let a ∈ Ri be a nonunit, possibly 0, and let a =
(a1 · · · an)(b1 · · · bm) be a U -factorization of a. For c ∈ Ri, put
c̃ = (1, . . . , 1, c, 1, . . . , 1) ∈ R1 × · · · × Rn where each coordinate is 1
except for the ith coordinate which is c. Now ã = (ã1 · · · ãn)(b̃1 · · · b̃m)
is easily seen to be a U -factorization of ã. Hence, m ≤ LU (ã). So Ri is
a U -BFR and 0Ri

is U -bounded.

(⇐). This follows from Lemma 4.8(2).

The last statement also follows from Lemma 4.8(2).

Corollary 4.10. Let R be a U-BFR. If R is not indecomposable,
then 0 is U-bounded.

Proof. If R is not indecomposable, we can decompose R into a direct
product R = R1 ×R2. By Theorem 4.9, 0R is U -bounded.

Corollary 4.11. A finite direct product of BFD’s is a U-BFR.

Proof. LetD1, . . . , Dn be BFD’s. Since eachDi is an integral domain,
LU (0Di

) = 1 (Proposition 4.4 or note that in an integral domain a U -
factorization of 0 has the form 0 = (a1 · · · an)(0)). By Theorem 4.9,
D1 × · · · ×Dn is a U -BFR.

However, as the next example shows, in an indecomposable U -BFR
R, 0 need not be U -bounded. This example also shows that a finite
direct product of BFR’s need not be a U -BFR.

Example 4.12 (A quasilocal BFR in which 0 is not U -bounded).
Take R = k[[X,Y ]] ⊕ N (idealization) where k is a field and N =
⊕{k[[X,Y ]]/(p) | (p) is a height-one prime ideal of k[[X,Y ]]}. Now
∩∞

n=1((X,Y ) ⊕ N)n = 0, so R is a quasilocal BFR. Let {pi} be a
countable set of nonassociate nonzero primes of k[[X,Y ]], and let epi

=
1k[[X,Y ]]/(pi) in N . Then (0, 0) = ( )((p1, 0) · · · (pn, 0)(0, ep1+ · · ·+epn

))
is a U -factorization of (0,0). Also, by Theorem 4.9, R × R is not a U -
BFR.
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Theorem 4.13. Let R be a U-BFR. Then R is a finite direct product
of indecomposable U-BFR’s.

Proof. We may assume that R is not indecomposable, so let R = R1×
R2. Let a = (1, 0) ∈ R1 ×R2. Suppose R2 = S1 ×· · ·×St, and let fi =
(1, . . . , 1, 0, 1, . . . , 1) ∈ S1 × · · · × St where each coordinate is 1 except
for the ith coordinate which is 0si

. Then a = ( )((1, f1) · · · (1, ft))
is a U -factorization of a. Hence t ≤ LU (a). Thus R2 is a finite direct
product of indecomposable rings. Likewise, R1 is a finite direct product
of indecomposable rings. By Theorem 4.9, each of the indecomposable
factors is a U -BFR.

The proof of Theorem 4.13 yields the following result.

Corollary 4.14. Let R be a commutative ring with LU (0) < ∞.
Then R is a finite direct product of indecomposable rings Ri, R =
R1 × · · · ×Rn, with each LU (0Ri

) <∞.

Proof. Let R = S1 × · · · × St. In the notation of the proof of
Theorem 4.13, note that 0 = ( )(f1 · · · ft) is a U -factorization of 0 in
R. Hence t ≤ LU (0). So R is a finite direct product of indecomposable
rings, say R = R1 × · · · × Rn where each Ri is indecomposable.
Suppose in Ri, 0Ri

= (a1 · · · an)(b1 · · · bm) is a U -factorization. Then
0R = ((a1, 0, . . . , 0) · · · (an, 0, . . . , 0))((b1, 0, . . . , 0) · · · (bm, 0, . . . , 0)) is
a U -factorization of 0R in R. Hence, m ≤ LU (0R). Thus LU (0Ri

) ≤
LU (0R).

We next show that any Noetherian ring is a U -BFR. We need two
lemmas.

Lemma 4.15. Let R be a commutative ring, a ∈ R, and B an ideal
of R with B ⊆ (a). Then for a+B ∈ R/B, LU (a+B) ≥ LU (a).

Proof. If a is a unit, then LU (a + B) = LU (a) = 0. So assume
a is a nonunit. Let a = (a1 · · · an)(b1 · · · bm) be a U -factorization
of a. Then in R/B, ā = ā1 · · · ānb̄1 · · · b̄m and each factor is a
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nonunit. Now ai(b1 · · · bm) = (b1 · · · bm) ⇒ āi(b̄1 · · · b̄m) = (b̄1 · · · b̄m)
and b̄i(b̄1 · · · ˆ̄bi · · · b̄m) = (b̄1 · · · ˆ̄bi · · · b̄m) ⇒ (b1 · · · bm) = (b1 · · · bm) +
B = (b1 · · · b̂i · · · bm) + B = (b1 · · · b̂i · · · bm), a contradiction. So
ā = (ā1 · · · ān)(b̄1 · · · b̄m) is a U -factorization of ā = a + B. Hence,
LU (a+ B) ≥ LU (a).

Lemma 4.16. Let R be a commutative ring and A an ideal of R with
A = Q1∩· · ·∩Qn where Qi is Pi-primary. Suppose that P si

i ⊆ Qi. Let
t1, . . . , tm ∈ R with t1 · · · tm ∈ A. Then some subproduct of t1 · · · tm of
length at most s1 + · · ·+ sn lies in A.

Proof. Let ti1 , . . . , tis
be the tj ’s that lie in Pi. If s ≥ si, then

ti1 · · · tisi
∈ P si

i ⊆ Qi. So suppose s < si. Let t̄i =
∏{tj | j /∈

{i1, . . . , is}}, so t̄i /∈ Pi and ti1 · · · tis
t̄i = t1 · · · tm ∈ Qi. Since Qi is

Pi-primary, ti1 · · · tis
∈ Qi. So in either case we have a subproduct

ti1 · · · tiki
of t1 · · · tm of length ki ≤ si that lies in Qi. Let t =

∏{tj |
j ∈ ∪n

i=1{i1, . . . , iki
}}. Then t is a subproduct of t1 · · · tm of length at

most k1+ · · ·+km ≤ s1+ · · ·+sn which lies in Q1∩· · ·∩Qn = A.

Theorem 4.17. Let R be a Noetherian ring. Then R is a U-BFR
with 0R U-bounded.

Proof. It suffices to prove that LU (0) < ∞. For then if a ∈ R is a
nonunit, Lemma 4.15 gives that LU (a) ≤ LU (a+ (a)) = LU (0R/(a)) <
∞ (since R/(a) is Noetherian). Let 0 = Q1 ∩ · · · ∩ Qn be a primary
decomposition of 0 where Qi is Pi-primary and P si

i ⊆ Qi. Let
0 = (a1 · · · an)(b1 · · · bm) be a U -factorization of 0. Then b1 · · · bm = 0
but b1 · · · b̂i · · · bm �= 0 for i = 1, . . . ,m. Suppose thatm > s1+· · ·+sn.
Then by Lemma 4.16 some proper subproduct of b1 · · · bm is 0, a
contradiction. Hence LU (0) ≤ s1 + · · ·+ sn.

The proof of Theorem 4.17 shows that if R is a commutative ring in
which 0 has a strong primary decomposition (i.e., 0 = Q1 ∩ · · · ∩ Qn

where Qi is Pi-primary and P si
i ⊆ Qi for some si ≥ 1), then 0R is U -

bounded and that a strongly Laskerian ring (or more generally, a ring
in which every principal ideal has a strong primary decomposition) is
a U -BFR. Thus, Example 4.12 was chosen as a BFR in which 0 does
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not have a primary decomposition. Hence, while every Noetherian ring
R is a U -BFR, R is a BFR ⇔ R is présimplifiable [10, Theorem 3.9].
We next give an example of a Noetherian U -BFR which is not a finite
direct product of BFR’s.

Example 4.18 (A Noetherian U -BFR that is not a finite direct
product of BFR’s.) Let R = k[x, y] = k[X,Y ]/(XY ) where k is a field.
Now R is not présimplifiable since x(1 + y) = x �= 0, but 1 + y is not
a unit. Hence R is not a BFR. Since R is indecomposable, R is not a
finite direct product of BFR’s.

5. Finite factorization rings. Let R be a commutative ring with
identity. Recall from [10] that R is a finite factorization ring (FFR) if
every nonzero nonunit of R has only a finite number of factorizations up
to order and associates; R is a weak finite factorization ring (WFFR)
if every nonzero nonunit of R has only a finite number of nonassociate
divisors, and R is an atomic idf-ring if R is atomic and each nonzero
element of R has at most a finite number of nonassociate irreducible
divisors. Clearly if R is an FFR, then R is a WFFR, and ifR is a WFFR
then R is an atomic idf-ring. But Z2 × Z2 is a WFFR that is not an
FFR, consider (0, 1) = (0, 1)n, and Z(2) × Z(2) is an atomic idf-ring
that is not a WFFR, consider (0, 1) = (0, 1)(2, 1)n. In [10, Proposition
6.6], it was shown that the following conditions on a commutative ring
R are equivalent: (1) R is an FFR, (2) R is a BFR and WFFR, (3) R
is présimplifiable and a WFFR, (4) R is a BFR and an atomic idf-ring,
and (5) R is présimplifiable and an atomic idf-ring. In [11, Theorem
1.7] we proved that if R[X] is an atomic idf-ring or R[[X]] is a WFFR,
then either R is an integral domain or R is a finite local ring. For a finite
local ring R, R[X] and R[[X]] are both BFR’s. So R[X] (respectively,
R[[X]]) is an FFR if and only if R[X] (respectively, R[[X]]) is an atomic
idf-ring. We give a partial answer to the question of when R[X] or
R[[X]] is an FFR for R a finite local ring.

Theorem 5.1. Let (R,M) be a finite local ring with a, b ∈ M such
that Ra and ann (b) are not comparable. Then R[X] and R[[X]] are not
FFR’s.
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Proof. Since Ra �⊂ ann (b), ab �= 0. Choose c ∈ ann (b) − Ra. Then
for 1 ≤ n < m, 0 �= ab = (a + cXn)b = (a + cXm)b. Suppose
a+ cXn ∼ a+ cXm. So since R[X] and R[[X]] are both présimplifiable
for R a finite local ring, (a + cXn)l(X) = a + cXm where l(X) is
a unit of R[X] or R[[X]]. In either case, l(0) is a unit of R. Then
a(l(X)− 1) = cXn(−l(X) +Xm−n). Hence, c ∈ Ra, a contradiction.

Thus for R = k[X1, X2, . . . , Xn]/(X1, . . . , Xn)m where k is a finite
field and n ≥ 2 and m ≥ 3, R[X] and R[[X]] are not FFR’s since RX1

and ann (X2) are not comparable. On the positive side, we show that
it is possible for R[[X]] to be an FFR for some finite local rings R.
We need the following lemma. Recall that for a polynomial f ∈ R[X]
or power series f ∈ R[[X]], Af is the ideal of R generated by the
coefficients of f .

Lemma 5.2 (Weierstrauss preparation theorem) [12]. Let (R,M) be
a complete local ring. Let f ∈ R[[X]] with Af = R. Suppose n is the
degree of the first power of X whose coefficient is a unit. Then f = pu
where p = a0 + a1X + · · · + an−1X

n−1 + Xn with each ai ∈ M and
u ∈ R[[X]] is a unit.

Theorem 5.3. Let (R,M) be a finite local ring. If either R is an
SPIR or M2 = 0, then R[[X]] is an FFR.

Proof. Let f ∈ R[[X]] be irreducible. Suppose that Af = R. So, by
Lemma 5.2, f = pu where p = a0+ a1X + · · ·+ an−1X

n−1+Xn where
a0, . . . , an−1 ∈ M and n is the degree of the first power of X whose
coefficient is a unit in R and u ∈ U(R[[X]]). So if a0 = 0, f ∼ X.
Suppose Af �= R. If M2 = 0, f is irreducible ⇔ f(0) = a0 �= 0 and if
R is an SPIR, f is irreducible ⇔ f ∼ q where M = (q).

(1) Case M2 = 0. Let f ∈ R[[X]] be a nonzero nonunit. First
suppose Af = R. Since g|f ⇒ Ag = R, a factorization of f into
irreducibles has the form Xsp1 · · · ptu where 0 ≤ s, 0 ≤ t, each pi is a
polynomial (irreducible as a power series) with leading coefficient 1, and
u ∈ U(R[[X]]). Note that n = s+deg p1+· · ·+deg pt is the order of the
first term of f having a unit coefficient. Hence, for each i, deg pi ≤ n.



20 A.G. AḠARGÜN, D.D. ANDERSON AND S. VALDES-LEON

However, the number of polynomials in R[X] of degree ≤ n is finite, so
the number of nonassociate irreducible factors of f is also finite. Next
suppose that Af ⊆ M . Then f = Xsp1 · · · ptg, where 0 ≤ s, p1, . . . , pt

are as above and g ∈ R[[X]] is irreducible with 0 �= g(0) ∈ M and
Ag ⊆M . Now p1 · · · pt = b0 + b1X + · · ·+ bn−1X

n−1 +Xn where each
bi ∈ M and n = deg p1 + · · · + deg pt. So f = Xsp1 · · · ptg = Xs+ng.
Hence g = X−s−nf is uniquely determined. Hence R is an FFR.

(2) Case (R, (q)) is an SPIR. Let f ∈ R[[X]] be a nonzero nonunit.
So f = qif ′ where Af ′ = R. Let i0 be the order of the first unit
coefficient of f ′. So if f ′′ ∈ R[[X]] is irreducible with Af ′′ = R and
f ′′ | f , then the first unit coefficient of f ′′ has order n ≤ i0. So
f ′′ ∼ a0 + a1X + · · · + an−1X

n−1 +Xn where a0, . . . , an−1 ∈ M and
n ≤ i0. But there are only finitely many such polynomials.
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