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A LOWER ESTIMATE FOR
THE NORM OF THE KERZMAN-STEIN OPERATOR

MICHAEL BOLT

ABSTRACT. We establish an elementary lower estimate
for the norm of the Kerzman-Stein operator for a smooth,
bounded domain. The estimate involves the boundary length
and logarithmic capacity. The estimate is tested on model
domains for which the norm is known explicitly. It is shown
that the estimate is sharp for an annulus and a strip, and is
asymptotically sharp for an ellipse and a wedge.

1. Introduction. Suppose Ω ⊂⊂ C is a continuously differentiable,
multiply connected domain in the plane and L2(∂Ω) is the space of
square-integrable functions defined with respect to arclength measure
on the boundary. The Cauchy singular operator on L2(∂Ω) can be
expressed using a principal value integral,

C0f(z) =
1

2πi
P.V.

∫
∂Ω

f(w) dw
w − z

for z ∈ ∂Ω.

It is known classically that C0 is bounded on L2(∂Ω), so its skew-
hermitian part, A = C0 − C∗

0 , is also bounded. In fact, Lanzani [8]
showed that with these conditions A is compact it acts by integration
against the kernel,

A(z, w) =
1

2πi

[
T (w)
w − z

− T (z)
w − z

]
for w, z ∈ ∂Ω,

where T (w) is the positively-oriented unit tangent vector at w ∈ ∂Ω.
(The apparent singularities cancel each other.) The operator A is
known as the Kerzman-Stein operator for Ω. Kerzman and Stein used
this operator to give an explicit construction for the Szegő kernel and,
in so doing, they found an elegant way to compute the Riemann map
[7].
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In a later article [6], Kerzman asked a number of questions about this
operator, including the following.

Problem [6]. Relate the spectrum of the Kerzman-Stein operator to
the geometry of the domain.

In a sense, the spectrum measures the error when the Cauchy kernel is
used to approximate the Szegő kernel and may be useful for estimating
the rate of convergence of certain solutions to the Riemann map.

In this article we establish a lower estimate for the norm of the
Kerzman-Stein operator.

Theorem 1. For a continuously differentiable, multiply connected
domain Ω ⊂⊂ C, the Kerzman-Stein operator satisfies

‖A‖ ≥
√

length(∂Ω)
2πd

− 1

where d is the capacity of Ω.

For a disc, it is known that A is trivial, and in this case there is
equality since the capacity is the same as the radius. Related to this,
the Kerzman-Stein operator is invariant under Möbius transformations,
although the estimate is not. (It is, however, invariant under dilations.)
A stronger estimate, then, that also permits Ω to be unbounded, is as
follows.

Theorem 2. For a continuously differentiable, finitely connected
domain Ω, the Kerzman-Stein operator satisfies

‖A‖ ≥ sup
μ

√
length(∂Ω′)

2πd′
− 1

where the supremum is taken over the bounded Möbius images Ω′ =
μ(Ω) of Ω, and d′ is the capacity of Ω′.

We will show that these estimates are sharp for an annulus and a strip,
and in limiting situations, they give sharp estimates for an ellipse and
a wedge.
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Our proof of Theorem 1 mirrors the proof of an estimate that
Bergman and Schiffer gave for the first Fredholm eigenvalue [2, page
228]. It uses the equivalence of the Kerzman-Stein eigenvalue problem
f = −iλAf with the problem of finding functions u, v in the Hardy
space satisfying

v(z) = − λ

2π

∫
∂Ω

u(η)
η − z

dsη,

u(z) = +
λ

2π

∫
∂Ω

v(η)
η − z

dsη,

that was studied by Singh in [13]. The author anticipates that by
drawing on other methods developed for the Fredholm eigenvalues, see
[11, 12, 15], and by exploiting similarities between Singh’s problem
and the Fredholm eigenvalue problem, one might obtain more refined
estimates for A.

Theorem 2 follows directly from Theorem 1. For the Möbius invari-
ance of A, see [5, page 106] or [13, page 380].

The paper is structured as follows. In Section 2, we prove the
equivalence of the Kerzman-Stein eigenvalue problem with the problem
of Singh. This was proved earlier by Burbea [5], but the proof here
illustrates how the result is primarily a result from functional analysis.
In Section 3, we prove Theorem 1; we do this in the context of Singh’s
problem so that the similarity with the Bergman-Schiffer estimate is
clearly evident. In Section 4, we evaluate the estimates for examples
the author studied previously [3, 4]. In certain cases the estimates are
sharp.

For an excellent treatment of complex analysis and its applications
that uses the perspective of the Cauchy operator, see Bell’s book [1].

2. Equivalence with the eigenvalue problem of Singh. In this
section we prove the equivalence of Singh’s eigenvalue problem with
the problem f = −iAλf . This was proved earlier by Burbea [5]. Our
proof, however, illustrates how the equivalence is primarily a result
from functional analysis.

The equivalence follows from the following two lemmas. In our
application, we will use the Hilbert space H = L2(∂Ω), the Hardy
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space E = L2(∂Ω) ∩ O(Ω), the Cauchy projector C defined using the
nontangential interior limit of the Cauchy integral, and the involution
J : H→H defined by f→fT where T = T (w) is the unit tangent
vector at w ∈ ∂Ω. Then C∗ = I − J CJ , as proved by Bell [1, page
10]. Moreover, by the Plemelj theorem [1, page 14], C = I/2 + C0,
so A def= C0 − C∗

0 = C − C∗. We mention that the Plemelj theorem can
also be used to show C∗ = I − JCJ in case Ω is only continuously
differentiable. See Muskhelishvili [9, page 43], for instance.

Lemma 1. Let C be a densely defined projection from a Hilbert
space H to a closed subspace E whose skew-hermitian part A = C − C∗

is compact. Here C∗ is defined formally. Then C is bounded, and
the orthogonal projection to the same subspace E is given by S =
C(I + A)−1.

Proof. By the spectral theorem, (I + A)−1 exists and is bounded.
We first show that C is also bounded. So let u be in the domain of C.
Then,

‖Cu‖2 = (Cu, Cu) = ((C∗ + A)u, Cu) = (u, (C − A)Cu)
= (u, C2u) − (u,ACu) = (u, Cu)− (u,ACu)
≤ ‖u‖(‖Cu‖+ ‖A‖‖Cu‖) = (1 + ‖A‖)‖u‖‖Cu‖,

and ‖Cu‖ ≤ (1 + ‖A‖)‖u‖. Then C is bounded and can be extended to
all of H by continuity. Moreover, C(I + A)−1 is well defined.

We show that this operator is self-adjoint, that is, C(I + A)−1 =
(I − A)−1C∗. To do this, we verify that (I − A)C = C∗(I + A). The
lefthand side of this last equation is (I −C+ C∗)C = C∗C, since C2 = C;
the righthand side is C∗(I + C − C∗) = C∗C, since (C∗)2 = C∗. So
(I − A)C = C∗C = C∗(I + A), and C(I + A)−1 is self-adjoint.

Finally, we show that it reproduces the same functions as C. So
suppose Cu = u. Then (I − A)u = (I − C + C∗)u = C∗u and u =
(I −A)−1C∗u. By the last paragraph, we then have u = C(I +A)−1u.
So the lemma is proved.

We mention that the relations between the skew projection, its
adjoint, and the orthogonal projection on the same subspace have been
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considered previously. See, for instance, Theorem 6.1 and its proof in
Spitkovsky [14].

Lemma 2. Suppose further that J : H→H is an anti-linear
involution which maps E→E⊥ and E⊥→E with C∗ = I −JCJ . Then
the eigenvalue problem f = −iλAf for f ∈ H is equivalent to the
eigenvalue problem v = −iλCJ u, u = +iλCJ v for u, v ∈ E.

Proof. (⇒). Suppose first that f = −iλAf for f ∈ H and λ ∈ R.
Define v = Sf and u = J (I − S)f . Then both u, v ∈ E, and

v = S(−iλAf) = −iλSAf = −iλC(I − S)f = −iλCJ u.

The third equality follows from

SA = SC − SC∗ = C − (CS)∗ = C − S∗ = C − S = C − CS = C(I − S).

So we have left to check that u = iλCJ v. Notice that

u = J (I − S)f = J (I − S)(−iλAf) = iλJ (I − S)Af

by the anti-linearity of J . Moreover,

(I − S)A = C − C∗ − SC + SC∗ = C − C∗ − C + (CS)∗ = −C∗ + S,

so that u = iλJ (−C∗ + S)f. Since C∗ = I − J CJ , we next have

J (−C∗ + S) = CJ − J (I − S) = CJ − CJ (I − S) = CJS.

It follows that u = iλCJSf = iλCJ v as needed.

(⇐). Suppose, then, that u, v ∈ E satisfy v = −iλCJ u and
u = +iλCJ v. Set f = v + J u. Then,

f = −iλCJ u+J (iλCJ v) = −iλ(CJ u+JCJ v) = −iλ(CJ u+(I−C∗)v).

Meanwhile,

Af = (C −C∗)(v+Ju) = Cv+ CJ u−C∗v−C∗J u = CJ u+ (I −C∗)v,
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where Cv = v and C∗J u = 0 since u, v ∈ E. It follows that f = −iλAf ,
and the lemma is proved.

3. Proof of Theorem 1. The proof of Theorem 1 mirrors the proof
of an estimate that Bergman and Schiffer gave for the first Fredholm
eigenvalue [2, page 228]. It depends on the formulation of the problem
that was studied by Singh. We refer to Ransford [10] for the following
general properties of the capacity c = c(K).

1. If K is a compact subset of C, then c(K) = c(∂eK) where ∂eK
indicates the exterior boundary of K [10, page 128].

2. If K1, K2 are compact subsets of C and D1, D2 are the unbounded
components of C \ K1 and C \ K2, respectively, and if there is a
meromorphic function f : D1→D2 with f(z) = z + O(1) as z→∞,
then c(K2) ≤ c(K1). There is equality if f is conformal from D1 onto
D2 [10, page 133].

3. If K is a disc of radius r, then c(K) = r [10, page 135].

Proof of Theorem 1. Suppose that Ω ⊂⊂ C is bounded by curves
C1, C2, . . . , Ck, each of which is continuously differentiable. Let Ωc =
C \ Ω be the domain complement of Ω, and let Ωc

j ⊂ Ωc be the
component of Ωc whose boundary is Cj . Choose C1 to be the curve
for which Ωc

1 is the unbounded component of Ωc. Finally, let Ω1 =
Ω ∪ (∪j �=1Ωc

j). This is the region bounded by C1 that also contains Ω.

Let z = f(ζ) = d(ζ+c0+c1ζ−1+ · · · ) be the function which maps the
domain |ζ| > 1 conformally onto Ωc

1 with d > 0. Using the properties
mentioned above, we have c(Ω) = c(Ω1) = d.

We next pass to the complementary domain Ωc for which the eigen-
value problems are completely equivalent; in particular, the eigenvalues
for Ω are also the eigenvalues for Ωc. For Singh’s problem this is shown
on [13, page 380]. Let K(z, ξ) denote the Szegő kernel for Ωc, and let

(1) Γ(z, ξ) =
1

4π2

∫
∂Ωc

dsη

(η − z)(η − ξ)
.

Then Γ(z, ξ)−K(z, ξ) is a hermitian, positive semi-definite kernel. See
[13, page 377]. In fact, if λj , uj , and vj , for j > 0, are solutions of
Singh’s eigenvalue problem for Ωc, with 0 < λ1 ≤ λ2 ≤ · · ·→∞, then
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there are series expansions

K(z, ξ) =
∑
j>0

(
uj(z)uj(ξ) + vj(z)vj(ξ)

)
,

and

Γ(z, ξ) =
∑
j>0

(
1 +

1
λ2

j

) (
uj(z)uj(ξ) + vj(z)vj(ξ)

)
.

Furthermore, 0 < λ1 ≤ λj implies 1/λ2
1 ≥ 1/λ2

j , so that Γ(z, z) ≤
(1 + (1/λ2

1))K(z, z).

Next, notice from (1) that as |z|→∞,

Γ(z, z)|z|2 =
1

4π2

∫
∂Ωc

|z|2
|η − z|2 dsη −→ 1

4π2
length (∂Ωc).

To manage the Szegő kernel we first write

K(z, ξ) = K1(z, ξ) +
∑
j �=1

Kj(z, ξ)

where Kj(z, ξ) is the Szegő kernel for Ωc
j and is assumed to vanish if

either z, ξ /∈ Ωc
j . Then for large |z| we have K(z, z) = K1(z, z). Next,

since the Szegő kernel for the complement of the unit disc is given by

KΔc(ζ, w) =
1
2π

1
ζw − 1

,

we have, by the transformation formula for the Szegő kernel (see [1,
page 44]), that

K1(z, z)|f ′(ζ)| =
1
2π

1
ζζ − 1

.

So for large |z|, K(z, z)|z|2 = |z|2/|f ′(ζ)| · (2π)−1(ζζ − 1)
−1

, and this
approaches

d2|ζ|2
d

· 1
2π

1
ζζ − 1

≈ d

2π

as |z|→∞. It follows that

Γ(z, z)
K(z, z)

=
Γ(z, z) · |z|2
K(z, z) · |z|2→

1
4π2

length (∂Ωc) · 2π
d

=
1
2π

length(∂Ω)
d

,
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as |z|→∞, and
1
2π

length(∂Ω)
d

≤ 1 +
1
λ2

1

.

Solving this inequality gives

‖A‖ =
1
λ1

≥
√

1
2π

length(∂Ω)
d

− 1,

and the theorem is proved.

4. Examples. Previously, the author gave descriptions of the
Kerzman-Stein operator for certain model domains [3, 4]. Here we
evaluate the estimates of Theorems 1 and 2 for these known cases. The
estimates are sharp for an annulus and a strip; they are asymptotically
sharp for an ellipse and a wedge.

4.1 Annulus. In [4] it was shown that the spectrum of A for an
annulus {z ∈ C : r < |z| < r−1}, 0 < r < 1, consists of the values
±ir2n−1 for n = 1, 2, . . . , and therefore ‖A‖ = r. Meanwhile, the
annulus has boundary length 2π(r + r−1) and capacity r−1. In this
case, the estimate says

‖A‖ ≥
√

2π(r + r−1)
2π · r−1

− 1 =
√
r2 + 1 − 1 = r,

which is evidently sharp. We mention that Singh also computed the
eigenvalues for the annulus in [13, page 392].

4.2 Strip. In [4] it was shown that the spectrum of A for a strip
{z ∈ C : |�z| < 1} consists of the continuous interval [−i,+i] on the
imaginary axis. In this case, ‖A‖ = 1. Using a Möbius transformation,
however, the strip can be mapped to the region bounded between
internally tangent circles. For instance, μ = 2r/[i(1 − r)z + r + 1]
maps the strip to the region between circles |z − 1/2| = 1/2 and
|z − r/2| < r/2, for 0 < r < 1. This region has boundary length
π(1 + r) and capacity 1/2. The estimate then says

‖A‖ ≥
√
π(1 + r)
2π · 1/2 − 1 =

√
r.
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As r→1− the righthand side approaches 1, so the estimate of Theorem 2
is sharp.

4.3 Ellipse. In [3] it was shown that the spectrum of A for an ellipse
with major and minor axes 2(1 + r) and 2(1− r), respectively, consists
of the values ±iβnr

2n−1 + o(r2n−1) valid asymptotically as r ↓ 0, for
certain 0 < βn ≤ 1 and n = 1, 2, . . . . In particular, the values that are
largest by absolute value are ±ir/2+o(r) so that ‖A‖ = r/2+o(r), valid
as r ↓ 0. (These are the ellipses with small eccentricity.) Meanwhile,
one finds that the ellipse has boundary length 2π(1+r2/4)+O(r3) and
capacity 1. In this case, the estimate says

‖A‖ ≥
√

2π(1 + r2/4) +O(r3)
2π · 1 − 1 =

r

2
+O(r2).

Evidently, the estimate of Theorem 1 is asymptotically sharp for r ↓ 0.

Π
4

Π
2

0.5

1.

FIGURE 1. Analysis of the estimate for a wedge, 0 < θ < π/2.

4.4 Wedge. In [4] it was shown that the spectrum of A for
a wedge {z ∈ C : |Arg z| < θ}, 0 < θ < π/2, consists of the
continuous interval on the imaginary axis given as the range of values
of iψ(ξ) = i sinh[ξ(π − 2θ)]/ cosh(ξπ), ξ ∈ R. The norm is ‖A‖ =
maxξ∈R sinh[ξ(π − 2θ)]/ cosh(ξπ).

Using a Möbius transformation, however, the wedge can be mapped
to a lens with vertices at ±1. One finds that this lens has boundary
length 4θ csc θ. It also has capacity π/(2(π − θ)). (For the capacity
of the lens, see [10, page 135]; the domain is the lune with h = 2 and
β = θ = −α.) In this case the estimate of Theorem 1 says

‖A‖ ≥
√

4(π − θ)θ csc θ
π2

− 1.
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Figure 1 illustrates the estimate for wedges 0 < θ < π/2. The actual
norm of A is indicated by the solid graph; the lower bound is indicated
by the dotted graph. Evidently the estimate is sharp in the limiting
case θ→π/2. This corresponds with wedges that approach a half-plane,
where A is trivial.
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