FACTORIZATION IN COMMUTATIVE RINGS WITH ZERO DIVISORS, III

AHMET G. A $\bar{G} A R G U ̈ N, ~ D . D . ~ A N D E R S O N ~ A N D ~ S I L V I A ~ V A L D E S-L E O N ~$

Abstract

Let R be a commutative ring with identity. We continue our study of factorization in commutative rings with zero divisors. In Section 2 we consider inert extensions and atomicity. In Section 3 we characterize the atomic rings in which almost all atoms are prime. In Section 4 we investigate bounded factorization rings (BFR's) and U-BFR's, and in Section 5 we study finite factorization rings (FFR's).

1. Introduction. Throughout this paper, R will be a commutative ring with identity. This article is the third in a series of papers [10], [11] considering factorization in commutative rings with zero divisors. Here we concentrate on atomic rings, especially bounded factorization rings and finite factorization rings, which are defined below. We first review the various forms of irreducible elements introduced in [10].

For an integral domain R, a nonzero nonunit $a \in R$ is said to be irreducible or to be an atom if $a=b c, b, c \in R$, implies b or $c \in U(R)$, the group of units of R. It is easily checked that a is an atom \Leftrightarrow (a) is a maximal (proper) principal ideal of $R \Leftrightarrow a=b c$ implies b or c is an associate of a. Now if R has zero divisors, these various characterizations of being irreducible no longer need to be equivalent. The following different forms of irreducibility are based on elements being associates. Let $a, b \in R$. Then a and b are associates, denoted $a \sim b$ if $a \mid b$ and $b \mid a$, i.e., $(a)=(b), a$ and b are strong associates, denoted $a \approx b$, if $a=u b$ for some $u \in U(R)$, and a and b are very strong associates, denoted $a \cong b$, if $a \sim b$ and either $a=0$ or $a=c b$ implies $c \in U(R)$. Then a nonunit $a \in R$ (possibly with $a=0$) is irreducible (respectively, strongly irreducible, very strongly irreducible), if $a=b c \Rightarrow a \sim b$ or $a \sim c$, respectively $a \approx b$ or $a \approx c, a \cong b$ or $a \cong c$. And a is m-irreducible if (a) is maximal in the set of proper principal ideals of R. A nonzero nonunit $a \in R$ is very strongly irreducible $\Leftrightarrow a=b c$ implies b or $c \in U(R)$ [10, Theorem 2.5]. Now a is very

[^0]strongly irreducible $\Rightarrow a$ is m-irreducible $\Rightarrow a$ is strongly irreducible $\Rightarrow a$ is irreducible (where in the first implication we assume $a \neq 0$). But examples given in [10] show that none of these implications can be reversed. As usual, a nonunit $p \in R$ is prime if (p) is a prime ideal of R. Finally, R is said to be atomic (respectively, strongly atomic, very strongly atomic, m-atomic, p-atomic), if each nonzero nonunit of R is a finite product of irreducible elements (respectively, strongly irreducible elements, very strongly irreducible elements, m-irreducible elements, prime elements). If R satisfies the ascending chain condition on principal ideals, ACCP, then R is atomic [10, Theorem 3.2]; if R is atomic, then R is a finite direct product of indecomposable rings $[\mathbf{1 0}$, Theorem 3.3]; and a direct product $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ of rings is atomic $\Leftrightarrow|\Lambda|<\infty$ and each R_{α} is atomic [10, Theorem 3.4.].

In Section 2 we consider (weakly) inert extensions (defined in Section 2) and atomicity. We show that if R satisfies any of the various forms of atomicity or ACCP, so does R_{S}, S a regular multiplicatively closed subset of R, in the case where $R \subset R_{S}$ is a weakly inert extension (e.g., if S is generated by regular primes).

In Section 3 we characterize the atomic rings, which we call generalized CK rings, with the property that almost all of their atoms are prime. We show that R is a generalized CK ring if and only if R is a finite direct product of finite local rings, SPIRs and generalized CK domains.

In Section 4 we study bounded factorization rings (BFR's) and U BFR's. Recall that R is a BFR if, for each nonzero nonunit $a \in R$, a natural number $N(a)$ exists so that if $a=a_{1} \cdots a_{n}$ where each a_{i} is nonunit, then $n \leq N(a)$. It is easily checked that a BFR satisfies ACCP and hence is atomic. Moreover, R is a $\mathrm{BFR} \Leftrightarrow R$ is atomic and, for each nonzero nonunit $a \in R$, a natural number $N(a)$ exists so that if $a=a_{1} \cdots a_{n}$ where each a_{i} is irreducible, then $n \leq N(a)$. Clearly a BFR can contain only trivial idempotents. In his study of unique factorization in commutative rings with zero divisors, Fletcher [14], [15] introduced the notion of a U-decomposition. For a nonunit $a \in R$, a U decomposition of a is a decomposition $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ where each a_{i}, b_{j} is irreducible, $a_{i}\left(b_{1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{m}\right)$ for $i=1, \ldots, n$ but $b_{i}\left(b_{1} \cdots \hat{b}_{i} \cdots b_{m}\right) \neq\left(b_{1} \cdots \hat{b}_{i} \cdots b_{m}\right)$. If we replace the condition that each a_{i}, b_{j} is irreducible by each a_{i}, b_{j} is a nonunit, we have what we call a U-factorization. We define a ring R to be a U-BFR if, for each
nonzero nonunit $a \in R$, a natural number $N(a)$ exists so that for each U-factorization of $a, a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right), m \leq N(a)$. Among other things, we show that a finite direct product of BFD's is a U-BFR and that any Noetherian ring is a U-BFR.

In Section 5 we consider finite factorization rings. Recall that a commutative ring R is a finite factorization ring, FFR, if each nonzero nonunit $a \in R$ has only a finite number of factorizations up to order and associates. We show that if (R, M) is a finite local ring with elements a and b such that $R a$ and ann (b) are not comparable, then $R[X]$ and $R[[X]]$ are not FFR's, but if (R, M) is an SPIR or $M^{2}=0$, then $R[[X]]$ is an FFR.
2. Inert extensions. Following Cohn [13], we say that an extension $A \subset B$ of commutative rings is a (weakly) inert extension if, whenever $(0 \neq x y \in A) x y \in A$ for nonzero $x, y \in B$, then $x u, u^{-1} y \in A$ for some $u \in U(B)$. Clearly an inert extension is weakly inert, but not conversely, see Remark 2.2(b). Of course, if B is an integral domain, the two notions coincide. For the case of integral domains, factorization properties of inert extensions were investigated in [4]. We extend some of these results to commutative rings with zero divisors.

Proposition 2.1. Let $A \subset B$ be a weakly inert extension of commutative rings. If $0 \neq a \in A$ is irreducible (respectively, strongly irreducible, very strongly irreducible, m-irreducible), then as an element of B, either a is irreducible (respectively, strongly irreducible, very strongly irreducible, m-irreducible) or a is a unit.

Proof. We may suppose that a is not a unit in B. If $a=x y$ in B, then $a=(x u)\left(u^{-1} y\right)$ where $x u, u^{-1} y \in A$ for some $u \in U(B)$. First suppose that a is irreducible in A. Then in $A, a \sim x u$ or $a \sim u^{-1} y$ and hence in $B, a \sim x$ or $a \sim y$. Thus a is irreducible in B. A similar proof holds for the case where a is strongly irreducible in A. Next suppose that a is very strongly irreducible in A. By [10, Theorem 2.5] $x u$ or $u^{-1} y$ is a unit in A and so x or y is a unit in B. Thus by $[\mathbf{1 0}$, Theorem 2.5] again, a is very strongly irreducible in B. A similar proof using [10, Theorem 2.12] shows that if a is m-irreducible in A, then a is also m-irreducible in B.

Remark 2.2. (a) Let $A \subset B$ be a weakly inert extension. Easy examples (for instance, use Proposition 2.3) show that even in the case where B is an integral domain, a can be irreducible in A but be a unit in B. However, if further, $U(B) \cap A=U(A)$, then $0 \neq a \in A$ satisfies any of the irreducibility conditions in $A \Leftrightarrow$ it satisfies the corresponding irreducibility condition in B.
(b) Note that in Proposition 2.1 it is necessary to assume $a \neq 0$. If we take $A=\mathbf{Z}_{2}$ and $B=\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ using the diagonal embedding, then $A \subset B$ is a weakly inert extension. Here $a=0$ is irreducible, strongly irreducible, very strongly irreducible, m-irreducible and prime in A, but none of these in B. Also, note that while $A \subset B$ is a weakly inert extension, it is not an inert extension.
(c) In Proposition 2.1 we cannot add " a is prime." For $\mathbf{Z}_{4} \subset \mathbf{Z}_{4}[u]$, where $u^{2}=0$, is a weakly inert extension (but not an inert extension), however, $\overline{2}$ is prime in \mathbf{Z}_{4} but not in $\mathbf{Z}_{4}[u]$.
(d) Suppose that $A \subset B$ is a weakly inert extension where A is an integral domain. Then $A \subset B$ is an inert extension if and only if B is an integral domain. Hence if $A \subset B$ is an inert extension, we can allow $a=0$ in Proposition 2.1 for a irreducible, strongly irreducible, very strongly irreducible, or prime, but not for a m-irreducible.

Let S be a regular multiplicative set of the commutative ring R. While in general $R \subset R_{S}$ need not be (weakly) inert (even when R is an integral domain, for example, take $R=k\left[X^{2}, X^{3}\right], k$ a field and $S=\left\{u X^{n} \mid u \in k^{\times}, n=0\right.$ or $\left.n \geq 2\right\}$), we next give a case where it is.

Proposition 2.3. Let R be a commutative ring and S a multiplicative set of R generated by regular primes. Then $R \subset R_{S}$ is an inert extension.

Proof. Suppose $x y \in R$ for some nonzero $x, y \in R_{S}$. We can write $x=a / s, y=b / t$ where $a, b \in R, s=p_{1} \cdots p_{n}, t=q_{1} \cdots q_{m}$ where $p_{i}, q_{j} \in S$ are primes and $p_{i} \nmid a$ and $q_{j} \nmid b$ in R. Then $a b=(x y) s t=(x y) p_{1} \cdots p_{n} q_{1} \cdots q_{m}$. Hence $s \mid b$ and $t \mid a$ in R. Take $u=s / t$, a unit in R_{S}. Then $x u, u^{-1} y \in R$. Hence $R \subset R_{S}$ is an inert extension.

However, $R \subset R_{S}$ can be an inert extension without S being generated by primes. For example, let $R=k\left[\left[Y^{2}, Y^{3}\right]\right]$ where k is a field, and let $S=\left\{u Y^{n} \mid u \in U(R), n=0\right.$ or $\left.n \geq 2\right\}$. Then $R \subset R_{S}=k((Y))$ is inert, but S is not generated by primes. It is interesting to note that $R[X] \subset R_{S}[X]$ is not inert.

Proposition 2.4. Let R be a commutative ring and S a regular multiplicative set of R. Suppose that $R \subset R_{S}$ is a weakly inert extension (e.g., S is generated by regular primes (Proposition 2.3)). If R is atomic (respectively, strongly atomic, very strongly atomic, m-atomic, p-atomic), then so is R_{S}. If R satisfies ACCP, so does R_{S}.

Proof. Let r / s be a nonzero nonunit of R_{S}. Suppose that R is atomic. Then we can write $r=a_{1} \cdots a_{n}$ where each a_{i} is an irreducible element of R. Then $r / s=\left(s a_{1} / s^{2}\right)\left(s a_{2} / s\right) \cdots\left(s a_{n} / s\right)$ where each factor is either irreducible or a unit in R_{S} by Proposition 2.1. Hence R_{S} is atomic. A similar proof holds for the other cases (in the case where R is p-atomic we use the fact that if p is a prime in R then p / s is either a prime or unit in R_{S}; here we do not need that $R \subset R_{S}$ is weakly inert). The proof that R satisfies ACCP implies R_{S} satisfies ACCP is identical to the domain case [4, Theorem 2.1].

The notion of a splitting multiplicative set which played such an important role in [4] does not have a good analog for commutative rings with zero divisors. Recall that for an integral domain R, a saturated multiplicative set S of R is a splitting multiplicative set if for each $0 \neq x \in R$ we can write $x=a s$ where $s \in S$ and $a R \cap t R=a t R$ for all $t \in S$. Hence the only elements of S dividing a are units. In the case where S is generated by primes, S is a splitting set \Leftrightarrow for each $0 \neq x \in R$ we can write $x=$ as where $s \in S$ and no prime in S divides a. Now suppose that R is a commutative ring with zero divisors and S is generated by regular primes. Let $p \in S$ be a regular prime. Then $\cap_{n=1}^{\infty} p^{n} R$ is a prime ideal. If $0=\cap_{n=1}^{\infty} p^{n} R$, then R is an integral domain. So suppose $0 \neq \cap_{n=1}^{\infty} p^{n} R$. Let $0 \neq x \in \cap_{n=1}^{\infty} p^{n} R$. Then it is not possible to write $x=a s$ where $s \in S$ and no prime in S divides a since $a \in \cap_{n=1}^{\infty} p^{n} R$.

We end this section with the following result.

Proposition 2.5. Let $\left\{R_{\gamma}\right\}$ be a directed family of commutative rings with identity. Suppose that each $R_{\alpha} \subset R_{\beta}$ is a weakly inert extension. If each R_{γ} is atomic (respectively, strongly atomic, very strongly atomic, m-atomic, p-atomic), then so is $R=\cup R_{\gamma}$.

Proof. Suppose that each R_{γ} is atomic. Let $0 \neq x \in R$ be a nonunit. Now $x \in R_{\alpha}$ for some α. Since R_{α} is atomic, we can write $x=x_{1} \cdots x_{n}$ where each x_{i} is irreducible in R_{α}. It is easily checked that $R_{\alpha} \subset R$ is a weakly inert extension. Hence by Proposition 2.1 each x_{i} is either a unit or irreducible in R. Thus R is atomic. A similar proof holds for the strongly atomic, very strongly atomic and m-atomic cases. Suppose that each R_{α} is p-atomic. Let $0 \neq p \in R_{\alpha}$ be a prime. For $R_{\alpha} \subset R_{\beta}, p$ is irreducible in R_{α} and hence irreducible or a unit in R_{β} (Proposition 2.1). Since R_{β} is p-atomic, p is either a prime or unit in R_{β}. If p is a unit in some R_{β}, then p is a unit in R. So suppose p is not a unit in R. Then p is a prime in each $R_{\beta} \supset R_{\alpha}$. So if $p \mid x y$ in R, then in some $R_{\beta} \supset R_{\alpha}, x, y \in R_{\beta}$ and $p \mid x y$ in R_{β} so $p \mid x$ or $p \mid y$ in R_{β}. Hence, $p \mid x$ or $p \mid y$ in R. Thus p is a prime in R. Hence a proof similar to the atomic case shows that R is p-atomic.
3. Generalized CK rings. Let R be a commutative ring with identity. It is well known that an atomic ring R has every atom prime, i.e., R is p-atomic, if and only if R is a finite direct product of UFD's and special principal ideal rings (SPIR's) [10, Theorem 3.6]. In this section we characterize the atomic rings in which almost all atoms are prime.

Definition 3.1. R is a Cohen-Kaplansky (CK) ring if R is an atomic ring with only a finite number of nonassociate atoms. R is a generalized Cohen-Kaplansky (CK) ring if R is an atomic ring with only finitely many nonassociate atoms that are not prime.

In [1, Theorem 2] it was shown that R is a CK ring if and only if R is a finite direct product of finite local rings, SPIR's and one-dimensional semi-local domains D with the property that, for each nonprincipal maximal ideal M of $D, D / M$ is finite and D_{M} is analytically irreducible. Thus a finite direct product of CK rings is a CK ring. For a
detailed study of CK domains, see [8]. Generalized CK domains were introduced in [5]. Examples of generalized CK domains besides UFD's include $\mathbf{Z}[2 \sqrt{-1}], k+X K[[X]]$ and $k+X K[X]$ where $k \subseteq K$ are finite fields. Unfortunately, the characterization of generalized CK domains given in [5, Theorem 6] is incomplete, as pointed out to us by PicavetL'Hermitte, see $[\mathbf{6}]$ and $[\mathbf{1 6}]$. An integral domain R is a generalized CK domain if and only if (1) \bar{R}, the integral closure of R, is a UFD, (2) $R \subseteq \bar{R}$ is a root extension, (3) $[R: \bar{R}]$ is a principal ideal of \bar{R}, (4) $\bar{R} /[R: \bar{R}]$ is finite and (5) Pic $(R)=0$. Condition (5) may be replaced by $\mathrm{Cl}_{t}(R)=0$ or each height-one prime ideal P of R with $P \not \supset[R: \bar{R}]$ is principal.

Theorem 3.2. R is a generalized CK ring if and only if R is a finite direct product of CK rings and generalized CK domains.

Proof. Suppose that $R=R_{1} \times \cdots \times R_{n}$. A nonzero nonunit a of R is irreducible (prime) $\Leftrightarrow a=\left(u_{1}, \ldots, u_{i-1}, a_{i}, u_{i+1}, \ldots, u_{n}\right)$ where all coordinates $u_{j}, j \neq i$, but one are units and that one nonunit coordinate a_{i} is irreducible (prime) in R_{i} [$\mathbf{1 0}$, Theorem 2.15]. It easily follows that R is a generalized CK ring \Leftrightarrow each R_{i} is. This gives (\Leftarrow).
(\Rightarrow). By [10, Theorem 3.3] an atomic ring is a finite direct product of indecomposable atomic rings. Thus it suffices to show that an indecomposable generalized CK ring is either a CK ring or an integral domain. So let R be an indecomposable generalized CK ring and let $\left\{a_{1}, \ldots, a_{n}\right\}$ be the finite set of nonassociate nonprime atoms of R. Let P be a minimal prime ideal of R. Then since each nonzero element of P is a product of atoms, either P is principal or P is generated by a subset of $\left\{a_{1}, \ldots, a_{n}\right\}$. So all the minimal prime ideals of R are finitely generated. By $[\mathbf{2}$, Theorem $], R$ has only finitely many minimal prime ideals P_{1}, \ldots, P_{m}. Let (p) be a principal prime of R.

Claim. ht $(p) \leq 1$.

Proof. Suppose ht $(p)>1$. Now $Q=\cap_{n=1}^{\infty}\left(p^{n}\right)$ is the unique prime ideal directly below (p) and $p Q=Q$ [7, Corollary 2.3]. Suppose there is a principal prime $(q) \subseteq Q$. Then $(q)_{(p)} \subseteq(p)_{(p)} \Rightarrow(q)_{(p)}=$ $(q)_{(p)}(p)_{(p)} \Rightarrow(q)_{(p)}=0_{(p)}$ by Nakayama's lemma. So Q contains at
most one principal prime ideal. Thus Q is generated by some subset of $\left\{a_{1}, \ldots, a_{n}\right\}$ and possibly a single principal prime; so Q is finitely generated. Thus $p Q_{(p)}=Q_{(p)}$ gives $Q_{(p)}=0_{(p)}$ by Nakayama's lemma. So ht $(p)=1$.

Let M be a maximal ideal of R. Suppose that M contains a nonminimal principal prime ideal (p). Then ht $(p)=1$ so $\cap_{n=1}^{\infty}\left(p^{n}\right)=$ P_{i} for some i and $p P_{i}=P_{i}$. Since P_{i} is finitely generated, $\left(P_{i}\right)_{M}=0_{M}$ by Nakayama's lemma. Thus, R_{M} is an integral domain and M contains a unique minimal prime ideal. Suppose that M contains no nonminimal principal prime ideal. Let $P \subseteq M$ be a prime ideal. Then P is a finite union of principal ideals, each of which is either a heightzero principal prime ideal or an $\left(a_{i}\right)$. The same follows for P_{M} in R_{M}. Hence R_{M} is a local CK ring [$\mathbf{1}$, Theorem 2] and thus R_{M} is a zerodimensional local ring or a one-dimensional local domain. Thus M contains a unique minimal prime and R_{M} is a domain unless M is also minimal. Thus the minimal prime ideals of R are comaximal and hence the minimal prime ideals of $R / \operatorname{nil}(R)$ are comaximal. So $R / \operatorname{nil}(R)$ is a finite direct product of integral domains. Since R is indecomposable, so is $R / \operatorname{nil}(R)$. So $R / \operatorname{nil}(R)$ is an integral domain, i.e., R has a unique minimal prime ideal. If P is also maximal, R is a zero-dimensional local CK ring. If P is not maximal, then R_{M} is a domain for each maximal ideal M; i.e., $P_{M}=0_{M}$ for each maximal ideal M. Hence $P=0$, so R is an integral domain.

Remark 3.3. (a) Note that the proof of Theorem 3.2 gives another proof of the opening statement of this section that a ring R is p-atomic if and only if R is a finite direct product of UFD's and SPIR's.
(b) Since a CK ring R is a finite direct product of local rings and integral domains, each irreducible element of R is actually strongly irreducible. Moreover, using [10, Theorem 3.4] it is easy to characterize the generalized CK rings that are m-atomic or very strongly atomic.
4. U-factorizations, BFR's and U-BFR's. Let R be a commutative ring with identity. Let $a \in R$ be a nonunit, possibly 0 . By a factorization of a we mean $a=a_{1} \cdots a_{n}$ where each $a_{i} \in R$ is a nonunit. Let $\alpha \in\{$ irreducible, strongly irreducible, m-irreducible, very strongly irreducible, prime\}. By an α-factorization of a we mean a factorization
$a=a_{1} \cdots a_{n}$ where each a_{i} is α.
Recall [14] that for $a \in R, U(a)=\{r \in R \mid \exists s \in R$ with $r s a=$ $a\}=\{r \in R \mid r(a)=(a)\}$. A U-factorization of a is a factorization $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ where $a_{i} \in U\left(b_{1} \cdots b_{m}\right)$ for $1 \leq i \leq n$, we allow $\left\{a_{1}, \ldots, a_{n}\right\}$ to be empty and then write $a=()\left(b_{1} \cdots b_{m}\right)$, and $b_{i} \notin U\left(b_{1} \cdots \hat{b}_{i} \cdots b_{m}\right)$, for $1 \leq i \leq m$. We call a_{1}, \ldots, a_{n} the irrelevant factors and b_{1}, \ldots, b_{m} the relevant factors. A U-factorization is called an α - U-factorization if each a_{i}, b_{j} is α. An irreducible- U-factorization of a is called a U-decomposition of a. The notion of a U-decomposition was used by Fletcher $[\mathbf{1 4}, \mathbf{1 5}]$ in his study of unique factorization in rings with zero divisors. Our next lemma is a slight generalization of [14, Proposition 2].

Proposition 4.1. Any factorization of a can be rearranged to $a U$ factorization of a. Hence, any α-factorization of a can be rearranged to an α - U-factorization of a.

Proof. Let $a=a_{1} \cdots a_{n}$ be a factorization of a. If $a_{i} \notin U\left(a_{1} \cdots\right.$ $\left.\hat{a}_{i} \cdots a_{n}\right)$ for each i, then $a=()\left(a_{1} \cdots a_{n}\right)$ is a U-factorization of a. So assume some $a_{i} \in U\left(a_{1} \cdots \hat{a}_{i} \cdots a_{n}\right)$. With a change of notation we can take $i=1$. By induction, after a change of notation, we have $a_{2} \cdots a_{n}=\left(a_{2} \cdots a_{s}\right)\left(a_{s+1} \cdots a_{n}\right)$, a U-factorization of $a_{2} \cdots a_{n}$. We claim that $\left(a_{1} a_{2} \cdots a_{s}\right)\left(a_{s+1} \cdots a_{n}\right)$ is a U-factorization of a. By definition $a_{i} \notin U\left(a_{s+1} \cdots \hat{a}_{i} \cdots a_{n}\right)$ for $s+1 \leq i \leq n$ and $a_{i} \in$ $U\left(a_{s+1} \cdots a_{n}\right)$ for $2 \leq i \leq s$. And $a_{1} \in U\left(a_{2} \cdots a_{n}\right) \Rightarrow a_{1} R a_{2} \cdots a_{n}=$ $R a_{2} \cdots a_{n}=a_{2} \cdots a_{s} R a_{s+1} \cdots a_{n}=a_{2} \cdots a_{s-1} R a_{s}\left(a_{s+1} \cdots a_{n}\right)=$ $a_{2} \cdots a_{s-1} R a_{s+1} \cdots a_{n}=\cdots=R a_{s+1} \cdots a_{n} \Rightarrow a_{1} \in U\left(a_{s+1} \cdots a_{n}\right)$. \square

However, the resulting U-factorization is not necessarily unique. For, let $e=(1,0)$ in $\mathbf{Z} \times \mathbf{Z}$. Then $-e=-e \cdot e=(-e)(e)=(e)(-e)$ are two different U-factorizations derived from the factorization $-e=-e \cdot e$. If $a=a_{1} \cdots a_{n}$ is a factorization of a and $a=()\left(a_{1} \cdots a_{n}\right)$ is a U factorization, then this is the only way to convert $a=a_{1} \cdots a_{n}$ to a U-factorization. Recall that R is présimplifiable if $x y=x \Rightarrow x=0$ or $y \in U(R)$. R is présimplifiable if and only if $U(x)=U(R)$ for each $0 \neq x \in R$, or in the terminology of $[\mathbf{1 5}], R$ is a pseudo-domain. Hence,
R is présimplifiable if and only if for each nonzero nonunit $a \in R$ each factorization $a=a_{1} \cdots a_{n}$ has $a=()\left(a_{1} \cdots a_{n}\right)$ as its unique conversion to a U-factorization. Note that $0=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of $0 \Leftrightarrow b_{1} \cdots b_{m}=0$, but $b_{1} \cdots \hat{b}_{i} \cdots b_{m} \neq 0$ for each $i=1, \ldots, m$. If R is an integral domain, any U-factorization of 0 has the form $0=\left(a_{1} \cdots a_{n}\right)(0)$.

For $a \in R$, put $L(a)=\sup \left\{n \mid a=a_{1} \cdots a_{n}\right.$ is a factorization of $\left.a\right\}$. So (1) $L(a)=0 \Leftrightarrow a$ is a unit, (2) $L(0)=\infty$ and (3) $L(a)<\infty \Rightarrow a$ is a product of irreducibles and then $L(a)=\sup \left\{n \mid a=a_{1} \cdots a_{n}\right.$, each a_{i} is irreducible\}. Note that R is a BFR if and only if $L(a)<\infty$ for each $0 \neq a \in R$.

For a nonunit $a \in R$ put $L_{U}(a)=\sup \left\{m \mid a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)\right.$ is a U-factorization of $a\}$. Note that for a nonunit $a \in R, a=()(a)$, so $L_{U}(a) \geq 1$. For $a \in U(R)$, we define $L_{U}(a)=0$. Since each U factorization of a is a factorization of a, we have $L_{U}(a) \leq L(a)$. We say that a is U-bounded if $L_{U}(a)<\infty$ and that R is a U-BFR if each nonzero element of R is U-bounded (note that we are not assuming that a U-BFR is atomic). Clearly a BFR is a U-BFR, in fact, a U-BFR is a BFR if and only if it is présimplifiable (see Theorem 4.2). Note that $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$ is a U-BFR (for $L_{U}((0,1))=L_{U}((1,0))=1$), but is not a BFR. The following theorem gives several characterizations of BFR's.

Theorem 4.2. For a commutative ring R the following conditions are equivalent.

1. R is a BFR.
2. R is présimplifiable and for $0 \neq a \in R$, there is a fixed bound on the lengths of chains of principal ideals starting at Ra.
3. R is présimplifiable and a U-BFR.
4. For each nonzero nonunit $a \in R$, natural numbers $N_{1}(a)$ and $N_{2}(a)$ exist so that if $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of a, then $n \leq N_{1}(a)$ and $m \leq N_{2}(a)$.
5. There is a function $l: R \rightarrow \mathbf{N}_{0} \cup\{\infty\}$ that satisfies (i) $l(a)=$ $\infty \Leftrightarrow a=0$, (ii) $l(a)=0 \Leftrightarrow a \in U(R)$ and (iii) $l(a b) \geq l(a)+l(b)$ for $a, b \in R$.

Proof. (1) \Rightarrow (2). Clearly a BFR is présimplifiable. If $R a=R a_{1} \subsetneq$ $\cdots \subsetneq R a_{n} \neq R$ is a proper ascending chain of principal ideals, then each $a_{i}=r_{i} a_{i+1}$ where r_{i} is a nonunit. Hence $a=a_{1}=r_{1} a_{2}=r_{1} r_{2} a_{3}=$ $\cdots=r_{1} \cdots r_{n-1} a_{n}$. So $n \leq L(a)<\infty$.
$(2) \Rightarrow(3)$. Let a be a nonzero nonunit of R. If $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of a, then $R a=R b_{1} \cdots b_{m} \subsetneq R b_{1} \cdots b_{m-1} \subsetneq \cdots \subsetneq$ $R b_{1} b_{2} \subsetneq R b_{1}$. Thus $L_{U}(a)<\infty$.
$(3) \Rightarrow(4)$. Let a be a nonzero nonunit of R. Since R is présimplifiable, a U-factorization of a has the form $a=()\left(b_{1} \cdots b_{m}\right)$. Hence we can take $N_{1}(a)=0$ and $N_{2}(a)=L_{U}(a)$.
$(4) \Rightarrow(1)$. Let a be a nonzero nonunit of R. Let $a=a_{1} \cdots a_{n}$ be a factorization of a. Then $a=a_{1} \cdots a_{n}$ can be rearranged to a U factorization, say $a=\left(a_{s_{1}} \cdots a_{s_{i}}\right)\left(a_{s_{i+1}} \cdots a_{s_{n}}\right)$ is a U-factorization of a. Then $n=i+(n-i) \leq N_{1}(a)+N_{2}(a)$. Hence $L(a) \leq N_{1}(a)+N_{2}(a)$.
$(1) \Rightarrow(5)$. Take $l(a)=L(a)$.
$(5) \Rightarrow(1)$. Let a be a nonzero nonunit of R, and let $a=a_{1} \cdots a_{n}$ be a factorization of a. Then $l(a)=l\left(a_{1} \cdots a_{n}\right) \geq l\left(a_{1}\right)+\cdots+l\left(a_{n}\right) \geq$ $1+\cdots+1=n$. Hence $L(a) \leq l(a)<\infty$.

Concerning (4) of Theorem 4.2, note that R is présimplifiable if and only if for each nonzero nonunit $a \in R$ a natural number $N_{1}(a)$ exists so that if $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of a, then $n \leq N_{1}(a)$.

Theorem 4.3. Let R be a commutative ring and S a regular multiplicative set of R such that $R \subset R_{S}$ is weakly inert. If R is a BFR , then R_{S} is a BFR.

Proof. Suppose R_{S} is not a BFR. Let $a \in R_{S}$ be a nonzero nonunit with $L(a)=\infty$. After suitable multiplication by an element of S we can assume $a \in R$.

Suppose we have a factorization $a=x_{1} \cdots x_{n}$ of a in R_{S}. Since $R \subset R_{S}$ is weakly inert, we can write $a=\left(x_{1} u_{1}\right)\left(x_{2} \cdots x_{n} u_{1}^{-1}\right)$ where $x_{1} u_{1}, x_{2} \cdots x_{n} u_{1}^{-1} \in R$ and $u_{1} \in U\left(R_{S}\right)$. Now $x_{2} \cdots x_{n} u_{1}^{-1}=$ $x_{2}\left(x_{3} \cdots x_{n} u_{1}^{-1}\right)$ so there is a $u_{2} \in U\left(R_{S}\right)$ with $x_{2} u_{2} \in R$ and $x_{3} \cdots x_{n} u_{1}^{-1} u_{2}^{-1} \in R$. Continuing, there are units $u_{1}, \ldots, u_{n-1} \in R_{S}$
with $x_{1} u_{1}, \ldots, x_{n-1} u_{n-1}, x_{n} u_{1}^{-1} \cdots u_{n-1}^{-1} \in R$. Hence $a=\left(x_{1} u_{1}\right)\left(x_{2} u_{2}\right)$ $\cdots\left(x_{n-1} u_{n-1}\right)\left(x_{n} u_{1}^{-1} \cdots u_{n-1}^{-1}\right)$ is a factorization of a in R of length n. Hence, $L(a)=\infty$ in R, a contradiction.

The following proposition uses the functions L and L_{U} to characterize two forms of irreducibility.

Proposition 4.4. Let $a \in R, R$ a commutative ring with identity.

1. a is irreducible $\Leftrightarrow L_{U}(a)=1$.
2. For $a \neq 0, a$ is very strongly irreducible $\Leftrightarrow L(a)=1$.

Proof. (1) (\Leftarrow). Suppose $L_{U}(a)=1$. Let $a=b c$ where b and c are nonunits. By Proposition 4.1, we get the following possible U factorizations: $a=()(b c), a=(b)(c)$ or $a=(c)(b)$. Since $L_{U}(a)=1$, the first situation cannot occur. So $a=(b)(c)$ which implies $(a)=(c)$ or $a=(c)(b)$ which implies $(a)=(b)$. So a is irreducible.
(\Rightarrow). Assume that a is irreducible. Let $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a. Hence $(a)=\left(b_{1} \cdots b_{m}\right)=\left(b_{1}\right) \cdots\left(b_{m}\right)$, so say $(a)=\left(b_{1}\right)$. Hence, if $m>1,(a)=\left(b_{1} \cdots b_{m}\right) \subsetneq\left(b_{1} \cdots b_{m-1}\right) \subseteq\left(b_{1}\right)=$ (a), a contradiction.
(2) For $a \neq 0, L(a)=1 \Leftrightarrow a=b c$ implies b or $c \in U(R) \Leftrightarrow a$ is very strongly irreducible.

We next wish to show that for R atomic and $a \in R, L_{U}(a)=\sup \{m \mid$ $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-decomposition of $\left.a\right\}$. We need the following lemma.

Lemma 4.5. Let $a \in R$ be a nonunit, and let $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a.

1. If $a_{i}=a_{i}^{\prime} a_{i}^{\prime \prime}$ with $a_{i}^{\prime}, a_{i}^{\prime \prime}$ nonunits, then $a=\left(a_{1} \cdots a_{i-1} a_{i}^{\prime} a_{i}^{\prime \prime} a_{i+1} \cdots\right.$ $\left.a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of a.
2. If $b_{i}=b_{i}^{\prime} b_{i}^{\prime \prime}$ with $b_{i}^{\prime}, b_{i}^{\prime \prime}$ nonunits, then at least one of
(a) $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{i-1} b_{i}^{\prime} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$
(b) $a=\left(a_{1} \cdots a_{n} b_{i}^{\prime}\right)\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$
(c) $a=\left(a_{1} \cdots a_{n} b_{i}^{\prime \prime}\right)\left(b_{1} \cdots b_{i-1} b_{i}^{\prime} b_{i+1} \cdots b_{m}\right)$
is a U-factorization of a.
3. For $i<j, a=\left(a_{1} \cdots \hat{a}_{i} \cdots \hat{a}_{j} \cdots a_{n}\left(a_{i} a_{j}\right)\right)\left(b_{1} \cdots b_{m}\right)$ and
$a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots \hat{b}_{i} \cdots \hat{b}_{j} \cdots b_{m}\left(b_{i} b_{j}\right)\right)$ are U-factorizations of a. Hence $a=\left(\left(a_{1} \cdots a_{n}\right)\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization of a.

Proof. (1) $a_{i}\left(b_{1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{m}\right)$ and $c \mid a_{i} \Rightarrow c\left(b_{1} \cdots b_{m}\right)=$ $\left(b_{1} \cdots b_{m}\right)$.
(2) Suppose that the decomposition in 4.5 (2a) is not a U-factorization.

Hence $b_{i}^{\prime} \in U\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$ or $b_{i}^{\prime \prime} \in U\left(b_{1} \cdots b_{i-1} b_{i}^{\prime} b_{i+1} \cdots b_{m}\right)$. Assume the former; so $b_{i}^{\prime}\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1}\right.$ $\left.\cdots b_{m}\right)$. Hence $\left(b_{1} \cdots b_{i-1} b_{i} b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$. So $a_{i}\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)=a_{i}\left(b_{1} \cdots b_{i-1} b_{i} b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i}\right.$ - $\left.b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$. Therefore $a=\left(a_{1} \cdots a_{n} b_{i}^{\prime}\right)$ $\cdot\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)$ is a U-factorization of a unless $b_{i}^{\prime \prime}\left(b_{1} \cdots b_{i-1}\right.$. $\left.b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i+1} \cdots b_{m}\right)$. But then $\left(b_{1} \cdots b_{i-1} b_{i+1} \cdots b_{m}\right)=$ $\left(b_{1} \cdots b_{i-1} b_{i}^{\prime \prime} b_{i+1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{i-1} b_{i} b_{i+1} \cdots b_{m}\right)$, a contradiction.
(3) Clear.

Theorem 4.6. Let R be a commutative ring with identity. Suppose that R is atomic, respectively strongly atomic, very strongly atomic, m atomic, p-atomic. Let a be a nonunit of R. Then $L_{U}(a)=\sup \{t \mid a=$ $\left(a_{1} \cdots a_{s}\right)\left(b_{1} \cdots b_{t}\right)$ is an irreducible, respectively strongly irreducible, very strongly irreducible, m-irreducible, prime- U-factorization of a\}.

Proof. We do the atomic case; the other cases are similar. Since each U-decomposition of a is a U-factorization of a, we have $L_{U}(a) \geq$ $\sup \left\{t \mid a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{t}\right)\right.$ is a U-decomposition of $\left.a\right\}$. Let $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a. After factoring each a_{i}, b_{j} into irreducibles, repeated applications of Lemma 4.5 give a U-decomposition $a=\left(c_{1} \cdots c_{s}\right)\left(d_{1} \cdots d_{t}\right)$ where $t \geq m$. Hence $\sup \left\{t \mid a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{t}\right)\right.$ is a U-decomposition of $\left.a\right\} \geq L_{U}(a)$, and so we have equality.

Corollary 4.7. Suppose that R is atomic. Then R is a U-BFR if
and only if for each nonzero nonunit $a \in R$ a natural number $N(a)$ exists such that, for each U-decomposition $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ of $a, m \leq N(a)$.

We next consider direct products of rings.

Lemma 4.8. Let R_{1}, \ldots, R_{n} be commutative rings, and let $R=$ $R_{1} \times \cdots \times R_{n}$.

1. Let $a \in R$ be a nonunit, and let $a=\left(a_{1} \cdots a_{s}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a. Then a has a U-factorization $a=\left(a_{1}^{\prime} \cdots a_{s^{\prime}}^{\prime}\right)\left(b_{1}^{\prime}\right.$ $\cdots b_{m^{\prime}}^{\prime}$) where $m n \geq m^{\prime} \geq m$ and each $a_{i}^{\prime}, b_{j}^{\prime} \in R_{1} \times \cdots \times R_{n}$ has all coordinates except one equal to $1_{R_{k}}$, for the appropriate R_{k}.
2. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in R_{1} \times \cdots \times R_{n}$. Then $L_{U}(a) \leq L_{U}\left(a_{1}\right)+$ $\cdots+L_{U}\left(a_{n}\right)$.

Proof. For $c=\left(c_{1}, \ldots, c_{n}\right) \in R_{1} \times \cdots \times R_{n}$, put $c^{(i)}=\left(1, \ldots, 1, c_{i}\right.$, $1, \ldots, 1)$. So $c=c^{(1)} \cdots c^{(n)}$, each $c^{(i)}$ has at most one coefficient a nonunit, and if c is a nonunit at least one $c^{(i)}$ is a nonunit. In the U-factorization $a=\left(a_{1} \cdots a_{s}\right)\left(b_{1} \cdots b_{m}\right)$, factor each a_{i}, b_{j} into the $a_{i}^{(k)}, b_{j}^{(k)}$, s. By Lemma 4.5, a has a U-factorization $a=$ $\left(a_{1}^{\prime} \cdots a_{s^{\prime}}^{\prime}\right)\left(b_{1}^{\prime} \cdots b_{m^{\prime}}^{\prime}\right)$ where each factor has all coordinates but one equal to 1 and that coordinate is a nonunit and $m \leq m^{\prime} \leq m n$.
(2) If a is a unit, the result is obvious. So assume that a is a nonunit. Let $a=\left(c_{1} \cdots c_{s}\right)\left(d_{1} \cdots d_{t}\right)$ be a U-factorization of a. By (1), there is a U-factorization $a=\left(c_{1}^{\prime} \cdots c_{s^{\prime}}^{\prime}\right)\left(d_{1}^{\prime} \cdots d_{t^{\prime}}^{\prime}\right)$ where $t^{\prime} \geq t$ and each $c_{i}^{\prime}, d_{j}^{\prime}$ has exactly one coordinate not equal to 1 . Let N_{i} be the number of d_{j}^{\prime} 's that have a nonunit in the i th coordinate. So $N_{1}+\cdots+N_{n}=t^{\prime}$. If a_{i} is a unit, then $N_{i}=0=L_{U}\left(a_{i}\right)$. So suppose a_{i} is a nonunit. Now $a_{i}=c_{1 i}^{\prime} \cdots c_{s^{\prime} i}^{\prime} d_{1 i}^{\prime} \cdots d_{t^{\prime} i}^{\prime}$ where $c_{j i}^{\prime}$ and $d_{j i}^{\prime}$ are the i th coordinates of c_{j}^{\prime} and d_{j}^{\prime}, respectively. After removing the $c_{j i}^{\prime}$'s and $d_{j i}^{\prime}$'s that are units, we get a U-factorization $a_{i}=\left(c_{j_{1} i}^{\prime} \cdots c_{j_{s^{\prime \prime}} i}^{\prime}\right)\left(d_{k_{1} i}^{\prime} \cdots d_{k_{N_{i}} i}^{\prime}\right)$. Hence $N_{i} \leq L_{U}\left(a_{i}\right)$. So $t \leq t^{\prime}=N_{1}+\cdots+N_{n} \leq L_{U}\left(a_{1}\right)+\cdots+L_{U}\left(a_{n}\right)$. Hence $L_{U}(a) \leq L_{U}\left(a_{1}\right)+\cdots+L_{U}\left(a_{n}\right)$.

Theorem 4.9. Let R_{1}, \ldots, R_{n} be commutative rings, $n>1$, and let $R=R_{1} \times \cdots \times R_{n}$. Then R is a $U-\mathrm{BFR} \Leftrightarrow$ each R_{i} is a $U-\mathrm{BFR}$ and
$0_{R_{i}}$ is U-bounded. Hence, 0_{R} is U-bounded.

Proof. (\Rightarrow). Let $a \in R_{i}$ be a nonunit, possibly 0 , and let $a=$ $\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a. For $c \in R_{i}$, put $\tilde{c}=(1, \ldots, 1, c, 1, \ldots, 1) \in R_{1} \times \cdots \times R_{n}$ where each coordinate is 1 except for the i th coordinate which is c. Now $\tilde{a}=\left(\tilde{a}_{1} \cdots \tilde{a}_{n}\right)\left(\tilde{b}_{1} \cdots \tilde{b}_{m}\right)$ is easily seen to be a U-factorization of \tilde{a}. Hence, $m \leq L_{U}(\tilde{a})$. So R_{i} is a U-BFR and $0_{R_{i}}$ is U-bounded.
(\Leftarrow). This follows from Lemma 4.8(2).
The last statement also follows from Lemma 4.8(2).

Corollary 4.10. Let R be a U-BFR. If R is not indecomposable, then 0 is U-bounded.

Proof. If R is not indecomposable, we can decompose R into a direct product $R=R_{1} \times R_{2}$. By Theorem 4.9, 0_{R} is U-bounded.

Corollary 4.11. A finite direct product of BFD's is a U-BFR.

Proof. Let D_{1}, \ldots, D_{n} be BFD's. Since each D_{i} is an integral domain, $L_{U}\left(0_{D_{i}}\right)=1$ (Proposition 4.4 or note that in an integral domain a U factorization of 0 has the form $\left.0=\left(a_{1} \cdots a_{n}\right)(0)\right)$. By Theorem 4.9, $D_{1} \times \cdots \times D_{n}$ is a U-BFR.

However, as the next example shows, in an indecomposable U-BFR $R, 0$ need not be U-bounded. This example also shows that a finite direct product of BFR's need not be a U-BFR.

Example 4.12 (A quasilocal BFR in which 0 is not U-bounded). Take $R=k[[X, Y]] \oplus N$ (idealization) where k is a field and $N=$ $\oplus\{k[[X, Y]] /(p) \mid(p)$ is a height-one prime ideal of $k[[X, Y]]\}$. Now $\cap_{n=1}^{\infty}((X, Y) \oplus N)^{n}=0$, so R is a quasilocal BFR. Let $\left\{p_{i}\right\}$ be a countable set of nonassociate nonzero primes of $k[[X, Y]]$, and let $e_{p_{i}}=$ $1_{k[[X, Y]] /\left(p_{i}\right)}$ in N. Then $(0,0)=()\left(\left(p_{1}, 0\right) \cdots\left(p_{n}, 0\right)\left(0, e_{p_{1}}+\cdots+e_{p_{n}}\right)\right)$ is a U-factorization of $(0,0)$. Also, by Theorem $4.9, R \times R$ is not a U BFR.

Theorem 4.13. Let R be a U-BFR. Then R is a finite direct product of indecomposable U-BFR's.

Proof. We may assume that R is not indecomposable, so let $R=R_{1} \times$ R_{2}. Let $a=(1,0) \in R_{1} \times R_{2}$. Suppose $R_{2}=S_{1} \times \cdots \times S_{t}$, and let $f_{i}=$ $(1, \ldots, 1,0,1, \ldots, 1) \in S_{1} \times \cdots \times S_{t}$ where each coordinate is 1 except for the i th coordinate which is $0_{s_{i}}$. Then $a=()\left(\left(1, f_{1}\right) \cdots\left(1, f_{t}\right)\right)$ is a U-factorization of a. Hence $t \leq L_{U}(a)$. Thus R_{2} is a finite direct product of indecomposable rings. Likewise, R_{1} is a finite direct product of indecomposable rings. By Theorem 4.9, each of the indecomposable factors is a U-BFR.

The proof of Theorem 4.13 yields the following result.

Corollary 4.14. Let R be a commutative ring with $L_{U}(0)<\infty$. Then R is a finite direct product of indecomposable rings $R_{i}, R=$ $R_{1} \times \cdots \times R_{n}$, with each $L_{U}\left(0_{R_{i}}\right)<\infty$.

Proof. Let $R=S_{1} \times \cdots \times S_{t}$. In the notation of the proof of Theorem 4.13, note that $0=()\left(f_{1} \cdots f_{t}\right)$ is a U-factorization of 0 in R. Hence $t \leq L_{U}(0)$. So R is a finite direct product of indecomposable rings, say $R=R_{1} \times \cdots \times R_{n}$ where each R_{i} is indecomposable. Suppose in $R_{i}, 0_{R_{i}}=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ is a U-factorization. Then $0_{R}=\left(\left(a_{1}, 0, \ldots, 0\right) \cdots\left(a_{n}, 0, \ldots, 0\right)\right)\left(\left(b_{1}, 0, \ldots, 0\right) \cdots\left(b_{m}, 0, \ldots, 0\right)\right)$ is a U-factorization of 0_{R} in R. Hence, $m \leq L_{U}\left(0_{R}\right)$. Thus $L_{U}\left(0_{R_{i}}\right) \leq$ $L_{U}\left(0_{R}\right)$.

We next show that any Noetherian ring is a U-BFR. We need two lemmas.

Lemma 4.15. Let R be a commutative ring, $a \in R$, and B an ideal of R with $B \subseteq(a)$. Then for $a+B \in R / B, L_{U}(a+B) \geq L_{U}(a)$.

Proof. If a is a unit, then $L_{U}(a+B)=L_{U}(a)=0$. So assume a is a nonunit. Let $a=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of a. Then in $R / B, \bar{a}=\bar{a}_{1} \cdots \bar{a}_{n} \bar{b}_{1} \cdots \bar{b}_{m}$ and each factor is a
nonunit. Now $a_{i}\left(b_{1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{m}\right) \Rightarrow \bar{a}_{i}\left(\bar{b}_{1} \cdots \bar{b}_{m}\right)=\left(\bar{b}_{1} \cdots \bar{b}_{m}\right)$ and $\bar{b}_{i}\left(\bar{b}_{1} \cdots \hat{\bar{b}}_{i} \cdots \bar{b}_{m}\right)=\left(\bar{b}_{1} \cdots \hat{\bar{b}}_{i} \cdots \bar{b}_{m}\right) \Rightarrow\left(b_{1} \cdots b_{m}\right)=\left(b_{1} \cdots b_{m}\right)+$ $B=\left(b_{1} \cdots \hat{b}_{i} \cdots b_{m}\right)+B=\left(b_{1} \cdots \hat{b}_{i} \cdots b_{m}\right)$, a contradiction. So $\bar{a}=\left(\bar{a}_{1} \cdots \bar{a}_{n}\right)\left(\bar{b}_{1} \cdots \bar{b}_{m}\right)$ is a U-factorization of $\bar{a}=a+B$. Hence, $L_{U}(a+B) \geq L_{U}(a)$.

Lemma 4.16. Let R be a commutative ring and A an ideal of R with $A=Q_{1} \cap \cdots \cap Q_{n}$ where Q_{i} is P_{i}-primary. Suppose that $P_{i}^{s_{i}} \subseteq Q_{i}$. Let $t_{1}, \ldots, t_{m} \in R$ with $t_{1} \cdots t_{m} \in A$. Then some subproduct of $t_{1} \cdots t_{m}$ of length at most $s_{1}+\cdots+s_{n}$ lies in A.

Proof. Let $t_{i_{1}}, \ldots, t_{i_{s}}$ be the t_{j} 's that lie in P_{i}. If $s \geq s_{i}$, then $t_{i_{1}} \cdots t_{i_{s_{i}}} \in P_{i}^{s_{i}} \subseteq Q_{i}$. So suppose $s<s_{i}$. Let $\bar{t}_{i}=\prod\left\{t_{j} \mid j \notin\right.$ $\left.\left\{i_{1}, \ldots, i_{s}\right\}\right\}$, so $\bar{t}_{i} \notin P_{i}$ and $t_{i_{1}} \cdots t_{i_{s}} \bar{t}_{i}=t_{1} \cdots t_{m} \in Q_{i}$. Since Q_{i} is P_{i}-primary, $t_{i_{1}} \cdots t_{i_{s}} \in Q_{i}$. So in either case we have a subproduct $t_{i_{1}} \cdots t_{i_{k_{i}}}$ of $t_{1} \cdots t_{m}$ of length $k_{i} \leq s_{i}$ that lies in Q_{i}. Let $t=\prod\left\{t_{j} \mid\right.$ $\left.j \in \cup_{i=1}^{n}\left\{i_{1}, \ldots, i_{k_{i}}\right\}\right\}$. Then t is a subproduct of $t_{1} \cdots t_{m}$ of length at most $k_{1}+\cdots+k_{m} \leq s_{1}+\cdots+s_{n}$ which lies in $Q_{1} \cap \cdots \cap Q_{n}=A$.

Theorem 4.17. Let R be a Noetherian ring. Then R is a U-BFR with $0_{R} U$-bounded.

Proof. It suffices to prove that $L_{U}(0)<\infty$. For then if $a \in R$ is a nonunit, Lemma 4.15 gives that $L_{U}(a) \leq L_{U}(a+(a))=L_{U}\left(0_{R /(a)}\right)<$ $\infty\left(\right.$ since $R /(a)$ is Noetherian). Let $0=Q_{1} \cap \cdots \cap Q_{n}$ be a primary decomposition of 0 where Q_{i} is P_{i}-primary and $P_{i}^{s_{i}} \subseteq Q_{i}$. Let $0=\left(a_{1} \cdots a_{n}\right)\left(b_{1} \cdots b_{m}\right)$ be a U-factorization of 0 . Then $b_{1} \cdots b_{m}=0$ but $b_{1} \cdots \hat{b}_{i} \cdots b_{m} \neq 0$ for $i=1, \ldots, m$. Suppose that $m>s_{1}+\cdots+s_{n}$. Then by Lemma 4.16 some proper subproduct of $b_{1} \cdots b_{m}$ is 0 , a contradiction. Hence $L_{U}(0) \leq s_{1}+\cdots+s_{n}$.

The proof of Theorem 4.17 shows that if R is a commutative ring in which 0 has a strong primary decomposition (i.e., $0=Q_{1} \cap \cdots \cap Q_{n}$ where Q_{i} is P_{i}-primary and $P_{i}^{s_{i}} \subseteq Q_{i}$ for some $s_{i} \geq 1$), then 0_{R} is U bounded and that a strongly Laskerian ring (or more generally, a ring in which every principal ideal has a strong primary decomposition) is a U-BFR. Thus, Example 4.12 was chosen as a BFR in which 0 does
not have a primary decomposition. Hence, while every Noetherian ring R is a U - BFR, R is a $\mathrm{BFR} \Leftrightarrow R$ is présimplifiable [10, Theorem 3.9]. We next give an example of a Noetherian U-BFR which is not a finite direct product of BFR's.

Example 4.18 (A Noetherian U-BFR that is not a finite direct product of BFR's.) Let $R=k[x, y]=k[X, Y] /(X Y)$ where k is a field. Now R is not présimplifiable since $x(1+y)=x \neq 0$, but $1+y$ is not a unit. Hence R is not a BFR. Since R is indecomposable, R is not a finite direct product of BFR's.
5. Finite factorization rings. Let R be a commutative ring with identity. Recall from $[\mathbf{1 0}]$ that R is a finite factorization ring $(F F R)$ if every nonzero nonunit of R has only a finite number of factorizations up to order and associates; R is a weak finite factorization ring (WFFR) if every nonzero nonunit of R has only a finite number of nonassociate divisors, and R is an atomic idf-ring if R is atomic and each nonzero element of R has at most a finite number of nonassociate irreducible divisors. Clearly if R is an FFR, then R is a WFFR, and if R is a WFFR then R is an atomic idf-ring. But $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ is a WFFR that is not an FFR, consider $(0,1)=(0,1)^{n}$, and $\mathbf{Z}_{(2)} \times \mathbf{Z}_{(2)}$ is an atomic idf-ring that is not a WFFR, consider $(0,1)=(0,1)(2,1)^{n}$. In $[\mathbf{1 0}$, Proposition 6.6], it was shown that the following conditions on a commutative ring R are equivalent: (1) R is an FFR, (2) R is a BFR and WFFR, (3) R is présimplifiable and a WFFR, (4) R is a BFR and an atomic idf-ring, and (5) R is présimplifiable and an atomic idf-ring. In [11, Theorem 1.7] we proved that if $R[X]$ is an atomic idf-ring or $R[[X]]$ is a WFFR, then either R is an integral domain or R is a finite local ring. For a finite local ring $R, R[X]$ and $R[[X]]$ are both BFR's. So $R[X]$ (respectively, $R[[X]])$ is an FFR if and only if $R[X]$ (respectively, $R[[X]])$ is an atomic idf-ring. We give a partial answer to the question of when $R[X]$ or $R[[X]]$ is an FFR for R a finite local ring.

Theorem 5.1. Let (R, M) be a finite local ring with $a, b \in M$ such that R a and ann (b) are not comparable. Then $R[X]$ and $R[[X]]$ are not FFR's.

Proof. Since $R a \not \subset$ ann $(b), a b \neq 0$. Choose $c \in \operatorname{ann}(b)-R a$. Then for $1 \leq n<m, 0 \neq a b=\left(a+c X^{n}\right) b=\left(a+c X^{m}\right) b$. Suppose $a+c X^{n} \sim a+c X^{m}$. So since $R[X]$ and $R[[X]]$ are both présimplifiable for R a finite local ring, $\left(a+c X^{n}\right) l(X)=a+c X^{m}$ where $l(X)$ is a unit of $R[X]$ or $R[[X]]$. In either case, $l(0)$ is a unit of R. Then $a(l(X)-1)=c X^{n}\left(-l(X)+X^{m-n}\right)$. Hence, $c \in R a$, a contradiction. -

Thus for $R=k\left[X_{1}, X_{2}, \ldots, X_{n}\right] /\left(X_{1}, \ldots, X_{n}\right)^{m}$ where k is a finite field and $n \geq 2$ and $m \geq 3, R[X]$ and $R[[X]]$ are not FFR's since $R \bar{X}_{1}$ and ann $\left(\bar{X}_{2}\right)$ are not comparable. On the positive side, we show that it is possible for $R[[X]]$ to be an FFR for some finite local rings R. We need the following lemma. Recall that for a polynomial $f \in R[X]$ or power series $f \in R[[X]], A_{f}$ is the ideal of R generated by the coefficients of f.

Lemma 5.2 (Weierstrauss preparation theorem) [12]. Let (R, M) be a complete local ring. Let $f \in R[[X]]$ with $A_{f}=R$. Suppose n is the degree of the first power of X whose coefficient is a unit. Then $f=p u$ where $p=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}+X^{n}$ with each $a_{i} \in M$ and $u \in R[[X]]$ is a unit.

Theorem 5.3. Let (R, M) be a finite local ring. If either R is an SPIR or $M^{2}=0$, then $R[[X]]$ is an FFR.

Proof. Let $f \in R[[X]]$ be irreducible. Suppose that $A_{f}=R$. So, by Lemma 5.2, $f=p u$ where $p=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}+X^{n}$ where $a_{0}, \ldots, a_{n-1} \in M$ and n is the degree of the first power of X whose coefficient is a unit in R and $u \in U(R[[X]])$. So if $a_{0}=0, f \sim X$. Suppose $A_{f} \neq R$. If $M^{2}=0, f$ is irreducible $\Leftrightarrow f(0)=a_{0} \neq 0$ and if R is an SPIR, f is irreducible $\Leftrightarrow f \sim q$ where $M=(q)$.
(1) Case $M^{2}=0$. Let $f \in R[[X]]$ be a nonzero nonunit. First suppose $A_{f}=R$. Since $g \mid f \Rightarrow A_{g}=R$, a factorization of f into irreducibles has the form $X^{s} p_{1} \cdots p_{t} u$ where $0 \leq s, 0 \leq t$, each p_{i} is a polynomial (irreducible as a power series) with leading coefficient 1, and $u \in U(R[[X]])$. Note that $n=s+\operatorname{deg} p_{1}+\cdots+\operatorname{deg} p_{t}$ is the order of the first term of f having a unit coefficient. Hence, for each $i, \operatorname{deg} p_{i} \leq n$.

However, the number of polynomials in $R[X]$ of degree $\leq n$ is finite, so the number of nonassociate irreducible factors of f is also finite. Next suppose that $A_{f} \subseteq M$. Then $f=X^{s} p_{1} \cdots p_{t} g$, where $0 \leq s, p_{1}, \ldots, p_{t}$ are as above and $g \in R[[X]]$ is irreducible with $0 \neq g(0) \in M$ and $A_{g} \subseteq M$. Now $p_{1} \cdots p_{t}=b_{0}+b_{1} X+\cdots+b_{n-1} X^{n-1}+X^{n}$ where each $b_{i} \in M$ and $n=\operatorname{deg} p_{1}+\cdots+\operatorname{deg} p_{t}$. So $f=X^{s} p_{1} \cdots p_{t} g=X^{s+n} g$. Hence $g=X^{-s-n} f$ is uniquely determined. Hence R is an FFR.
(2) Case $(R,(q))$ is an SPIR. Let $f \in R[[X]]$ be a nonzero nonunit. So $f=q^{i} f^{\prime}$ where $A_{f^{\prime}}=R$. Let i_{0} be the order of the first unit coefficient of f^{\prime}. So if $f^{\prime \prime} \in R[[X]]$ is irreducible with $A_{f^{\prime \prime}}=R$ and $f^{\prime \prime} \mid f$, then the first unit coefficient of $f^{\prime \prime}$ has order $n \leq i_{0}$. So $f^{\prime \prime} \sim a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}+X^{n}$ where $a_{0}, \ldots, a_{n-1} \in M$ and $n \leq i_{0}$. But there are only finitely many such polynomials.

REFERENCES

1. D.D. Anderson, Some finiteness conditions on a commutative ring, Houston J. Math. 4 (1978), 289-299.
2. -, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), 13-14.
3. D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
4. ——, Factorization in integral domains, II, J. Algebra 152 (1992), 78-93.
5. - Atomic domains in which almost all atoms are prime, Comm. Algebra 20 (1992), 1447-1462.
6. - Atomic domains in which almost all atoms are prime: Corrigendum and addendum, in preparation.
7. D.D. Anderson, J. Matijevic and W. Nichols, The Krull intersection theorem II, Pacific J. Math. 66 (1976), 15-22.
8. D.D. Anderson and J.L. Mott, Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), 17-41.
9. D.D. Anderson and B. Mullins, Finite factorization domains, Proc. Amer. Math. Soc. 124 (1996), 389-396.
10. D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26 (1996), 439-480.
11. -, Factorization in commutative rings with zero divisors, II, Factorization in integral domains, Lecture Notes in Pure and Appl. Math. 189, Marcel Dekker, New York, 1997, 197-219.
12. N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, MA, 1972.
13. P.M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264.
14. C.R. Fletcher, Unique factorization rings, Proc. Cambridge Philos. Soc. 65 (1969), 579-583.
15. - The structure of unique factorization rings, Proc. Cambridge Philos. Soc. 67 (1970), 535-540.
16. M. Picavet-L'Hermitte, Factorization in some orders with a PID as integral closure, preprint.

Matematik Bölümü, Fen Fakültesi, Yildız Teknik Üniversitesi, 80270, Sisli, Istanbul, Turkey
E-mail address: agar@yildiz.edu.tr
Department of Mathematics, The University of Iowa, Iowa City, IA 52242
E-mail address: dan-anderson@uiowa.edu
Department of Mathematics, University of Southern Maine, Portland, ME 04103
E-mail address: sylviavl@usm.maine.edu

[^0]: Received by the editors on February 10, 1999, and in revised form on October 16, 1999.

