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ON THE COMBINATION OF ROTHE’S METHOD
AND BOUNDARY INTEGRAL EQUATIONS FOR

THE NONSTATIONARY STOKES EQUATION

ROMAN CHAPKO

ABSTRACT. We consider the exterior initial boundary
value problem for the Stokes equation with Dirichlet boundary
condition in R2. Using Rothe’s method, the nonstationary
problem is reduced to a system of boundary value problems
for the Stokes resolvent equations. By a special approach
we obtain a system of boundary integral equations and use a
trigonometric quadrature method for the numerical solution.
Numerical examples are presented.

1. Introduction and Rothe’s method. The boundary integral
equation method for the solution of boundary value problems in vari-
ous applied sciences has been successfully applied for a long time. In
the case of nonstationary problems, the use of this method is possible
in different variants [2]. In one approach the initial boundary value
problem can be directly reduced to time-dependent boundary integral
equations by potential theory or by Green’s formula [8], [9], [13]. An-
other method consists of having a preliminary semi-discretization of the
time-dependent problem and reducing it to boundary value problems
for elliptic equations, for example by an integral transformation. Then
the integral equation method can be used for the time-independent
problems [2], [3], [7]. Sometimes the combination of Laplace transform
and boundary integral equations is used. But in this case some essen-
tial difficulties arise during numerical calculation of the inverse Laplace
transformation (see [2]).

One of the possibilities for the semi-discretization consists of using
Rothe’s method with respect to the time variable. This method is
also known as backwards Euler procedure or horizontal line method
and is applied both to parabolic and hyperbolic problems. As a
result one obtains boundary value problems for the elliptic equation
with a recursive righthand side which contains solutions on previous
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time levels. Then a full discretization can be realized by various
numerical solution procedures for the boundary integral equations.
The combination of Rothe’s method and boundary integral equation
methods for the parabolic problem has been used in [2], [10]. A
disadvantage of the approach in [2], [10] stems from the necessity to
compute volume integrals leading to considerable computational costs,
in particular in the case of an unbounded domain.

One proposal to remedy this drawback is to construct a special
potential representation for a solution of the elliptic boundary value
problems obtained by Rothe’s method which leads to a system of
boundary integral equations without volume integrals. Clearly this
method can be applied to time-dependent problems with homogeneous
differential equations and homogeneous initial conditions. Using this
approach, in [4], [6] the nonstationary problems for the heat and
telegraph equations, respectively, have been solved numerically. We
note that this method is closely related to the operational quadrature
method from [19], [20] (for details see [6]). In this paper we will
extend the results in [4], [6] for the case of the nonstationary Stokes
equation. The classical Rothe’s method applied to the initial boundary
value problems for the Stokes equation in the bounded domains is
investigated in [24], [25], including an error and stability analysis. For
the solution of the boundary value problems for the stationary Stokes
equations by integral equations method, we refer to [11], [12], [21],
[23].

The plan of the paper is as follows. In Section 2 we determine a
fundamental matrix for the system of stationary Stokes equations which
is obtained by Rothe’s semi-discretization and introduce the single-
and double-layer potentials for this system. Further, we reduce the
Dirichlet boundary value problem by a potential approach to systems
of boundary integral equations of the first and of the second kind. The
parametrization of the integral equations of the first kind is described in
Section 3. Here we separate the logarithmic singularity in the kernels
and represent them in a form which is convenient for the numerical
solution by a trigonometric quadrature method. Finally in Section 4
we present some results of numerical experiments.

Let D ⊂ R2 be an unbounded domain such that its complement is
bounded and simply connected, and let us assume that the boundary
Γ of D is of the class C2, and let T > 0, QT = D × (0, T ] and
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ΣT = Γ × (0, T ]. We consider the following initial boundary value
problem

1
cr
∆u− ∂u

∂t
−∇p = 0 in QT ,(1.1)

divu = 0 in QT ,(1.2)
u = f on ΣT ,(1.3)

u(·, 0) = 0 in D,(1.4)
u, p → 0, |x| → ∞ on (0, T ].(1.5)

Here cr is the Reynolds number, u = (u1, u2) and p are the unknown
functions, ∆ is the Laplace operator, ∇ is the nabla operator, div de-
notes the divergence and f = (f1, f2) is a given function that satisfies
the compatibility condition f(·, 0) = 0. The hydrodynamical initial
boundary value problem describes the motion of a viscous incompress-
ible fluid in the domainD [1], [16]. The vector function u is the velocity
field and the scalar function p is the kinematics pressure.

On the equidistant mesh {tn = (n + 1)h, n = −1, . . . , N − 1, h =
T/N,N ∈ N}, we approximate the solution (u, p) by the sequence
(un, pn), n = 0, . . . , N − 1 that solves the system of the boundary
value problems

1
cr
∆un − κ2un −∇pn = −κ2un−1 in D,(1.6)

divun = 0 in D,(1.7)
un = fn on Γ,(1.8)

un, pn → 0, |x| → ∞,(1.9)

where κ2 = 1/h, fn = f(·, tn) and u−1 = 0. The system (1.6) (1.9) is
obtained from (1.1) (1.5) by a backwards Euler difference approxima-
tion for the time derivative on the grid points tn.

Theorem 1.1. The system (1.6) (1.9) has at most one solution.

Proof. The uniqueness of the classical solution of (1.6) (1.9) for
n = 0 is shown in [23]. Then the statement of the theorem follows
by induction.
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2. Boundary integral equation method. In this section we will
reduce the boundary value problem (1.6) (1.9) to a system of boundary
integral equations. First we determine a fundamental solution of the
system (1.6), (1.7).

Definition 2.1. The pair (En, e) consisting of a 2 × 2 ma-
trix En(x, y) = (En,1(x, y), En,2(x, y)) with columns En,1, En,2, n =
0, 1, . . . , N − 1 and a vector e(x, y) = (e1(x, y), e2(x, y)) is called a
fundamental solution for the system (1.6), (1.7) if

(2.1)



1
cr
∆En,l − κ2En,l −∇e+ κ2En−1,l = δ(x− y)Il,

divEn,l = 0, l = 1, 2.

Here I = (I1, I2) is the 2 × 2 identity matrix, δ denotes the Dirac
function, and the differentiation in (2.1) is taken with respect to x.

Let’s consider the polynomials which will be used for compact repre-
sentation of En,

vn(r) =
[n/2]∑
m=0

an,2mr2m, wn(r) =
[(n−1)/2]∑

m=0

an,2m+1r
2m+1

for n = 0, 1, . . . , N − 1(w0 = 0), where the coefficients an,m satisfy the
recurrence relations

an,0 = 1, n = 0, 1, . . . , N − 1,
an,n =

κ

2n
an−1,n−1, n = 1, 2, . . . , N − 1,

an,m =
1
2κm

{
4
[
m+ 1
2

]2

an,m+1 + κ2an−1,m−1

}
,

m = n− 1, . . . , 1
and [r] denotes the integer part of r ≥ 0. Next we introduce the
sequences of functions

Φn(κ, r) = K0(κr)vn(r) +K1(κr)wn(r)

and

Ψn(κ, r) =
n+ 1
κ2

ln
1
r
−

n∑
m=0

bn−m[Φm(κ, r)− Φm−1(κ, r)],
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where K0 and K1 are the modified Hankel functions of order zero and
one, respectively, and bn := (n + 1)/κ2. Throughout this paper all
functions and constants with a negative index number are set equal to
zero.

Note that in [6] it has been shown that Φn are singular solutions for
the recurrence sequence of Helmholtz equations which are obtained for
parabolic equation by Rothe’s method.

Theorem 2.2. The pair (En, e) with

(2.2) En(x, y) = −cπcr[IΦn(γ, |x− y|) + gradxgrad�xΨn(γ, |x− y|)]
and

(2.3) e(x, y) = − cπ(x− y)
|x− y|2

is a fundamental solution of (1.6), (1.7). Here we have set cπ := (2π)−1

and γ := κ
√
cr.

Proof. For a function g(x), x ∈ R2, we define the standard direct and
inverse Fourier transform by

ĝ(ξ) = F (g) = cπ

∫
R2

g(x)e−i〈x,ξ〉 dx,

g(x) = F−1(ĝ) = cπ

∫
R2

ĝ(ξ)ei〈x,ξ〉 dξ,

respectively. Here 〈·, ·〉 denotes the scalar product in R2. By using the
direct Fourier transformation to the system (2.1), we obtain that

(2.4)




−
( |ξ|2

cr
+ κ2

)
Ên,j − iξêj + κ2Ên−1,j = cπIj ,

〈ξ, Ên,j〉 = 0,

where Ên = F (En) and ê = F (e). From (2.4) it follows, for n = 0,



Ê0,j = − cr

|ξ|2 + γ2
(cπIj + iξêj),

〈ξ, Ê0,j〉 = 0.
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Then
ê(ξ) =

icπξ

|ξ|2
and

Ê0,j = − cπcr

|ξ|2 + γ2

(
Ij − ξjξ

|ξ|2
)
.

From this, it follows that

e(x, y) = F−1(ê) = cπ∇ ln 1
|x− y| .

Now by induction from (2.4) we can deduce that

(2.5) Ên(ξ) = − cπcr[I − J(ξ)]Φ̂n(ξ),

where the matrix J is defined by J(w) := ww�/|w|2 for w ∈ R2 \ {0}
and

Φ̂n(ξ) =
n∑

m=0

γ2m

(|ξ|2 + γ2)m+1
.

By reduction to ordinary differential equations, for the system of the
elliptic equations

(2.6) ∆gn − κ2gn + κ2gn−1 = 0, n = 0, 1, . . . , N − 1, g−1 = 0

in a plane, it is shown in [6] that the functions cπΦn(κ, |x − y|) are
fundamental solutions. This gives us

F (cπΦn) = cπ

n∑
m=0

γ2m

(|ξ|2 + γ2)m+1

and then for Φ̂n we have the inverse Fourier transform

(2.7) F−1(cπΦ̂n) = cπΦn(γ, |x− y|).

With the help of the identity

1
r(r + a)n

=
1

anr
−

n∑
m=1

am−n−1

(r + a)m
, ar(r + a) �= 0
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we can write

Φ̂n(ξ)|ξ|−2 =
n+ 1
γ2|ξ|2 −

n∑
m=0

bn−m
γ2m

(|ξ|2 + γ2)m+1
.

Now, since

F−1(J(ξ)Φ̂n) = − gradxgrad�x (F
−1(Φ̂n|ξ|−2))

and

F−1

(
cπγ

2n

(|ξ|2 + γ2)n+1

)
= cπ[Φn(γ, |x− y|)− Φn−1(γ, |x− y|)],

n = 0, 1, . . . , N − 1,

we obtain

(2.8) F−1(J(ξ)Φ̂n) = − gradxgrad�xΨn(γ, |x− y|).

Thus (2.2) follows by taking the inverse Fourier transform of (2.5) using
(2.7) and (2.8).

Remark 2.3. 1. We note that for n = 0 from (2.2) and (2.3), the
fundamental solution of the resolvent Stokes equation (see [23]) can be
obtained.

2. The double grad calculation gives us the following equivalent
representation for En

(2.9) En(x, y) = −cπcr

[
I

{
Φn(γ, r) +

1
r

∂Ψn(γ, r)
∂r

}

+ J(x− y)
{

∂2Ψn(γ, r)
∂r2

− 1
r

∂Ψn(γ, r)
∂r

}]

with r = |x−y|. The further calculations show that the terms in figure
brackets only have logarithmic singularity for x = y (for details see
Section 3).

For the system (1.6), (1.7), we consider both the single- and double-
layer potentials:



106 R. CHAPKO

a) for the velocity field

Vn(x) =
n∑

m=0

∫
Γ

En−m(x, y)ϕm(y) ds(y)

and

Wn(x) =
n∑

m=0

∫
Γ

Ẽn−m(x, y)ϕ̃m(y) ds(y),

(b) for the pressure

vn(x) =
n∑

m=0

∫
Γ

〈e(x, y), ϕm(y)〉 ds(y)

and

wn(x) =
n∑

m=0

∫
Γ

〈ẽ(x, y), ϕ̃m(y)〉 ds(y),

respectively.

Here ϕn and ϕ̃n are unknown density vectors, Ẽn = (Ẽn,1, Ẽn,2) is
the 2× 2 matrix, and ẽ = (ẽ1, ẽ2), the vector with

Ẽn,l = Tx(En,l, el)ν(y), ẽ = Tx(e, 0)ν(y),

where ν is the outward unit normal vector to the boundary Γ and
T (u, p) = pI − (∇u+∇�u) is the stress tensor.

Theorem 2.4. The single-layer potential (Vn, vn) solves the system
of boundary value problems (1.6) (1.9) provided the densities ϕn solve
the system of integral equations of the first kind

(2.10)
∫

Γ

E0(x, y)ϕn(y) ds(y)

= fn(x)−
n−1∑
m=0

∫
Γ

En−m(x, y)ϕm(y) ds(y), x ∈ Γ,
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for n = 0, 1, . . . , N − 1.

Proof. Since (En, e) is a fundamental solution of the system (1.6),
(1.7), the potential (Vn, v) satisfies this system for x ∈ D. From the
asymptotic properties K0(r) ∼ ln(1/r) and K1(r) ∼ (1/r) for r → 0,
it follows that the functions En(x, y) have a logarithmic singularity
for x = y. Therefore, as in the case of the hydrodynamic potentials
for the stationary Stokes equation [12], [16], the potentials Vn are
continuous in R2. The system of integral equations (2.10) ensures that
the boundary conditions (1.8) are fulfilled. From the asymptotics of
the modified Hankel functions for large arguments (see [18]) it follows
that the Vn and vn satisfy the condition (1.9).

Analogously, we can prove the following result for the double-layer
potential.

Theorem 2.5. The double-layer potential (Wn, wn) solves the system
of boundary value problems (1.6) (1.9) provided the densities ϕ̃n solve
the system of integral equations of the second kind

(2.11)
1
2
ϕ̃n(x) +

∫
Γ

Ẽ0(x, y)ϕ̃n(y) ds(y)

= fn(x)− 1
2

n−1∑
m=0

ϕ̃m(x)−
n−1∑
m=0

∫
Γ

Ẽn−m(x, y)ϕ̃m(y) ds(y),

for n = 0, 1, . . . , N − 1.

3. Parametrization of the integral equations. In this section we
consider the parametrization and the numerical solution of the integral
equations of the first kind (2.10). The case of the integral equations
of the second kind does not have the principal difference, unless the
transformation of the kernels in (2.11) needs more complicated manip-
ulation. On the other hand, in the case of the Stokes problem with
nonsmooth or open boundary Γ, use of the integral equations of the
first kind is preferable. First we want to analyze the kernels in our
integral equations and show the logarithmic singularity in them. For
compact representation of the results of the derivation in (2.9), we need
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to introduce the polynomials

v(1)
n (r) = 2

[n/2]∑
m=1

man,2mr2m−1,

v(2)
n (r) = 2

[n/2]∑
m=1

m(2m− 1)an,2mr2m−2,

w(1)
n (r) =

[(n−1)/2]∑
m=0

(2m+ 1)an,2m+1r
2m,

w(2)
n (r) = 2

[(n−1)/2]∑
m=1

m(2m+ 1)an,2m+1r
2m−1.

Next we define

η(1)
n (r) =

v
(1)
n (r)
r

− γwn(r)
r

,

η(2)
n (r) = v(2)

n (r) + γ2vn(r)− 2γw(1)
n (r) +

γwn(r)
r

,

ξ(1)
n (r) = −γvn(r)

r
+

w
(1)
n (r)
r

− wn(r)
r2

,

ξ(2)
n (r) =

γvn(r)
r

− 2γv(1)
n (r) + γ2wn(r)

+
2wn(r)

r2
− 2w(1)

n (r)
r

+ w(2)
n (r).

Now, by using the properties of the modified Hankel functions and
straightforward calculations from (2.9), we obtain the following repre-
sentation for En,

(3.1) En(x, y) = −cπcr[Ψ(1)
n (γ, |x− y|)I +Ψ(2)

n (γ, |x− y|)J(x− y)].

Here, for r > 0, the functions Ψ(1)
n and Ψ(2)

n are given by

Ψ(1)
n (γ, r) = Φn(γ, r)− n+ 1

γ2r2
−

n∑
m=0

bn−m

[
Φ(1)

m (γ, r)− Φ(1)
m−1(γ, r)

]
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and

Ψ(2)
n (γ, r) =

2(n+ 1)
γ2r2

−
2∑

i=1

(−1)i
n∑

m=0

bn−m

[
Φ(i)

m (γ, r)− Φ(i)
m−1(γ, r)

]
,

where we have set

Φ(i)
n (γ, r) = K0(γr)η(i)

n (r) +K1(γr)ξ(i)
n (r), i = 1, 2.

By the power series for the functionsK0 andK1 (see [18]), the functions
Ψ(i)

n , i = 1, 2, can be written in the form

(3.2) Ψ(i)
n (γ, r) = ln

(
γr

2

)
θ(i)

n (γ, r) + χ(i)
n (γ, r), i = 1, 2,

where

θ(1)
n (γ, r) = −I0(γr)vn(r) + I1(γr)wn(r)

−
n∑

m=0

bn−m

1∑
i=0

(−1)i[−I0(γr)η
(1)
m−i(r) + I1(γr)ξ

(1)
m−i(r)],

θ(2)
n (γ, r) = −

n∑
m=0

bn−m

2∑
k=1

1∑
i=0

(−1)i[−I0(γr)η
(k)
m−i(r) + I1(γr)ξ

(k)
m−i(r)].

in terms of the modified Bessel functions I0 and I1. Now we use the
power series for I0 and I1 [18] and the definition of vn, wn, η

(i)
n and

ξ
(i)
n and arrive at the expansions for r → 0

θ(i)
n (γ, r) = αn(2− i) +O(r2), i = 1, 2(3.3)

and

χ(i)
n (γ, r) = β(i)

n +O(r2), i = 1, 2,(3.4)
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with

αn = −an,0 −
n∑

m=0

bn−m

1∑
i=0

(−1)i
[
− 2am−i,2 + γam−i,1 − γ2

2
am−i,0

]
,

β(1)
n = −Can,0 +

1
γ
an,1

−
n∑

m=0

bn−m

1∑
i=0

(−1)i
[
2
γ
am−i,3 − (1 + 2C)am−i,2

− γCam−i,1 +
γ2

4
(1− 2C)am−i,0

]
,

β(2)
n =

n∑
m=0

bn−m

1∑
i=0

(−1)i
[
2am−i,2 − γam−i,1 +

γ2

2
am−i,0

]
.

Here C = 0.57721 . . . is Euler’s constant.

We assume that the boundary curve Γ is given through a parametric
representation

Γ = {x(s) : 0 ≤ s ≤ 2π},
where x : R → R2 is C2 and 2π-periodic with |x′(s)| > 0 for all s.
Then we transform the system (2.10) into the parametric form

− cπ

∫ 2π

0

H0(s, σ)ψn(σ) dσ(3.5)

= gn(s) + cπ

n−1∑
m=0

∫ 2π

0

Hn−m(s, σ)ψm(σ) dσ,

0 ≤ s ≤ 2π,
where ψn(s) := |x′(s)|ϕn(x(s)), gn(s) := (1/cr)fn(x(s)), and where the
kernels are given by

Hn(s, σ) := − 1
cπcr

En(x(s), x(σ))

for s �= σ and n = 0, 1, . . . , N − 1. From (3.1) and (3.2) it follows that
the kernels in (3.5) can be written in the form

Hn(s, σ) = ln
(
4
e
sin2 s− σ

2

)
H1

n(s, σ) +H2
n(s, σ)



ROTHE’S METHOD AND BOUNDARY INTEGRAL EQUATIONS 111

for n = 0, 1, 2, . . . , N − 1, where

H1
n(s, σ) =

1
2
[θ(1)

u (γ, |x(s)−x(σ)|)I+θ(2)
n (γ, |x(s)−x(σ)|)J(x(s)−x(σ))]

and

H2
n(s, σ) = Hn(s, σ)− ln

(
4
e
sin2 s− σ

2

)
H1

n(s, σ).

The asymptotic expansions (3.3) and (3.4) show that these kernels are
smooth with the diagonal terms given through

H1
n(s, s) =

αn

2
I,

and

H2
n(s, s) =

1
2

(
αn ln

(
γ2|x′(s)|2e

4

)
+ 2β(1)

n

)
I + β(2)

n J̃(s)

for n = 0, 1, . . . , N − 1. Here the matrix J̃ is defined by J̃(s) :=
w̃(s)w̃�(s), where w̃ denotes the unit tangential vector to Γ. Thus we
arrive at the system of integral equations

(3.6)

cπ

∫ 2π

0

{
ln

(
4
e
sin2 s−σ

2

)
H1

0 (s, σ) +H2
0 (s, σ)

}
ψn(σ) dσ = Gn(s),

0 ≤ s ≤ 2π
with righthand sides

Gn(s) = − gn(s)

− cπ

n−1∑
m=0

∫ 2π

0

{
H1

n−m(s, σ) ln
(
4
e
sin2 s−σ

2

)
+H2

n−m(s, σ)
}
ψm(σ) dσ.

The system (3.6) can also be written in operator form

(α0S +A)ψn = Gn, n = 0, 1, . . . , N − 1,
with the integral operators

(Sϕ)(s) =
cπ

2

∫ 2π

0

ln
(
4
e
sin2 s−σ

2

)
ϕ(σ) dσ
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and

(Aϕ)(s) = cπ

∫ 2π

0

{
H̃1

0 (s, σ) ln
(
4
e
sin2 s−σ

2

)
+H2

0 (s, σ)
}
ϕ(σ) dσ,

where H̃1
0 (s, σ) := H1

0 (s, σ)− (α0/2)I.

Let C0,α[0, 2π] and C1,α[0, 2π] for 0 < α ≤ 1 denote the classical
Hölder spaces of vector-valued functions. It is obvious that the operator
S is bounded from C0,α[0, 2π] to C1,α[0, 2π] and has a bounded inverse
(see [14]). By analogous arguments as in [15], we can show that the
operator A is compact from C0,α[0, 2π] to C1,α[0, 2π]. Hence, the
uniqueness Theorem 1.1 and the Riesz theory (see [14]) lead us to
the following existence result.

Theorem 3.1. For any sequence gn in C1,α[0, 2π], the system (3.6)
possesses a unique solution ψn in C0,α[0, 2π].

For the numerical solution of the integral equations (3.6), we used
the trigonometric quadrature method that is described in detail in
[5], [6], including a convergence and error analysis in Hölder spaces.
This analysis exhibits the dependence of the convergence order on the
smoothness of the boundary function and the boundary curve, i.e., the
proposed method belongs to algorithms without the “saturation effect.”
We note that the numerical method in [5] requires the implementation
of the factor sin2((s − σ)/2) in the kernel H̃1

0 . As is shown in [22],
this decomposition is not necessary for performing the error analysis.
Next we remark that the error estimate of our quadrature method also
depends on the kernel of the integral equation. On the other hand,
the kernels of (3.6) contain the modified Hankel function K0(γr) which
has a pronounced delta function-like behavior when the time step size
h → 0 (γ → ∞). This calls for a balance between the time and spatial
discretization parameters for the numerical solution of the system (3.6).
As a variant to the procedure described in this paper, one can consider
the special collocation method in [17] that has a convergence rate
independent of h.
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TABLE 1. Relative errors for the velocity.

e1
r e2

r

t M h = 0.2 h = 0.1 h = 0.05 h = 0.2 h = 0.1 h = 0.05

0.2 16 0.189967 0.093211 0.045853 0.138331 0.050058 0.012179
32 0.189966 0.093211 0.045853 0.138331 0.050058 0.012179

0.4 16 0.122854 0.058207 0.028345 0.165779 0.092721 0.047793
32 0.122854 0.058207 0.028345 0.165778 0.092720 0.047793

0.6 16 0.084955 0.041575 0.021089 0.257851 0.125482 0.063654
32 0.084955 0.041575 0.021089 0.257850 0.125482 0.063654

0.8 16 0.066643 0.034062 0.017825 0.295588 0.144856 0.075443
32 0.066643 0.034062 0.017825 0.295588 0.144856 0.075443

1.0 16 0.056692 0.029962 0.016005 0.323229 0.162898 0.086774
32 0.056692 0.029962 0.016005 0.323228 0.162897 0.086774

4. Numerical experiments. In this section we will demonstrate
the feasibility of the proposed method by a test example. As a boundary
we choose the curve

(4.1) Γ = {x(s) = (0.2 cos s, 0.4 sin s− 0.3 sin2 s)}, 0 ≤ s ≤ 2π,
which is illustrated in Figure 1. The boundary function f is given by
the restriction of the fundamental solution for the Stokes equation (1.1)
(see [1])

(4.2) f(x, t) =
(

∂2g

∂x2
2

, − ∂2g

∂x1∂x2

)�
,

where

g(x, t) = ln |x|+ 1
2
E1

(
cr|x|2
4t

)
.

Here E1 denotes the exponential integral function [18]. The Reynolds
number is chosen as cr = 1 and the time interval is [0, 1]. In Table 1,
the relative errors

er(x, tn) := |u(x, tn)− ũ(x, tn)|/|u(x, tn)|
at the spatial point x = (0.7,−0.5) are presented, where u is the exact
solution of the problem (1.1), (1.5). The absolute errors for the pressure

ea(x, tn) := |p(x, tn)− p̃(x, tn)|
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0.3

0.3

x2

x1

FIGURE 1. Boundary Γ.

at the same spatial point are illustrated in Figure 2. Note that the
exact pressure in the case of the boundary function (4.2) has the
representation

p(x, t) = δ(t)
x1

|x|2 .

The exponential convergence with respect to the spatial discretization
and linear convergence with respect to the time discretization are
clearly exhibited.

1.00.60.2

0.1

0.2

3

1
2
3

t

ea

FIGURE 2. Absolute error for the pressure 1−h = 0.2, 2−h = 0.1, 3−h = 0.05.
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tungsgleichung im R3 mit einer Integralgleichungsmethode nach dem Rothever-
fahren, Computing 19 (1978), 251 268.

11. G.C. Hsiao, Integral representation of solutions for two-dimensional viscous
flow problems, Integral Equations Operator Theory 5 (1982), 533 547.

12. G.C. Hsiao and R. Kress, On an integral equation for the two dimensional
exterior Stokes problem, Appl. Num. Math. 1 (1985), 77 93.

13. G. Hsiao and J. Saranen, Boundary integral solution of the two-dimensional
heat equation, Math. Meth. Appl. Sci. 16 (1993), 87 117.

14. R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.



116 R. CHAPKO

15. , Inverse scattering from an open arc, Math. Meth. Appl. Sci. 18
(1995), 267 293.

16. O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow,
Gordon and Breach Sci. Publ., New York, 1963.

17. S. Langdon and I.G. Graham, Boundary integral methods for singularly
perturbed boundary value problems, IMA J. Numer. Anal., to appear.

18. N.N. Lebedev, Special functions and their applications, Prentice-Hall, Engle-
wood Cliffs, 1965.

19. C. Lubich, On the multistep time discretization of linear initial-boundary
value problems and their boundary integral equations, Numer. Math. 67 (1994),
365 389.

20. C. Lubich and R. Schneider, Time discretizations of parabolic boundary
integral equations, Numer. Math. 63 (1992), 455 481.

21. C. Pozrikidis, Boundary integral and singularity methods for linearized
viscous flows, Cambridge, 1992.

22. J. Saranen and G. Vainikko, Trigonometric collocation methods with product
integration for boundary integral equations on closed curves, SIAM J. Numer. Anal.
33 (1996), 1577 1596.

23. W. Varnhorn, The boundary value problems for the Stokes resolvent equa-
tions in R2, in Inverse scattering and potential problems in mathematical physics
(Kleinman, Kress, Martensen, eds.), Methoden Verfarhen Math. Phys. 40 (1990),
169 188.

24. , Time stepping procedures for non-stationary Stokes equations, Math.
Meth. Appl. Sci. 15 (1992), 39 55.

25. , The Stokes equation, Akademie Verlag, Berlin, 1994.

Department of Applied Mathematics and Computer Science, Lviv Na-
tional University, 79000 Lviv, Ukraine
E-mail address: chapko@franko.lviv.ua


