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IMPROVED CONVERGENCE RATES FOR
SOME DISCRETE GALERKIN METHODS

MICHAEL GOLBERG

ABSTRACT. We show how to improve the estimate of
the convergence rate of a number of discrete polynomially-
based Galerkin methods for Fredholm and Cauchy singular
integral equations. This has been accomplished by sharpen-
ing the bounds on the quadrature errors in a manner analo-
gous to that of Joe [14] for spline-based methods. These re-
sults are then extended to establish the convergence of some
discrete Galerkin methods for one-dimensional hypersingular
equagions and some boundary integral equations on the sphere
in R°.

Introduction. In a number of recent papers we have examined
the convergence rate of various polynomially-based Galerkin methods
for Fredholm and singular integral equations [8-12]. The convergence
analysis took into account the effects of quadrature errors and for
Fredholm equations may be seen as complementary to similar results
of Atkinson and Bogomolny [4], Joe [14] and Spence and Thomas [20)]
using spline bases. In the case of splines, the above authors were able
to obtain optimal convergence rates, i.e., convergence rates equal to
that of the best approximation to the solution by splines of a given
order. For polynomial approximations we were unable to do this, in
part because of over estimation of various quadrature errors. In this
paper, making use of an argument analogous to that of Joe [14] for
spline approximations, we are able to improve our estimate of the
convergence rate from 0(n "*!) to O(n "*2) where n is the degree
of the polynomial approximation. This seems the best that can be
done by perturbation techniques.

The paper is divided into five sections. In Section 2 we review our
previous results for Fredholm and Cauchy singular equations and indi-
cate where improvements to our prior analysis can be made. In Sec-
tion 3 we provide new estimates of quadrature errors generalizing those
in [10-12]. These are then applied to improve the convergence rates
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given in [10-12]. In Section 4 we extend these results to establish the
convergence of a discrete Galerkin method for hypersingular integral
equations discussed by Frenkel [6] and us in [10, 11]. In Section 5 we
analyze the convergence of some discrete Galerkin methods based on
spherical harmonics for integral equations on the sphere.

2. Discrete Galerkin methods.

2.1 Fredholm equations. We consider the numerical solution of the
integral equation

(2.1) u(z) = /_ (@ u(t) dt+ £(2)

where x(z,t) is continuous on [—1,1] x [—1,1] and f(x) is continuous
n [—1,1]. We assume that (2.1) has a unique solution. Let Ly be the
space of real square-integrable functions on [—1, 1] with inner product

(2.2) o) = | gty de
and norm

(2.3) I£1l = ((f, £))M2.

To solve (2.1) by Galerkin’s method let {¢x} be the normalized Leg-
endre polynomials and approximate u by

(2.4) Uy = Zakgok
k=0

where the coefficients {ay}}_, are determined by solving

n

(25) aj_Z<K¢k7§0j>ak:<fa(pj>a .7:0717 s Ty
k=0

and

(2.6) Ku(z) = / (2, E)u(t) dt.
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Under the stated conditions on x and f it is well known that for all
n sufficiently large that u,, exists, is unique and

(2.7) lu —un|| <en™™

if Kk € C" and f € C", thus establishing the convergence of u, to u.

One can also show that u,, converges uniformly to u if r > 2 and [12]
(2.8) [lw — tnlloo < en 132

where || - || is the uniform norm.

In general the integrals in (2.5) cannot be evaluated analytically, so
some type of numerical integration method needs to be used to obtain
approximations to (f, ;) and (K g, ¢;). For this we define integration

rules {QM(n) }

(2.9) [ ot)dt = Qunlo) = 3wty

-1
where

(1) w>0,1=1,2,...,M(n);

(2) Qnr(n) has precision at least 2n; that is,

(2.10) Qum@ny(9) = / g(t)dt

-1

for all polynomials of degree < 2n. (For simplicity we will suppress the
dependence of M (n) on n for the remainder of the paper.)

Using Qs we define the following approximations:

and

<K<Pk,¢j>:/1/ k(z, t)or(t)p;(z) dr dt

-1

(2.12) ~ Z Zw,wmn(wm,tl)@k(tl)%(mm)
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where {z,,} and {#;} represent the same sets of points.

Substituting (2.11)—(2.12) into (2.5) and letting v, be the resulting
approximation to u,

(2.13) Un =Y brgk
k=0

where {b}}_, satisfy

(2.14) bj— > b [ S wmwik(@m, t) ek (t) e (Tm)
k=0 m=1 [=1

M
= Z Wi f(2m)@j(Tm), 0<j3<n.
m=1

The method defined by (2.13)—(2.14) is called a discrete Galerkin
method.

To prove the convergence of v, and to obtain rates of convergence
we use the theory of perturbed projection methods as in [12]. Then
some tedious algebra shows that v, defined by (2.13)—(2.14) satisfies
the operator equation

(2.15) Uy = TnKpvp + 70 f,
where
M
(2.16) Kpu(z) = Zwm(m,tl)u(tl)
=1

and 7, is a ‘discrete projection’

n

(2.17) () =Y Qur(upr)er(@).

k=0

Letting P,, be the operator of orthogonal projection onto X,, = span
({¥r}7_p), some rearrangement of (2.15) gives

(2.18) v, = P,Kv, + Ryv, + Pof + 7
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where

(2.19) R,v, = —(P,Kv, — 71, Kpvy)
and

(2.20) o = —(Pof — Tnf)-

Note that R, may be viewed as an operator from X, — X, and
v € Xp.

Using (2.17), (2.20) and the fact that

(2.21) Pof =Y (f,0r)0%

k=0

Ty = —

(f,om)0r+ Y Qufeor)pr

k=0

(fron) — QM<fsok))sak]

NE

I
=]

(2.22) =

x~
I

|
| — N
[+

0

NE

ex(for) e
k

Il
=)

where e, (for) = (f, k) — Qun(fer) is the integration error in approx-
imating (f,¢x) by @um (fek)-

Similarly

n

(2.23) Rovn =Y Br(kvaor)on
k=0

where Ej(kvn¢r) is the integration error in approximating (K vy, ¢k)
by Qu X Qum (Kvn@k)-
Letting

(2.24) [Rplln = lub{|| Rnwnl], wn € Xn, |lwa| =1}
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it follows from Theorem 1 of [18] that if ||R,|, — 0 and |ry|| — O
that, for all n sufficiently large, v,, — u and

(2.25) lu = vnll < clllu = unll + [[Ralln + 7l

Since ||u — uy|| is bounded by (2.7), it suffices to bound ||R,|, and
|lrn|| in order to bound ||u — v,||. In [12] we used the bounds

n 1/2
(2.26) lrall = [Zewm]
k=0

and
n o n 1/2
(2.27) Rl < [ZZEJQJ :
k=0 j=0
where
(2.28) Ejr = (K¢k, pj) — Qum X Qu(kprp;)

is the integration error in approximating (K¢, ¢;) by Qum xQum(Kere;).

In [12] (2.27) was obtained by expanding w,, = >, _o CkPks > peo Co =
1 so that

Rpwn =Y > Ejk(kpre;)en

k=0 j=0

and then using the Cauchy-Schwarz inequality. From this and the
results for the integration errors given in [12] we found that ||r,| <
en "TY2if f € €7, and ||Rulln < en "t if & € CT,r > 1. This gave

(2.29) u — vn|| < en™" 1, r> 1

However, if we do not expand w,, as above, then
n 1/2
(2.30) ||Rn||n = lU‘b{HwnHzl} [Z E,%(nwngak)} .
k=0
By modifying the proof in [12] it will be shown in Section 3 that

(2.31) Byl <n™"
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for all w, € X, such that ||w,| = 1. It then follows from (2.30) that
|Rplln < en~"t1/2 the same bound as for ||r,||. Thus (2.25) gives

(2.32) u— vy < en™"F2

an improvement over the bound ||u — v,|| < en™ "1 given in (2.29).

Unfortunately the bound in (2.32) still appears not to be optimal
since it was shown in [12] that ||u —v,|| < en™" in the special case that
Qn is n + 1 point Gaussian quadrature. On the other hand, it seems
that (2.32) is the best that can be obtained by perturbation methods.

2.2 Cauchy singular equations. Here we consider solving the Cauchy
singular integral equation (CSIE)

(2.33) av(z) + b /1 o) dt + /1 k(z,t)v(t) dt = f(z),

™ _lt_m -1

where the first integral in (2.33) is a Cauchy principal value, and for
convenience we assume a? +b*> = 1. When «(z,t) = 0, it is well known
that the solution of (2.33) is given by

(2.34) v(z) = w(z)u(z),

where

(2.35) w(z) = (1-2)*(1+z)°,

(2.36) o= ﬁ log {Z%zz] + N,
(2.37) B = —ﬁ log [Z%EZ] + M,

and M and N are integers determined so that the index v = —(a+3) =
—(N + M) is restricted to the values —1,0,1. This guarantees that
the solution to (2.33) is integrable if f(x) is Ho6lder continuous. For
simplicity we only consider the case v = 0. (For the case v = 1 we refer
the reader to [10, 11]. The analysis for v = —1 seems not to be in the
literature.)
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The representation v(z) = w(z)u(x) when k = 0 suggests the

substitution v(z) = w(z)u(z) in (2.33) with u(z) satisfying

(2.38) aw(z)u(z)+ ;][ M dt

For convenience we write (2.38) in operator form

(2.39) Hut Ku=f,
where
(2.40) Hu(z) = aw(z)u(z) + % ]{1 w(tt)ﬁ(? dt
and

1
(241) Ku() Z[Iw(t)m(m,t)u(t) dt.

We assume that (2.39) has a unique solution.

To solve (2.39) by Galerkin’s method, let {¢x}32, be a set of Jacobi
polynomials for w(z) normalized so that

(2.42) [ w(e)iE(e)dz = 1.

Similarly let {Xx}7, be a set of Jacobi polynomials for 1/w(z) nor-
malized so that

(2.43) / 02 (2) /w(z)] dz = 1.

-1
Then it is known that {X;} can be chosen so that [11]

(2.44) Hyy, = X, k> 0.
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Now let L,, denote the space of real functions square-integrable with
respect to w, and similarly L,,, is the space of functions square
integrable with respect to 1/w. The inner product on L,, p = w,
or 1/w is given by

(245 ()= [ o000

-1

and the corresponding norm by || - |[,.

From (2.44) it follows that H can be extended as a bounded invertible
operator from L., — Ly, If s(x,t) is continuous, then & defines a
compact operator K : L, — Li;,. We assume this to be the case
for the remainder of the paper. Thus H + K may be considered as a
bounded linear operator from L,, — L;,,. Hence, we consider (2.39)
as the problem of finding a unique u € L,, for each f € Ly,,.

Using these preliminaries we look for approximations to u given by

(2.46) Un = Y agti
k=0
with {ax}_, determined by setting the residual §,, = (H + K)u,, — f
orthogonal to {X;}}_, in the L,/,, inner product, i.e.,
(2.47) (Hup + Kuy — f,Xj)1/w = 0, 0<j<n.
Using (2.44) and the fact that (Xg,X;j)1/w = Okj, (2.47) becomes

(2.48) a; + Z(K%,th/wak = (f,X5)1/w> 0<j<n.
k=0

In [11] it was shown that if « is continuous, then for all n sufficiently
large u,, exists, is unique and
(2.49) |l = un|lw < c||[Hu — QnHul|1/y
where Q,, is the orthogonal projection of L/, onto Y, = span

({X;j}}=0). Since Qng — g for all g € Ly, it follows from (2.49)
with ¢ = Hu that u,, — u in L,,.
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To get convergence rates, assume that f € C” and k£ € C7, then
Hu = f— Ku € C" and it follows from (2.49) and Jackson’s theorem
[5] that

(2.50) lu = upllw < en™,

which is analogous to (2.7) for Fredholm equations.

However, as for Fredholm equations, the practical implementation of
(2.46) and (2.48) requires that the inner products in (2.48) be evaluated
numerically. For this we introduce quadrature rules @y and Qs where

1 N
@) [ lo@)/u@)de = Qule) = Y omalen),

-1

and

(252 [ w050 de=Quip) = Y- wgta).

-1

In addition, we require that

(2.53)

(1) 6, >0, 1<m<N, w; >0, 1<1< M,
(2.54a)

2) Qnlo) = / [o@)/uw(z))da, Vg € Yan
(2.54b)

1
(3) Qulg) = / w(@)g(@)dt, Vg€ Xon.
-1
Then we approximate

(2.55) (£, Xih/w = QN (fX;),

and

(2.56) (K, Xj)1/w =~ Qu X QN (KYrX;)-
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In [10] we analyzed the convergence of the approximation v, to wu,
given by replacing the integrals in (2.48) by (2.55)—(2.56). For this we
observe that

(2.57) Un = brty
k=0

where {b;}}_, satisfy

n N M

(2.58) bj+ > { DD omwis(@m, t)vr(t)X; (ﬂﬁm)] bk

k=0 "m=11[=1

N
= Z UMf(mm)XJ (Tm)
m=1
Letting
(2.59) Tt = QN (uXk)Xk
k=0
and
M
(260) Knu - Zwln(xatl)u(tl)a

=1

it was shown in [10] that (2.57)—(2.58) are equivalent to the operator
equation

(2.61) Huvp 4+ QnKvy 4+ Rpyvn = Qnf + Tn,
where

(2.62) Ryvy = —[QnKvy — 1 Kpvy],
and

(2.63) Tn = —[Qnf — mufl;

where R, : X,, = Y, and r, € Y,,.
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As for the Fredholm case, it can be shown that

(2.64) Ryvy = = Bi(kXkvn) Xk
k=0

and

(2.65) e =— Y ex(fXk)Xk
k=0

where Ey(kXvy) is the integration error in approximating (K vy, Xg)1/w
by Qum x Qn(kXxv,) and ex(fXy) is the error in approximating
(f,Xk)1/w by QN (fXk).

Using the result in [18] convergence of v, — u is guaranteed if
|Rnlln — 0 and \|7“n||1/w — 0 where

(2.66) [ Rnlln = lubgjjw, |, =1} {1 Rawnl1/w}-
In [10] we used the bound
n n 1/2
(2.67) 1Bl < [ZZE%]
k=0 j=0

where Ej, = (Kvj,Xg)1/w — Qm X Qn(KY;Xk). For k(z,t) € C"
this gave the error bound || Ry, < cn ™" [10]. Similarly, ||rs1 /., <
en~"11/2 and using this in the estimate

(2.68) [t = vnllw < clllu = tnllw + [|Bnlln + lIrall /o]
gives
(2.69) lu — vplw < cn™" L

To improve on this here we use

n 1/2
(2.70) [ Bnlln = lubgjju, |1, =13 [ZEE] :
k=0
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From Theorem 3.2 and (2.70) it will be shown that

(2.71) IRn|ln < en™"+1/2
so that
(2.72) llu — vpllw < en "2,

Again, this appears to be the best that can be obtained using pertur-
bation theory.

We now proceed to obtain the bounds on the integration errors needed
to establish (2.32) and (2.72).

3. Bounds on integration errors.

Theorem 3.1. Let w(z) > 0 be a nonnegative integrable weight
function, and let {pr} be the orthogonal polynomials associated with w.
Let X, = span ({¢x}}_y) and v, € X,, with ||v,|| = 1. Consider the
integral

(3.1) I, = / w(z) f(z)v, () de

-1

where f € C". Suppose I,, is approzimated by Qn(fun) where Qs is
an integration rule satisfying (2.53)—(2.54). Then the error

(3.2) e=1I,—Qum(fvn)
satisfies
(3.3) e <en™",

where ¢ depends only on f.

Proof. Since prv, € Xopn, 0 < k < n, and Qp(g) = I, for all
g € Xop, e(fv,) =0for all f € X,,. By Lemma 4.1 of [12]

3.4 < inf ||If -yl
(3.4) lel < inf [If = ylloollell
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where ||e|| is the norm of e considered as a linear functional C[—1,1].
By Jackson’s theorem [2]

iergn If = ylloo < en™", n>r.

Thus we need to bound ||e||. Hence
1 M
(35) el < /1W(9«“) |f (@) lon(@)| dz + Y~ winl £ (tn)| [0 (tm)]-
- m=1
By the Cauchy-Schwarz inequality for integrals and sums

1
/ w(@) f (@) [vn () | d

—1

(3.6) <[[ wrr@a] v [ wteie ad v

_ [/1 w(a)f(z) d

(3.7) <l [ 11 wa)ds]

since f_ll w(z)v2(z)dr = 1. Also

Z Win | f(Zm)] [Vn (Tm)]

m=1

(38) < [iwmwm)ﬂ v [iwmvmm)]

M 1/2
<l | 3 ]

(39) S| /_ u(o)ds] v

since vi € Xo, and Qs is exact for all g € X5,. Thus

1/2

(3.10) <2 [ w ] 1l
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giving
1 1/2
(3.11) el < 2[/ w(z) dm] .
-1
Hence |e| < 20[f_11 w(z) dz]/?n=", n > r. o

Theorem 3.2. Let p > 0, v > 0 be nonnegative weight functions on
[—1,1], and let {pr} and {Xr} be the orthogonal polynomials associated
with p and v, respectively. Let k(z,t) € C"([-1,1] x [-1,1]) and
consider the integrals

(3.12) I, = 1 1 1 Dl O(e. )z ) (1) d

where v, € span ({Xx}p_,) and z, € span({pr}r_,) with ||vn|, =
llznll = p = 1. Then the error

(3.13) E=1,—Qun x Qn(kvnzn)
satisfies
(3.14) |E| <cn™", n>r

where ¢ depends only on k(z,t) and not on n.

Proof. By definition

1ol
E = /;1 /71 p(2)y(t)k(z, t)vn(t) zn(z) de dt
(3.15) N M
- Z Z O1Wim K (1, trn ) U (b)) 20 (1) -

=1 m=1

Letting

(3.16) hm(x) = k(z,tm), 1<m< M,
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and

(3.17) h(t) = / p(@)R(, )20 () da,

(3.18) E= / VOO dt = 3 W () O (Ba2)-

But

1
(3.19) Qn(hmzn) = | p@)(@; tm)zn (@) do = e(limn)
=h tm) - e(hmzn).

Using (3.19) in (3.18) gives
E= /_ (O (1) di
(3-20) - Z wmvn(tm)[h(tm) - e(hmzn)]

_ / YO 1) + S W (tm)e(hmzn)

-1

- Z WiV (Em ) (Em)

(3.21) = e(hv,) + Z WiV (b ) €(RAm2n)-

m=1

By the proof of Theorem 3.1 |e(hv,)| < can™ " and |e(hmz,)| < can™"
uniformly in m. (The uniformity in m follows from the error formula
in Jackson’s theorem [3].) Thus

M
|E| <ein™ " +can " Z Wi | Vg, (Em) |-
m=1
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By the argument in Theorem 3.1

1/2

(3.22) ﬂiwmm(tmn <[/ 0 al "

so that

(323) |E‘ < cln_T + an_r < C4n_r. [}

Summarizing our arguments in Section 2 and using Theorem 3.2 we
get the following theorems.

Theorem 3.3. Let v,, be the discrete Galerkin approxzimation to the
solution of the Fredholm equation (2.1). If f € C" and k € C", r > 1,
then v, converges to u in Ly and |lu — v,|| < en~"+1/2,

Proof. This follows from the error bound (2.25) and Theorem 3.2
with p=~v=1,v, € X,, and z,, = pg, 0 < k < n. a

Theorem 3.4. Let v, be the discrete Galerkin approximation to the
CSIE (2.33). If f € C", k € C", r > 1, then v, converges to u in Ly,
and ||u — vp||w < n7TH/2,

Proof. This follows from the error bound (2.68) and Theorem 3.2
with y = w, p = 1/w, v, € X,, and 2z, = Xy, 0 < k < n. o

Remark. In [10] we analyzed a collocation method for the CSIE
(2.33) with u = w, = > ,_, artr with {a;} obtained by setting
(H+K)un(zj)—f(z;) = 0,0 < j < nwhere {z;} are the zeros of X;,11.
When the integrals {Kwu,(z;)} were approximated by using Qs in
(2.52), it was shown that the corresponding discrete collocation method
v, converges to u in Ly, and ||u — vy|le < en™"t/2. Theorem 3.4
shows that the discrete Galerkin and collocation methods appear to
converge at the same rate. In [13] we showed that the discrete Galerkin
method can be implemented using an ‘almost sparse’ matrix. This
suggests that the discrete Galerkin method may be more efficient than
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the corresponding discrete collocation method. This is in contrast to
the conventional wisdom on this subject [11].

One can define a similar discrete collocation method for (2.1) with
the same 0(n~"1'/2) convergence rate as for v,,.

5. A hypersingular equation. In recent years there has been
considerable interest in hypersingular equations as a means for solving
a variety of boundary value problems [16-18].

For the one-dimensional equation

1d /1 V1—1¢2
—1

4.1 -
(4.1) m dx t—ux

1
u(t) dt + /71 V1—t26(z, t)u(t) dt = f(x)

a Galerkin method was developed by Frenkel in [6] and analyzed by
Golberg in [8, 9]. In those papers it was assumed that all the integrals
were evaluated analytically. Here, using the results in Theorems 3.1 and
3.2, we analyze the convergence of a discrete version of this algorithm
where quadrature errors are taken into account. We begin by reviewing
the analysis given in [8].

For this we write (4.1) in operator form as
(4.2) Hu+ Ku=f

where

1d Ly1—¢2

4. Hu=—
(4.3) u=—o iz u(t) dt
and
1

(4.4) Ku = / V1= 2r(w, u(t) dt.

-1
If
(4.5) U,, =sin(n +1)#/sinb, f =cos 'z,

are the Chebyshev polynomials of the second kind, then [8]

(4.6) HU, = —(n+1)U,, n > 0.
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It then follows from (4.6) that H can be extended as a bounded linear
operator from L;(p) — L(p) where L(p) is the space of functions square
integrable with respect to p = (1 — 22)/2 and L;(p) is the subspace of
functions u € L(p) satisfying

(@) Jul? = i(k F )2 < o0
where _

(48) or = 200

and

(4.9 o= [ psoaa

If k(x,t) is continuous, then K defines a compact operator from
Li(p) — L(p) [8]. Thus, we consider solving (4.1) for u € Ly(p)
for f € L(p). We assume that (4.1) has a unique solution for each
f € L(p).

To solve (4.1) by Galerkin’s method we approximate u by

n
Upn = E APk
k=0

where {ax}_, are obtained by solving
(4.10) (H+ K)up — f,05), =0, 0<j<n.
Using (4.6) and (4.9) gives
(411) =G+ Da;j+ Y aelKor, 00 = (f,0i)p,  0<j<n.
k=0
In [9] it was shown that u,, — w in L(p) and

(4.12) lu —unll, <en™"
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if f € Cmand k € C". It was also shown that if » > 3 that [|u —
Un|loo < en~ "2, These results were obtained under the assumption
that {(Kyk,¢;j),} and {(f,¢;),} were evaluated analytically. For
practical implementation we consider quadrature rules {Q s} where

-1

@) [ p0e) = Qul) = 3 wngltn)

satisfying (2.53) and (2.54) and approximate

(4.14) (Kor, 0j)p ~ Qum X Qu(kprpj)
and
(4.15) (£,05)0 = Qu(fp))-

Then using (4.14) and (4.15) in (4.11) w,, is approximated by
(4.16) Un =Y brgk
k=0

where {b}_, satisfy

G+ b [ S wwn (@, )t 25(21)
(417) k=0 m=1[=1

M=

wi f(z1)p; (1),

N
Il
-

and {t,,} and {¢;} represent the same set of points.

Proceeding as in the Fredholm and singular cases, one can show that
v, satisfies the operator equation

(4.18) Hv, + P,Kv, + R,v, = P,f + 7,
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where P, is the operator of orthogonal projection onto span ({yx}7_),

(4.19)
ann = [ﬂ-nKn’Un - PnKvn] - - Z Ek(’ﬂpkvn)@ka
k=0
(4.20)
M
K,v, = Z Wi K(T, b ) O (Em),
m=1
(4.21)
TR = Z QM(U‘Pk)()Dka
k=0
and
(422) T =Tnf — Pof =— Zek(f(pk)‘pk

k=0
where Ej, and ey, are the quadrature errors in approximating (K vy, ¢k),
and (f, ox)p by Qu X Qum(kprvy,) and Qur(fer), respectively.

Using Theorem 1 of [18] to establish convergence of v,, it suffices to
show

(4.23) I7nllp =0

and

(4.24) IRl — 0

where

(4.25) [ Bl = lubgjuw,, =13 {l| Rnwnl|p}-

Since ||wyll, < [Jwn 1

||Rn||n < l“b{HRnwan:wn € Xn, ||wn||p < 1}
= IUb{HRnwan’wn € Xn, HwnHP =1}

= lubjju,1,=1y O _ | Br(kprwn)[*.
k=0

(4.26)



328 M. GOLBERG

Using Theorems 3.1 and 3.2, we find that

(4.27) |Rnlln < cyn~"H1/2
and
(4.28) Irnll, < cznf’““/2

if k € C" and f € C". Using (4.27), (4.28) and (4.12) and the error
estimate [18]

[ = vallp < [ = valh

(4.29)

< cfllu = unlly + | Ralln + [[rall,]
we find that
(4.30) u = vall, < en "2,

Thus, the discrete Galerkin method for (4.1) has a convergence rate
analogous to that for Fredholm equations and CSIEs.

5. Fredholm equations on the sphere. The results given in
Sections 2—4 are for one-dimensional equations. In this section we show
how our previous analysis can be extended to analyze an algorithm
developed by Atkinson for solving Fredholm equations on the sphere
when the data are smooth.

For this, let
D= {(z,y,2) e R® | 2® +y? + 22 =1}

be the unit sphere in R® and consider the integral equation
6.0 uP)= [ KP.QuQds+f(P), PeD,
D

where f € C"(D) and x(P,Q) € C"(D x D), r > 1. We assume that
(5.1) has a unique solution in C" for each f € C".

In a series of papers Atkinson considered solving (5.1) using Galerkin’s
method with spherical harmonics as a basis [1-3]. Here we analyze the
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convergence of the discrete version of this algorithm using integration
rules analogous to (2.9) for the one-dimensional case.

Now let X,, = span ({V;;,0 <1< n,1 <m < 2l + 1}) be the set of
spherical polynomials of degree < n where {Y},,} are the normalized
spherical harmonics on D [2]. The dimension of X,, is N(n) = (n+1)%
As is well known, {Y},,} is an orthonormal basis for X,,.

Let {Yl, e ,}A/N} be an ordering of {Y},,} and approximate u by

N
(52) unN = Zakffk
k=1

where {ay}I_, are determined by solving

N
(5.3) a; =Y (KYi,Yj)ar + (f,Y;), 1<j<N,
k=1

and the inner product ( ,) is given by
(54 (9) = [ fP)g(P) ds.
D

In [2] it was shown that uy — w in Ly(D) and
(5.5) lu —unl| <en™".
(In fact in [2] only K : Ly — C" was needed, so that singular potential
kernels satisfy the theory.)

As for the one-dimensional cases practical implementation of (5.2)—
(5.3) requires the numerical evaluation of the integrals in (5.3). To do
this, suppose that QQys is a quadrature rule

M
(5.6) /Dg(P)ds ~Qum(g) = Y wmg(Pm), PmeD,
satisfying
(5.7) (1) wp>0, 1<m<M
(5.8) 2) Quio) = [ o®)ds, Yg€ Xan,
D
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One example of such a rule is

2(n+1) n+1

) =46 Z Zw]g 0,0,

where § =7/(n+1), ¢; =i and {w;}{cosb;} are the Gauss-Legendre
weights and nodes on [-1, 1], where g(, ¢) = g(sin 6 cos ¢, sin 6 sin ¢, cos )
is the representation of g in spherical polar coordinates on D.

Then approximate

(5.9) (f,Y5) = Qu(1Y5)
and
(510) <KYk, > QM X QM(HYkY)

This gives vy ~ uy where
(511) UN = Z kak
and {b,}2_, satisfy

bj =Y by [ DD wwmk(Pom, Q) Ye(Qu)Y; (Pr)

=1

~

k=1 m=1

(5.12) T
+> wf(Q)Y;(Q),
=1

and {P,,} and {Q,} represent the same set of points.
Letting P be the orthogonal projection onto X,,,

M
(5.13) Kyu="Y wis(P,Q)u(Q)
=1
and
N A~ A
(5.14) mvu =Y Qu(u¥i)Y,

k=1



DISCRETE GALERKIN METHODS 331

vy satisfies
vy = PNKvy + Ryuvy + Py f + 7N

where
N
(5.15) Ryvy = [PvK — nnEnJoy = Y | Ex(kYion)Yi
k=1
and
N
(5.16) rn=—[Pxf—mnfl= ex(fYe)Vi.
k=1

As in the one-dimensional cases, define

IRN|IN = lub{||Rywn]|, wn € Xn, |lwn|| =1}

5.17 AN b
(17 Zlubuwm:l}[ZEz(“kam] ’
k=1
and
N /2
(5.18) ||rN||=[Zek(fYk)] .
k=1

Then we can show that vy — wu provided that
(5.19) |IRn||w =0 and |ry|| — 0.

For this we need to bound the quadrature errors Ek(nffkwN) and
ex(fY3). This is done just as in Theorems 3.1 and 3.2 with a theorem
of Ragozin replacing Jackson’s theorem to bound the uniform approx-
imation error of f and k by spherical polynomials of degree < n. To
avoid being repetitive, we will just state the relevant results and give a
brief outline of the proofs.

Theorem 5.1. Let f € C"(D), r > 1, and let Qu be a quadrature
rule satisfying (5.7)—(5.8). Let wy € X, with |lwy|| = 1. Then the
integration error

(5.20) e(fwn) = (f,wn) — Qu(fwn)
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satisfies
(5.21) le] <en™ T, r>1,
where ¢ depends only on f and not on n.
Proof. Arguing as in Lemma 4.2 of [12] using (5.7)—(5.8) we find that

5.22 < ¢ inf _
(5.22) el <e inf If g

where ¢ depends only on f and not on n. By a theorem of Ragozin [19]
there exists a function A € X,, such that

(5.23) If = Rlloo < en™"[f]]r

where || f||; is the C" norm of f given in [19]. Henceinfycx, ||f—g|loc <
If — hllooc < en™7||f]l- and using this in (5.22) gives (5.21). o

Corollary 5.1. |ry|| <en "t r> 1.
Proof. Use (5.23) in (5.16). O

Theorem 5.2. Let k(P,Q) € C"(D x D), r > 1, and let Qs satisfy
(6.7)-(5.8). If wy € X,, and zy € X, with ||lwn]| = ||zn]| = 1, the
integration error

(524) E(muNzN) = (KwN,zN> — QM X QM(Ii’wNZN)
satisfies
(5.25) |E| <en™T, r>1,

where ¢ depends only on Kk and not on n.

Proof. Repeat the argument in Theorem 3.2 using Theorem 5.1 in
place of Theorem 3.1 and using Ragozin’s theorem in place of Jackson’s
theorem. ]
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Corollary 5.2. |Eg| < cn™" independent of wy.

Proof. Letting zy = Vi, 1<k<Nin E(Hwa/k), then (5.25) gives
|E| < en™" independent of wyy. ]

Corollary 5.3. ||Ry|lxy <cn "t

Proof. Using Corollary 5.2 ,

N 1/2
fub(juwx =1} {Z El%("@wNYk)] <enn " =cn "L O
k=1

Using Theorems 5.1-5.2 one establishes the convergence of vy .

Theorem 5.3. Let f € C"(D) k € C"(D x D), r > 1, and {Qum} be
a sequence of quadrature rules satisfying (5.7)—(5.8). Then vy — u in
L?*(D) and

(5.26) lu —vn|| < en™ T,

Proof. From Corollaries (5.1)=(5.3) |[rn]| — 0 and |[|[Ry|ln — O.
Hence, it follows from

(5.27) lu— vl < efllu — unl| + |Bylly + [Irv|] < en™"*

and Corollaries (5.1)—(5.3) and (5.5) that vy — u and |lu — vy <

en "L O

Again, as in the one-dimensional cases, this appears to be the best
bound that can be obtained by perturbation methods. For another
approach to this problem, see [7].
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