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A REPRESENTATION FORMULA FOR
STRONGLY CONTINUOUS RESOLVENT FAMILIES

CARLOS LIZAMA

ABSTRACT. We give a representation formula for expo-
nentially bounded strongly continuous resolvent families asso-
ciated to an abstract Volterra equation of scalar type. As an
application we derive a characterization of positive resolvent
families defined in an ordered Banach space.

1. Introduction. We consider the following Volterra equation
defined on a complex Banach space X

(1.1) u(t) = f(t) +/0 a(t — s)Au(s)ds, teJ

where A is a closed linear unbounded operator in X with dense domain
D(A),a € L _(Ry)is ascalar kernel # 0 and f € C(J, X), J :=[0,T].

loc
The basic concept concerning (1.1) is that of well-posedness which is
the direct extension of the corresponding notion usually employed for
the abstract Cauchy problem (of first order)

(1.2) a(t) = Au(t),  u(0) = uo.

It is well known that well-posedness is equivalent to the existence of a
resolvent {S(t)}:>0 C B(X) for (1.1), i.e., a strongly continuous family
of bounded linear operators in X which commutes with A and satisfies
the resolvent equation

St)r=x+ /t a(t — s)AS(s)x ds,
t>0, ze€ D(A).
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The resolvent is the central object to be studied in the theory of
Volterra equations; it corresponds to the strongly continuous semigroup
generated by A in the special case a(t) = 1, ie., for (1.2). The
importance of the resolvent S(t) is shown by the variation of parameters
formula

u(t) = S(t)£(0) +/0 S(t—s)f(s)ds, teJ
where f € WHi(J; X).

Due to the time invariance of (1.1), Laplace transform methods can
be employed. Suppose (1.1) admits an exponentially bounded resolvent
S(t) of type (M,w), i.e., there are constants M > 1 and w € R such
that

IS@®)|| < Me“* for all t > 0.

Suppose also that a € L} (R4) is Laplace transformable. Then the

Laplace transform H(\) = S(A) of the resolvent exists for A > w and

is represented by
H(\) = (A= Xa(\)A) L

Several properties of resolvent families have been recently discussed
in [2, 7, 8,9, 11]. See also the recent monograph of J. Priiss [12] and
the references therein.

The purpose of this note is to obtain a representation formula for an
exponentially bounded resolvent for (1.1) in terms of H(\).

Exponential representations are well known for strongly continuous
semigroups and cosine families of operators, see [4] and [13]. For
example, if {T'(t)}+>0 is a strongly continuous semigroup in the Banach
space X with infinitesimal generator B, then

—n
(1.3) T(t)z = lim (I - 3B> z, zeX, t>0,

n—oo n
where the convergence is uniform in bounded t-intervals for each fixed
z. The formula (1.3) has important implications for the numerical
approximation of the trajectories of {T'(¢)}:>0, especially for implicit
approximation schemes.

In the next section we give our representation formula and, in Sec-
tion 3, we prove a characterization concerning positivity of resolvent
families defined on an ordered Banach space.
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2. A representation formula. In what follows we will always
assume that (1.1) admits an exponentially bounded strongly continuous
resolvent family of type (M,w) in a complex Banach space X. We will
also assume that a € L, (R4) satisfies [~ e™“*a(t) dt < oo.

The following formula generalizes (1.3).

Theorem 2.1. If x € X, then uniformly for t in bounded intervals
of R4 we have

se - S5 () (02) (452)
" o (y(l)(A)>hym1(A)x("k)(A)

Il
AL a(A)A)*mflm\

A=n/t

where z(X\) = 1/(Aa(N)), y(A) = 1/a(\) and the second sum is
taken over all positive integer solutions of i + 25 + -+ + lh = k;
i+j+--+h=m.

Proof. Because S(t) is exponentially bounded, we can apply the
Widder-Post formula for the inversion of Laplace transform in Banach
spaces, see [6], and obtain

(2.2) S(t)z = lim ﬂA"HH(")(A)m

)
n—oo n! A=n/t

where the convergence is uniform in bounded t-intervals for fixed z € X.

Putting H(\) = z(\)(y(A) — A)~! where z()\) := 1/(Aa())), and
y(X) :=1/a(\) we get by Leibnitz’s rule

23 B0 =3 () )e 00 - 4,
k=0

Next, by making use of the chain rule and the product rule for
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differentiation of composite functions, see, e.g., [5, p. 19], we have
a* S (YWY (v
24 FFEN-HTe =3 it Rl < 1 2!

O(\" gm
(5 Sl - 7

where the sum is taken over all positive integer solutions of i + 25 +
+lh=ki+j+--+h=m.
Note that (d™/dy™)[(y(\) — A)"tz = (=1)™m!(y(A) — A)~™ 1z.
Therefore, substituting (2.4) and (2.3) into (2.2) we get the represen-
tation (2.1). o

We have the following corollary of Theorem 2.1.

Corollary 2.2. Forp = 1,2,..., let {Sp(t)}+>0 be a sequence of
resolvent families for (1.1) with A replaced by A,. Suppose that there
exist constants M > 0 and w > 0 such that ||Sy(t)|| < Me*t. Let
limy, o0 (I — a(A)Ap) "'z = (I —a(N)Ag) 'z for all A\ >w and x € X.
Then

o £ (5 (8 ()

() et

L] a(A)AP)*mflx‘

A=n/t

forallt >0,z € X.

Proof. The proof follows immediately using the following result of
Lizama [7]. Under the hypothesis of Corollary 2.2, im,,_,, S,(¢t)x =
So(t)z forall t >0, z € X. o

3. Application to positive resolvents. In this section we apply
Theorem 2.1 to obtain a criterion for positivity of a resolvent S(t) for

(1.1).



STRONGLY CONTINUOUS RESOLVENT FAMILIES 325

We will assume the following hypothesis:
(H) The solutions s(A,t) and r(\,t) of the convolution equations

(3.1) s(A,t)—i—)\/ta(t—u)s(A,u) du=1
and

r(0 1)+ )\/0 a(t — w)r(\ ) du = a(t)

are both nonnegative for each A > 0.
Our key result in this section is the following theorem.

Theorem 3.1. Suppose a € Li _ (R;) satisfies (H). Let X be an
ordered Banach space with closed cone K, and suppose that (1.1) admits
a resolvent family S(t) of type (M,w). Then S(t) > 0 if and only if
(I —a(A\)A)~L >0 for all A > w.

Proof. It follows from

(I —a(NA) 'z = X/ e *S(s)x ds, A>w, zeX
0

that S(s) > 0 implies (I — a(A\)A)~! >0 for A > w.

Conversely, observe that k+m =2i+3j+ -+ (I +1)h in Theorem
2.1. Hence,

o) (52 ()
(32  (CHO (Y

1 2!

C1)\+1,,0) h

It was shown in [11, p. 326] that hypothesis (H) is equivalent to
(3.3) (=1)"z™(\) >0 forall A >0,ne€ Ny
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and
(3.4) (=)™ ™(\) >0 forall A >0,n e N.

Substituting (3.3) and (3.4) into (3.2), we obtain that the second term
in (3.2) is positive. Using Theorem 2.1 we conclude that S(¢) > 0. O

Remark 3.2. i) Theorem 3.1 in essence is already contained in the
papers of Clement and Nohel, see the references in [12].

ii) Kernels a(t) with the property (H) or, equivalently, satisfying
(3.3) and (3.4), are called completely positive by Clement and Nohel,
cf. Priiss [12].

iii) Observe that the case a(t) = t, i.e., the case of the abstract Cauchy
problem of second order, is not included in the above mentioned class
of kernels.

If the cone K is normal and has interior points, we can obtain the
following result on existence and positivity of resolvent families.

Theorem 3.3. Let X be an ordered Banach space with cone K
normal and int K # @. Suppose a € L] (Ry) satisfies (H). The
following conditions are equivalent.

(1) (1.1) admits a positive resolvent family.

(2) A generates a positive Cyy semigroup.

Proof. First we observe that a(A) — 0 as A — oco. From [1, Theorem
2.2.7] we know that A generates a positive Cy semigroup if and only if
the operators (I —aA)~! exist as positive operators for all small a > 0.
Therefore, the conclusion follows from Theorem 3.1 and [11, Theorem
5]. O

Remark 3.4. Let X be an ordered Banach space with cone K normal
and int K # &. Suppose (1.1) admits a resolvent family and the kernel
a satisfies (H). Then, by [1, Proposition 2.14] and Theorem 3.1 we
obtain that S(t) is positive if and only if the following property holds:



STRONGLY CONTINUOUS RESOLVENT FAMILIES 327

If

ze€DANK, z*eK" and z*(z) =0 then z*(Az)>0.

In particular, for a(t) = 1, we recover a result proved by D. Evans
and H. Hanche-Olsen [3, Theorem 1] concerning the characterization
for generators of norm continuous semigroups of positive operators, see
also [10, Theorem 1.11].
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