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PASSIVE BOUNDARY DAMPING
OF VISCOELASTIC STRUCTURES

WOLFGANG DESCH, KENNETH B. HANNSGEN AND ROBERT L. WHEELER

ABSTRACT. We consider a linear viscoelastic structure
controlled and observed by finitely many collocated actuators
and sensors. We discuss properties of the open loop transfer
function and the corresponding impulse response. Moreover
we give a decomposition formula for the solutions of the closed
loop problem with passive boundary damping in terms of
solutions with energy conserving boundary conditions.

1. Introduction. This is a technical paper on the role of damping
boundary conditions for the motion of viscoelastic structures. The
mechanical systems that will fit into this framework are made up of
one or several viscoelastic parts and their motion satisfies the following
conditions:

e The deflections are small enough to justify a linear constitutive
law.

e If large rotations of the system as a whole are considered, the
system obeys symmetry relations which allow the angular velocities to
enter the equations linearly. (Usually violated if the center of rotation
itself may move.)

e Finitely many sensors and actuators, located at the boundary,
control and observe the motion of the system. Sensors and actuators
are collocated.

e The mass of the sensors and actuators is small enough to be ignored.
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By now two aspects of such systems have been thoroughly investi-
gated:

The dynamics of linear viscoelastic structures with energy conserving
boundary conditions is well understood. This concerns not only well-
posedness of the initial value problem, but also the dependence of
smoothing and damping behavior on the properties of the relaxation
modulus. A vast literature on special problems exists. In addition,
a general theory is available that covers a broad variety of different
structures. Very roughly, the essence of these investigations is that the
qualitative behavior of the system is almost exclusively governed by the
relaxation modulus, i.e., by the material, while the geometric structure
of the system, expressed by the form of the differential operators,
determines only the precise location of poles.

On the other hand, special systems have been investigated with re-
spect to boundary feedback damping and the limitations of damping
due to slow creep modes or to its nonrobustness with respect to time
delay. These investigations are mostly based on explicit calculations
of transfer functions, and are therefore confined to comparably simple
systems such as rods or beams. The geometric configuration of the
system (or its model) plays a much more important role in this con-
text. There are, for instance, deep qualitative differences between a
Timoshenko beam and an Euler-Bernoulli beam.

In order to avoid misunderstandings, let us explain briefly what we
mean by the expression “geometric configuration” as opposed to mate-
rial properties, without any claim that our terminology is more than an
appeal to assign an intuitive meaning to our abstract theorems. Here,
“geometry” refers not only to the physical object modelled but also
to the structure of the model chosen. It may be surprising to read
that we find a geometric difference between an Euler-Bernoulli beam
and a Timoshenko beam, which is basically a system of coupled wave
equations. Both equations may refer to the same physical beam. How-
ever, the Euler-Bernoulli model is derived from the assumption that the
beam performs only motions such that the cross sections orthogonal to
the axis in the undeformed configurations stay orthogonal to the (bent)
axis in deformed configuration. In particular, deformations described
by an Euler-Bernoulli model are restricted to be shear free. The Tim-
oshenko model allows for some shear, still much more restricted than
a three dimensional model. Considering the degrees of freedom of the
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admissible motions, we see that in some sense the geometry of these
models is strikingly different. This is reflected in the different way
“strain” is computed from the displacements and the way “divergence”
of the stress is evaluated, in order to compute the resultant forces in
Newton’s equation.

The objective of the present paper is three-fold. We propose a general
setting that covers a variety of viscoelastic systems controlled at the
boundary. The transfer function of the open loop control problem in
this generality is characterized. In particular, we show how strong the
singularity of the relaxation kernel at 0 has to be in order that the
transfer function corresponds to a locally integrable impulse response
function in the time domain. Finally, we show that state space settings
for the system with damped boundary conditions inherit much of
the qualitative behavior from the corresponding systems with energy
conserving conditions. This can be seen from the observation that in
the frequency domain the solution to the damped problem is a convex
combination of solutions to some undamped problems. Of course,
most frequency domain estimates for problems with energy conserving
boundary conditions could be redone for passive damping conditions
with some efforts. However, this paper states a general principle why
such estimates have to carry over from the energy conserving case to
the situation of passive damping.

The paper is organized as follows: Section 2 presents the abstract
framework and explains by an example how to apply it to a viscoelastic
structure. It is also shown how the standard examples of a rod and an
Euler-Bernoulli beam fit into the setting. Section 3 states our results
and discusses some of their relations to existing literature. The proofs
are deferred to Section 4 containing the functional analysis part and
Section 5 containing the linear algebra part.

2. The setting.

2.1. The abstract viscoelastic equations. We consider the
following abstract integrodifferential system describing the motion of a
viscoelastic solid body.
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System 2.1.
d
R%v(t) = Do(t),
o(t) = /7 A(t — s)Dv(s) ds

with additional feedback conditions relating

p(t) = Po(t) and ¢(t) = Pou(t).

Here v denotes the velocity field, and o denotes the stress field. The
first equation is Newton’s equation of momentum. D is a suitable
differential operator, R represents the mass density of the material.
The second equation is the constitutive equation of the material. D is a
differential operator that relates the displacement to linear strain. A(t)
describes the stress relaxation modulus of the material. The operator P
relates the stress field to a vector p consisting of finitely many control
forces py,... ,pn, while P relates the velocity field to finitely many
velocities q1,... ,q,, observed at the position of the actuators which
exert the control forces. (Instead of forces and velocities one may as
well consider torques and angular velocities.)

Throughout this paper we require the following assumptions. Our
first hypothesis concerns the operators describing the geometric config-
uration of our system.

Hypothesis 2.1. X andY are Hilbert spaces, D : X D dom (D) —
Y and D : Y O dom (D) — X are unbounded linear operators. P :
dom (D) — R™ and P : dom (D) — R" are linear operators, relatively
bounded with respect to D or D, respectively. For all 0 € dom (D) and
all v € dom (D) the following identity holds:

(2.1) (Do, ) + (o, Dv) = (Pa, Pv).

Here, (, ) denotes the inner product in each Hilbert space. Moreover,

if D1, Dy, Py, Py are extensions of D, D, P, P, respectively, such that

<D10’, U> + <O’, Dl’U> = <P1(T, 151U>
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holds for all ¢ € dom (D;) and all v € dom (Dy), then D = D,
D =D, P=P, P=P. In particular, P and P are surjective
onto R™.

We assume that the density is bounded and bounded away from 0:

Hypothesis 2.2. R is a bounded, self-adjoint linear operator on'Y
which is positive definite and admits a continuous inverse.

The last hypothesis concerns the constitutive equation of the mate-
rial. In this paper we make no claims on the well-posedness of Sys-
tem 2.1. Therefore we give only minimal hypotheses on the Laplace
transform of the relaxation kernel A(t). For some results it is sufficient
to have them only in the right half-plane; sometimes we will require a
domain U which contains a sector with an angle opening larger than .

Hypothesis 2.3. Fort € (0,00) let A(t) be a bounded linear operator
on X. For fized x € X the function t — A(t)z admits a Laplace
transform A(s)x for R(s) > 0. The operator A(s) can be extended
analytically to s € U, where U C C\ (—00,0] is a domain containing
the open right half-plane.

For each fized s € U, the operator /Al(s) is continuously invertible,
and there exist constants M(s) > 0 and 6(s) € (0,7) such that for all
z € X\ {0}

‘< §A<s>x>‘ > M(s)]a]?,

A € (=6(),0 # () >0,
(A ey 30

If s > 0 is real, then A(s) is self-adjoint and positive definite.

A large class of kernels frequently considered in viscoelastic problems,
including kernels of fractional derivative type, fits into the hypothesis
above.
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Proposition 2.1. Fort € (0,00) let A(t) be a bounded linear op-
erator on X. Let A be completely monotone in the following sense:
There exists an operator valued function G and a nondecreasing func-
tion v : [0,00) — [0,00) such that for all x € X

A(t)z = /0 e GO dn(Q).

For each ¢ > 0, the linear operator G({) is bounded, self-adjoint and
positive semi-definite. For each x € X and each t > 0, the function
e~S'G(¢)z is Bochner integrable on [0,00) with respect to the measure
dv. Moreover, we assume that ||A|| is integrable on [0,1], and that for
some tg > 0 the operator A(tg) is continuously invertible. Then A
satisfies Hypothesis 2.3 with U being the open Tight half-plane.

Proof. The proof can be given by straightforward computations, using
the formula

A = [ 60 a0,

(For details on this type of completely monotonic operator-valued
kernel see [7].) mi

We obtain uniforn} estimates on domains Uf; where the conditions on
the phase angle of A(s) hold uniformly:

Hypothesis 2.4. Uy C U and there exist § € (0,7) and 6 € (0,7)
such that for all s € Uy and all x € X \ {0}

arg <<x, %A(s)az>> ‘ <.

2.2. An example from three-dimensional viscoelasticity. To
explain the meaning of the abstract equations, let us start with the
following example.

|arg(s)| <0 and

Example 2.1. Consider a viscoelastic solid, filling a domain Q C R3
in stress-free reference configuration. Several rigid patches are glued to
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FIGURE 1. A body controlled by finitely many actuators.

the body and cover the disjoint parts I'y,... ,I[',, of the boundary. The
remaining part Iy of the boundary is free. These patches can be moved,

with one degree of freedom each, in the directions wy, . .. , w,, and their
velocities ¢1, ... , g, are observed by sensors. Simultaneously they can
exert forces p1,...,p, to control the motion of the body. We consider

only small deformations, so that a linear constitutive law is justified.

For technical reasons we assume that  has a piecewise smooth
boundary. Let ¢t denote time and x = (x1,x2,x3) the (Lagrangian)
space coordinates. The vector v(t,z) denotes the velocity field, the
symmetric 3 x 3-tensor o(t,z) denotes the stress field. The positive,
scalar valued function p(z) denotes the density (in reference configura-
tion). Newton’s law of momentum reads then

°. 0
P() txzza—mt:c

Let £(¢t, z) denote the time derivative of the (linear) strain tensor:

. 1] 0 0
€ij(t,x) = 3 [%vj(t, z)+ %Uz’(t,x)}
? J
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Assume that the material satisfies a linear viscoelastic constitutive
equation

t 3
0ij(t, ) = / > aijnlt — s,2)ép(s, x) ds

0 k,i=1

with a relaxation modulus a(t, ) = (ai;ri(t, z)) which is a fourth order
tensor depending on space and time and satisfies the usual symmetry
conditions

Qijkl = Qjikl = Qijlk = Oklij-

The boundary condition for the free boundary is
3
Zaij(t,x)nj(m) =0 fori=1,2,3, z €y,
j=0

where n(z) is the outward unit normal vector at z. At the patches I';,,
m = 1,--- ,n, the velocities are confined to the directions w,,, and the
stresses integrate up to the control forces:

vi(t,x) = gm(t)wm; with some g, (t) € R,

/F > wmioij(t,x)n;(x) dS = pput)-

™ i j=1

Depending on the relations between the observed velocities g, and
the control forces p,,, various feedback controls may be modelled. The
simplest situations are given by energy conserving boundary conditions,
either fixing the patches (¢, = 0) or switching off the control forces
(pm = 0), or by passive damping such as simple dashpots at the patches
(Pm = —km@m).

We introduce function spaces to obtain an abstract formulation of
these equations. We consider

v(t) =v(t,") €Y = L(Q,R3)
and

o(t) =o(t,-) € X = {o € L(Q,R>*®) | ¢ symmetric}.
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We rewrite the law of momentum

d
Rav(t) = Do (t),

where the operator R means multiplication by p, and D is the diver-
gence. The domain of D includes all stress-free boundary conditions:

dom(D):{andlv ) € X, ZUW =0
fori=1,...,3, xEFO},
i o,
= Ox;
The derivative of the strain tensor is given by

é(t) = Du(t).

The restrictions on the degree of freedom for the velocity field are
expressed by the domain of D:

dom (D) = {v e WY3(Q,R?) | 3¢1,... ,qn € R :
v(z) = gmwm for z € Ty},

(Bo)i(a) = 5 | o-vile) + i)

J

If A(t) denotes the stress relaxation tensor

3
(A( Z aijri(t, T)ew (),

the constitutive equation reads



134 W. DESCH, K.B. HANNSGEN AND R.L. WHEELER

The observed velocities are described by the operator P : dom (D) —
R", defined by B
(PV)m = gm

with the values g, from the definition of dom (D). The control forces
are described by the operator P : dom (D) — R"

Pm = (P(O'))m = A Z wmio’ij(a:)nj(w) dsS.

m 4,5=1

To show that the model example above fits in the abstract setting we
prove:

Proposition 2.2. The operators D, D, P, and P defined for
Ezxample 2.1 satisfy Hypothesis 2.1.

Proof. Let v € dom (D) and o € dom (D). Using the symmetry of o
and Green’s formula we compute

(Da0) + (o, D) = Y /Q Zvi(x)a%joij(w) dx

S /Qaij(x)%[a%jvi(x)—i— a%vj(x)} da

_ ;_:1 /Q {v,(x)a%ow (@) +0ii(2) 5 vl(w)] dx
_ Wil mizo /F @)oo () dS

n 3
—04 WZZI 21 /F iy () ) 4

= Z gmpPm = (Po, Pv).
m=1

Suppose that Dy, Dy, P, and P, are extensions of D, etc., satisfying
(2.1). Let 7 be a test function in C®°(Q,R3*®) and define o =
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1/2[r 4+ 7*]. Then o € dom (D). Let § = Dyv for some v € dom (D).
Notice that ¢ is symmetric by definition of the space X. Then we have
0 = (d,0) + (v, Do)

3 3 3 9
= Z/s"l52JUZJdI+§AUz;6—%01JdI

ij=1
3
= Z/(Sijnjdx
ij=17%
& ) 0
+ /vi—{—n-ﬁ-—ri] dz
i,jZ:I Q 2 8LL‘J‘ J 8xj J
3 3
1 0
= 0;:T5; dx + /—U,'—Ti'd.l'
;:;/ﬂ Y uz=:1 Q2 Oxj !
3 1 9
+j§::1/ﬂivja—miﬂ'j dz.

Since this holds for any test function 7, we have

Div=6==[V(v) + (V(v))"]

N | =

in the sense of distributions. On the other hand, if o € dom (D;), a
similar manipulation with test functions v € C*°(, R®) with compact
support in the interior of €2, yields that Do is the divergence of ¢ in
the sense of distributions.

We can now use Green’s formula again and obtain for any v €
dom (D;) and o € dom (D)

<151v,P10> = (f)w,o} + (v, Dyo)

= Z/r Z vi(x)ogj(x)n;(z) dS.

m ij=1

First let v € dom (D) and o € dom (D). Then Pio = Po. Let
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q = Pyv.

n

St [ wmiony(einy(a) s = (Pro, Pro)

Fm
= mzzo/r Z vi(z)oij(x)n;(z) dS.

m g,5=1

m=1

Since this holds for all ¢ € dom (D), a density argument implies that

qiWm; for xz € Ty,
vi(z) =
0 for x € Ty.

Thus v € dom (D) and Pyv = Pv. With o € dom (D;) and arbitrary
v € dom (D), a similar_procedure yields that o € dom (D) and
Pyo = Po. Therefore D, D, P, P admit no proper extensions satisfying

(2.1). O

2.3. Meaning of Equation 2.1. Let us give a physical inter-
pretation of Equation 2.1. Suppose the material is linearly elastic,
which means that the relaxation modulus is constant A(t) = E with
a positive definite operator E. If the displacement is denoted by
u(t) = ffoo v(t)dt, then Du(t) is the (linearized) strain tensor. The
constitutive law reads o(t) = EDu(t).

At time t the kinetic energy of the system is (1/2)(v(t), Rv(t)),
and the potential (strain) energy is (1/2)(Du(t), EDu(t)). The time
derivative of the total energy of the system is then

o (300 7o) + 3 (Dutw), EDu))

Thus (q(t),p(t)) is the energy fed into the system by the control forces
p = Po(t), when the observed velocities are ¢ = Pv(t).
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2.4. Other examples. We mention two standard examples which
fit in our framework and have been subject to thorough investigation
by several authors.

Example 2.2. A cylindrical rod is made from a viscoelastic mate-
rial. No longitudinal motion is considered, but we consider torsional
vibrations of the rod. It is fixed at one end and subject to a control
torque p at the other end. The angular velocity ¢ at the controlled end
is observed.

The model leads to a viscoelastic modification of the wave equation
(cf. [16, p. 47, 12]). Let t again denote the time, z the space coordinate
measuring the distance from the fixed end. Let r be the radius of
the rod, ! the length of the rod, p its density and a(t) its shear
relaxation modulus. At the cross section with space coordinate x, the
angular velocity of the torsion is v(¢,z). The shear stresses at this
cross section integrate up to a torque o(¢,z). Some easy computations
yield the following formulations for the equation of momentum, the
constitutive law, the energy conserving fixed end boundary condition
and the control and observation. (The equations are understood for
t>0and z €]0,l].)

rir 0 0
Py av(t,m) = 8—xa(t,x),

4_ gt
o(t,x) = % / a(t — s)gv(s, z)ds,
z

—00

v(t,0) =0, p(t) = o(t, 1), q(t) = v(t,1).
The spaces and operators in the abstract setting are then given by

X =Y = L*[0,1],R),
dom (D) = W*2([0,1], R),
d

(Do) (@) = o (a),

dom (D) = {v e WH2([0,1],R) | v(0) = 0},



138 W. DESCH, K.B. HANNSGEN AND R.L. WHEELER

(Dv)(z) = o(a),
(Ro)(z) = p5-v(a),

(AD)e)@) = S al0)e(a)
Po=o(l), Pv=uv(l).
It is easy to check that with this notation the viscoelastic wave equation
is transformed into System 2.1 and that Hypothesis 2.1 is satisfied.

Example 2.3. A cantilevered beam is subject to transversal deflec-
tion. The deflections are assumed to be small so that we may resort to
a linear model. At the free end, control is implemented by a moment
p1 and a shear force p,. The corresponding angular velocity ¢; and
velocity ¢o are observed.

This model has been discussed in detail in [8]. More general boundary
damping designs for the elastic Euler-Bernoulli beam are discussed, e.g.,
in [2]. The system may be modelled by a viscoelastic Euler-Bernoulli
beam (cf. [16, p. 48]). (A Timoshenko beam would fit in our setting as
well.) Let t again denote time, let z be the space coordinate measuring
distance from the fixed end, | the length of the beam, A the cross
sectional area of the beam, I the cross sectional moment of inertia, p
the mass density of the beam, and a(¢) be Young’s modulus. Let v(¢, x)
denote the transversal velocity at the cross section with coordinate z,
and o(t,z) be the bending moment due to shear stress. Then the
Euler-Bernoulli beam equations read

2
Ap%v(t,m) = —%U(t,m),

o(t,z) = I/_ a(t — s)%v(s,x) ds,
v(t,0) =0, %v(t,O) =0,
pl(t) = O'(tv l)v p2(t) = _8—xg(t’ l)v

@ (t, 1) = (,%v(t,l), g2(t) = v(t,1).
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These equations fit in the framework of System 2.1 with the following
spaces and operators:

X =Y = L%(0,1] R),

dom (D) = W([0,1],R), (Do)(x) = ~+-30(a),

dom (D) = {v € W2%([0,1],R) | v(0) =0, %U(O) = 0},

(Bo)(e) = (o),
(B)(e) = hon(z),
(A()e)(x) = La(t)e(a)

o= (_<d7§i))0(l)) o= <(d/ifz)>v(l)> |

3. The main results. Most of our results will be stated in the
frequency domain. Therefore we take formal Laplace transforms in
System 2.1. (The Laplace transform of a function f will be denoted by

f)

System 3.1.

P&(s) =p(s),  Pi(s) = q(s).

Here vg and oy describe the effects of the history of the deformation
before t = 0:

vo=v(0),  oo(s) = /0 h /_ Ooo e~ A(t — 1) Do(r) dr dt.

Of course, at this point questions about well-posedness and a justi-
fication of the formal transform arise. We do not consider such prob-
lems in this paper, since the considerable technicalities involved would
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only obscure the main points of our work. Well-posedness of integral
equations can be handled within the framework of resolvent operators
described in [19] where the reader finds special chapters devoted to the
equations of linear viscoelasticity. It can also be handled in semigroup
settings, as in [7, 9] and [20]. In any case, Hypothesis 2.3 has to be
sharpened.

3.1. The open loop problem. We consider now the open loop
problem relating the control forces py, ... , p, to the observed velocities
q1,--- ,qn- We are interested in the properties of the transfer matrix.

Theorem 3.1. (i) For each s € U and each z € C™ there exists
ezactly one v € dom (D) and one & € dom (D) solving System 3.1 with
p(s) = z, v9 = 0, and o9 = 0. We obtain a matriz valued function S

such that S(s)p(s) = §(s), where the last equation of System 3.1 defines
q(s)-
(ii) S is analytic in U.

(iil) (z,5(s)z) & (—0,0] for all s € U and all z € C™\ {0}. In
particular, S(s) is nonsingular.

(iv) If Uy C U satisfies Hypothesis 2.4 then |arg((z, S(s)z))| <
max(6,0) for all s € Uy and z € C™\ {0}. In particular, if § < w/2
and 0 < /2, then R({z,S(s)z)) > 0.

(v) If s € (0,00), then S(s) is self-adjoint and positive definite.

In the time domain, one would formally write the output as a
convolution (Stieltjes) integral of the input with a measure describing
the impulse response of the system. This is possible if and only if
continuous input functions yield continuous output. However, S(s) is
not always the Laplace transform of a measure. Strong viscoelastic
damping has a smoothing effect, so that with additional conditions the
impulse response is a function of time.

The following theorem guarantees the existence of a Laplace trans-
formable impulse response function under conditions that require a
tradeoff between the geometric configuration of the system and the
material properties. This should be seen in contrast to many results
on smoothing properties concerning dynamics of systems with homoge-
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neous boundary conditions, which depend only on the material prop-
erties, in particular the singularity of the relaxation kernel at 0.

Theorem 3.2. Suppose that U contains a sector &= {s € C| |s| >
7, |arg(s)| < 6} with somer >0 and § € (7/2, 7). Let

Moreover, suppose that there are constants My > 0, v > 1, and
0 € (w/2,7) such that for all s € ¥ and for all z € X the following

inequalities hold:
1.
arg (<J;, —A(s)m>) <f<m,
s

<x, 1A(s>x>\ > Mys| o]

»

Let L be the self-adjoint, positive definite operator defined by

dom (L) = {z € dom (DR D) | Pz = 0}
Lz = —DR ' Dz,

(see Lemma 4.1) and assume that for some B > 0 the solutions w; to
the elliptic boundary value problem

Bwj — DR_IDWJ' = 0, ij =€j

are contained in dom (L*) with some 1/2 > o > (v —1)/(27). (e; is
the jth unit vector in C™.) Then the transfer matriz S(s) is the Laplace
transform of a matriz valued function which is integrable on compact
intervals and grows at most exponentially when t — oo.

We remark that the conditions of this theorem are only satisfied by
relaxation kernels A(t) with a strong singularity at ¢ = 0. This type of
kernel gives rise to solutions which are infinitely smooth in time even
for rough initial data. If the semigroup setting from [7] is applicable,
the conditions of Theorem 3.2 imply (by [7, Theorem 3.1]) that the
solution semigroup is analytic.
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One of the most serious limitations of models of damped structures
that ignore the inertial forces of actuators and sensors is their nonro-
bustness with respect to small time delays in the negative feedback. In
certain systems, a small delay in feedback can even cause loss of well-
posedness, in the sense that the closed loop transfer function has poles
with arbitrary large real parts. At least three facts counteract this de-
structive effect in real life systems: First, all sensors and actuators have
some positive mass. This changes the model behavior drastically, in the
sense that neither essential destabilization nor stabilization beyond the
essential growth rate is possible. Moreover, all feedback loops will have
some finite band width. Finally, materials themselves have some in-
herent damping. Here we show how viscoelastic damping counteracts
destabilization due to delay. Of course, the destabilization phenomena
disappear in the context of passive damping, e.g. by friction, where no
delay is expected. (More information on the destabilization phenomena
can be found, e.g., in [3, 4, 5, 8, 10, 17, 18].)

If we close the loop by a delayed feedback
Po(t) = —KPu(t — 1)+ f(t)

the closed loop transfer function relating the observed velocity Pv to
the external control force f is

(3.1) (1+S(s)Ke *7) *S(s).

We can prove

Theorem 3.3. If the hypotheses of Theorem 3.2 are satisfied, then
for any matriz K and any T > 0, the closed loop transfer function given
by (3.1) is analytic in some right half-plane R(s) > w.

Theorem 3.2 requires an assumption about the spatial smoothness of
the solutions to an elliptic boundary value problem. This assumption
can be checked using the boundary data of the eigenvectors of L.

Theorem 3.4. Let L be the self-adjoint, positive definite operator
defined by

dom (L) = {z € dom (DR D) | Pz = 0}
Lz = —-DR™'Dz.
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Let o, 8 > 0, and let w; be the solutions to the elliptic boundary value
problem
Bwj — DR *Dw; =0,  Pw;=e,.

Assume that the embedding of dom (L) into X is compact, so that L has
discrete point spectrum. For k = 1,2,3,... let Ay and ¢ denote the
eigenvalues and the normalized eigenvectors of L. Then the solutions
w; are contained in dom (L%) if and only if

> NETIPRT D < oo
k=1

For Example 2.2, one computes (details are left to the reader) that
every a < 1/2 satisfies the condition of Theorem 3.4, so the conditions
on A(t) = a(t) in Theorem 3.2 with any v > 1 ensure that S(s) is
a transform. An even weaker smoothing condition (a’(0+) = —o0) is
shown to be sufficient in [13], by direct calculation of S(s).

The destabilizing effect of delays in the moment feedback for an Euler-
Bernoulli beam with a fractional derivative constitutive law of order v
has been investigated in [8] and [10]. There it was shown that loss of
well-posedness takes place for ¥ < 2/3, and that the control is robust
with respect to time delays if v > 2/3. With respect to this background,
the example below shows that the hypotheses of Theorem 3.2 are
sharp. (The use of the Euler-Bernoulli model for describing phenomena
happening at high frequencies, however, remains questionable.)

Example 3.1. We consider the viscoelastic Euler-Bernoulli beam
from Example 2.3, where the shear control force is switched off and the
only control is performed by the bending moment. Then the hypotheses
of Theorem 3.2 hold for a < 1/8 and v < 4/3. In particular we impose
a fractional derivative constitutive law of order v € (0,1):

1
A(t) = By + Bae™ %' ———t77.
(t) 1+ Loe T =)

Then for v > 2/3, the open loop problem admits a locally integrable
transfer function.
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3.2. Dynamics of the stabilized system. Let J C N =
{1,...,n}. We consider first the boundary conditions which are ob-
tained by fixing some observers (which restricts the degrees of freedom
of the system) and leaving the others uncontrolled:

g =0 ifjedJ,
pj=0 ifj¢J,

where J € N = {1,...,n} is the index set of the fixed boundary
conditions.

(3.2)

We will refer to (3.2) as energy conserving conditions, since they
do not allow transmission of energy across the boundary, so that all
damping of the system is due to the internal damping by viscoelasticity.
With the boundary conditions (3.2), System 2.1 can be written in the
form

d
ZRu(t) = Dyol(t),

o(t) = 1 A(t — s)Dyo(s) ds.

where D and D J are suitable restrictions of D and D:
dom (Dy) = {o € dom (D) | (Po); =0 for j & J},

(3:3) dom (D;) = {v € dom (D) | (Pv); = 0 for j € J}.

Notice that Dy = D and Dy = D. Since Dy and —Dj are adjoint
to each other (see Lemma 4.1), this system can be treated using well-
known settings (e.g., [7, 19]). If the relaxation modulus is scalar,
one can use the spectral decomposition of the self-adjoint operator
—DyR™D, to decompose the system into scalar equations (see, e.g.,
[1]). In the last 15 years much information has been gained about the
viscoelastic problem with energy conserving boundary conditions.

We now replace the boundary conditions 3.2 by the simplest possible
damping boundary conditions:

(3.4) p(t) = —Kq(t).

Hypothesis 3.1. K = diag(ki,...,kn) is a positive definite diago-
nal matrix.
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This type of damping condition can be regarded as passive damping
by friction. In our pilot example 2.1 it would be achieved by dashpots
connected to each patch. The results obtained for diagonal K can be
easily extended to general positive semidefinite matrices, since a unitary
coordinate transform in the range of P and P will diagonalize K.

In order to consider the damped problem, one could adapt the en-
ergy methods mentioned above, which would require somewhat more
involved estimates but in principle seems to be possible. However,
in [13] a method was introduced which allows one to transfer results
about System 2.1 with energy conserving boundary conditions to the
same problem with damping. There a damping problem for a rod (Ex-
ample 2.2) was investigated. The authors observed that the solution
operator to the damped system in frequency domain is a convex combi-
nation of the solution operators to two systems with energy conserving
boundary conditions. This allows one to transfer information on sys-
tems with no boundary damping to the damped system. In this section
we show that the same technique is also applicable when more than one
degree of freedom is controlled.

Although we can give an explicit formula (see Proposition 5.2) in
terms of K and the open loop transfer matrix S(s), the computation of
the coeflicients is very tedious if not impossible as soon as one proceeds
beyond very simple examples. However, we can show that the coeffi-
cients are uniformly bounded in every domain satisfying Hypothesis 2.4,
in particular in the open right half-plane. Therefore the theorem below
has a simple consequence: Whatever can be said about systems with en-
ergy conserving boundary conditions because of some uniform bounds
for the Laplace transform of the solutions holds as well for the system
with passive damping. This pertains for instance to [7, Theorem 3.1] on
the smoothing effect of singular kernels and [6, Theorem 2.9], [9, Theo-
rem 3.1] on the essential growth rate of the solution semigroups, which
have been proved for energy conserving boundary conditions but can
be rephrased literally for the passive damping boundary conditions 3.4.

Theorem 3.5. Let K be as in Hypothesis 3.1. There exist complex
valued analytic functions Ay : U — C with the following properties:

(i) Letvy €Y andog in X be given. For all J C N let o5 :U =Y
and 65 : U — X solve System 3.1 subject to the boundary condition
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(3.2). Then

0(s) = Z As(8)0s(s) and 6&(s) = Z As(8)65(s)

JCN JCN

solve System 3.1 with the damping boundary condition (3.4).

(ii) ZJCN As(s) =1
(i) If Uy C U satisfies Hypothesis 2.4, then there exists some

constant Mo such that |A;(s)|] < Mz for all s € Uy and all J C N.
In particular if 6 < /2 and 0 < w/2, then My = 1 will work.

(iv) If s € (0,00), then As(s) > 0.

It is not crucial for the decomposition method that the feedback gains
k.. are independent of s. We expect that a similar technique may be
useful in the case of feedback control with dynamic compensators, if
the right conditions on the phase of k,,(s) are specified. However, the
diagonalizability of K is of central importance, and it is, of course, a
severe restriction on the applicability of our decomposition technique.

If the impulse response of the open loop problem is a function,
Theorem 3.5 has an interpretation in the time domain:

Theorem 3.6. Let the conditions of Theorem 3.5 hold, and let S(s)
defined in Theorem 3.1 be the Laplace transform of a matriz valued
function. Then for J C N there are Laplace transformable functions
g and scalars vy such that the following assertions hold:

(i) ForallJ C Nletvy:R =Y and oy : R — X be Laplace
transformable functions solving System 2.1 subject to the boundary
condition (3.2). Then

w0 = (st + [ nate-9uito)as).

JCN

o)=Y (wos+ [ e =sjos(s)ds)

JCN

solve System 2.1 with the damping boundary condition (3.4).
(i) Y jcnvo=land ) -yps(t)=0.
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4. Proofs.

4.1. Proof of Theorem 3.1. Throughout this chapter, e; will
always denote the jth unit vector in C™.

Lemma 4.1. The operators D; and —Dy defined in (3.3) are adjoint
to each other. The operator L = —DR™'Dy (which is the operator L
defined in Theorem 3.2) is self-adjoint and positive semi-definite.

Proof. Let v € dom (Dy), 0 € dom (D). Then
(Djv,0) + (v,D;0) = (Pv,Po) = 0.
Therefore —D; C D%. Now let v € dom(D%), Dv = 7. For
o € dom (D) the linear functional
f(o) = (1,0) + (v, Do)

is defined and vanishes for o € dom (D). In particular, f vanishes on
dom (D) Nker(P). Therefore there exists a vector z € C™ such that for
all o € dom (D)

f(o) ={(r,0) 4+ (v, Do) = (z, Po).

Since D and P do not allow proper extensions satisfying (2.1), we infer
that Dv = 7 and Pv = 2. Since f vanishes for all o € dom (Dy),
we infer that (e;j,z) = 0 for j € J. Consequently, v € dom (Dy).
Since —D = D}, and R™! is self-adjoint, positive definite, bounded and
continuously invertible, we have that

—~DR™'Dgy = D5 (R™Y?)*R™Y2Dy,

is self-adjoint and positive semidefinite. O

Lemma 4.2. For each s € U, the operator (1+ (1/s)A(s)L) admits
a continuous inverse.

Proof. Let z,y € X such that z + (1/s)A(s)Lz = y. Taking inner
products with Lz, we obtain
1
s

Ll o) > (L) = (L) + (L Lo
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Take 0 = 0(s) and M = M(s) from Hypothesis 2.3. Since (Lz,z) > 0
we obtain

Ll ] = sin<e><Lx, 1A<s>Lx>\ > Msin(6))|Le |2
S

Therefore there exists some constant C' such that || Lz|| < C||y||. Since
(1/s)A(s) is a bounded operator, we can now infer easily that the
operator

(1 + %A(S)L> ' range (1 4 %A(S)L> — dom (L)

is continuous. Since A(s) is invertible, the operator (1 + (1/s)A(s)L)
is closed, and by the considerations above its range must be closed.
We show finally that its range is dense. Suppose that some z is
orthogonal to the whole range. Then for all y € dom (L) we have
(z,y + (1/s)A(s)Ly) = 0 which implies that =z = ((1/s)A(s))*z €
dom (L) and Lz = —z, thus

(1 + <§fl(s)>*L>x =0.

A similar estimate as above (just with the adjoint operators) implies
that £ = 0, whence z = 0. ]

Proof of Theorem 3.1 (i), (ii). Given z € C", we pick some o1 €
dom (DR D) with Poy = z. Putting 6 = o1 + 7, we have Pt =0, so
that 7 € dom (Dg) and we have to solve

sRo = Dyt + Doy,
T = —01 + A(s) Db.

Thus 7 solves

1. - 1. -
7= 01+ -A(s)DR 'Dgr + ~A(s)DR ' Doy,
s s

(1 + %A(S)L>T =— (1 -

i.e.,

[V

A(s)DR—1D> 1.
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By Lemma 4.2 there exists a unique solution 7, from which & and v
can be computed:

@y <l i éﬁ(s)L) ) <l -

o=o01+T, 0 =-R 'Dé.
S

A(s)DR1D> o1,

—_ | =

The analytic dependence on s follows easily from the analyticity of

(1/s)A(s). O

Proof of Theorem 3.1 (iii), (iv). Let z € C™ and let 6 and 9 be defined
according to Theorem 3.1. Then we have

(8(s)z,z) = (Pd, P6) = (0, D&) + (Db, 5)
= (b, sR0) + (Do, A(s) D)
= s<<@, Ro) + <D@, %A(s)m».

Since (0, Ro) > 0 while (Do, (1/s)A(s)Dd) ¢ (—o0,0), their sum
cannot be zero unless ¢ = 0 which implies z = 0. Moreover,

arg <<D §A<s)m>> ‘

< 0(s).

arg ((ﬁ,Rﬁ> + <f)@, 1A(S)D@>>‘ <

S

By Hypothesis 2.3, the arguments of (D, (1/s)A(s)i(s)) and s have
opposite signs. Therefore

|arg (2, 5(5)2))| < max{6(s), |arg(s)|}-

These estimates hold pointwise for any s € U and uniformly for s € U;
if U, satisfies Hypothesis 2.4. ]

Proof of Theorem 3.1 (v). Once the symmetry is proved, the definite-
ness follows from (iii). To prove the symmetry, let s > 0 and 9, &; be
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defined according to Theorem 3.1 for z = e;. Then the (4, j)-entry of
the transfer matrix S(s) is

Sij(s) = (ei, S(s)e;) = (Pés, Poj) = (Déy, 05) + (64, Do)
= (sR0;, ;) + (A(s)Di;, Do) = (04, sR0;) + (Dd;, A(s) D)
)

Il
—
S)
mq>
~
+
—
]
>
N
Q»
<
Il
~
el
S)
)
Q»
<
~
|
~
n
—
V2l
S—r
£
]
[
~

4.2. Proof of Theorems 3.2 and 3.3. We assume in this
subsection that the assumptions of Theorem 3.2 are satisfied.

Lemma 4.3. There exists a constant 1 > r such that for all
se¥y={seX| |s|>r}

and all y € X the following assertions are true:
D) 18/9)A)l < 1,
(i) (1—(B/s)A(s)) is continuously invertible,

(iii) [1(1/5)A(s)yll* < (1/(28)) |y, (1/5)A(s)w)].

Proof. Since lim|y00,scx I(1/s)A(s)|| = 0, the first assertion is
obvious and the second assertion follows by Neumann series.

To prove (iii) we decompose
(1/5)A(s) = U(s) + iV (s)

with self-adjoint bounded operators U and V. Since the argument
of (y,(1/s)A(s)y) is either positive or negative for all y (depend-
ing on $(s)), the operator V(s) is either positive or negative semi-
definite. In the sequel we give all estimates for positive semi-definite
V(s); the negative case is handled exactly the same way. Since
|arg((y, (1/5)A(s)y))| < 6, we have for k = 1/|sin(6)|:

. (U6) + £V ))5) = R S A ) + 63 (3 T4 ) 2 0
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Therefore (U(s) + £V (s)) is positive semidefinite. Evidently, [|[U(s)]|
and ||V (s)|| are bounded by ||(1/s)A(s)||. Therefore, for any € > 0 we
may pick r; sufficiently large such that for s € 33

|[U(s) £ &V (s)|]|<e and |V(s)||<e.
Spectral resolution implies that

IV()yll® < V()27 1V (s) 12112
= V() {y, V(s)y)]

€ <y éfi(s)y>‘.

10(s) + KV ()l < elly, (U(s) + £V ())w)
< (04 e (1 LAl )|

= I(U(s) + &V (s))y + (i — K)V (s)y]|*
< 2[(U(s) + £V ())yll* +2(1 + £7) ||V (s)yl|*

g240+m»+u+n%ﬂ<%éﬁwm>y

<

Similarly

Then

H%A(S)y

Choosing ¢ sufficiently small, we obtain assertion (iii). O

For s € ¥; we can now define the operator

<)(1—94<ﬁ_1

Jo2a) ]

(For 8 =0, we have Ag(s) = (1/s)A(s).) For shorthand we define also

Ap(s) =

Lg=B+L.
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The following lemma shows that Ag(s) and (1/s)A(s) satisfy similar
conditions:

Lemma 4.4. There exist constants 0 € (0,7) and Mg > 0 such
that for all s € £1 and all x € X \ {0} the following inequalities hold:

€(0,05) if(s) <0,
arg ((z, Agz)) ¢ =0 if $(s) =0,
S (—95,0) if %(S) >0,

(@, Agz)| > Mpgls| |||,

Proof. Let z € X and y = (1 — (8/s)A(s))"'@. Then Agzr =
(1/s)A(s)y. Thus

(4.2)

has the opposite sign of 3(s). The argument of (y,(1/s)A(s)y) is
bounded away from 7 uniformly for s € ¥;. By Lemma 4.3,

2
1 1.
< = —A .
< 2‘<y,s (8)y>‘

Equation (4.2) implies then that the argument of (z, Agz) is bounded
away from 7 uniformly for s € ¥, and that

B %A(S)y

(340039 < 2(e, Ao
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Since z = (1 — (8/s)A(s))y and ||(8/s)A(s)|| < 1 we can estimate
M,
8

1

- _ 1,
s|7l2l” < SMals| Ty l” < Sy, S A()y)] < [, Apz)l. o

N | =

Lemma 4.5. The entries of the transfer matriz are given by

1
Sij(s) <Dwi,R_1ij)+§<wi,wj)

S

1 _
+ g<wiaL5(1 + Ap(s)Lg) " wj).

Proof. The entry S;;(s) is obtained by S;;(s) = (e;, Pt), where % and
¢ are given by Theorem 3.1 with the boundary condition P& = z = e;.
We utilize (4.1) with oy := w;. (Recall also that D = —D.)

Sl(s) = <€i,15’f)> = (Pwi,ﬁ@ = (Dwi,@ + (wi,D@
1
= g<Dwi,R—1ij +R™'Dy1)
1 ~ ~
+ —{(wi, DR *Dw; + DR 'Dyr)
S

1 1 -
= ~(Dw;, R 'Dw;) — ~(DR 'Duw;, )
S

S

1 1 ~
+ ;(u)i,ﬁwj) + ;<wiaDR71D®T>

1 1
= ;(Dwi,Rlewj) + §<wi,wj> - ;(wi,,@’r + LT).

Now,
(4 D7 =11+ éfi(s)L)_l (1-246) o
_ <1 - gfl(s) + %A(S)LL;) - (1 - gA(s)>wJ
=Ly <1 + %fl(s) 1- gfi(s)) lLﬁ> 71%
=L (14 Ap(s)Lp) 'w;. O
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Lemma 4.6. There exists a constant Mz such that for all s € X2y

|<wi7LB(1 + Aﬁ(s)Lﬂ)_leH < M3|s|7(1_2"‘)_

Proof. Since w; € dom (L%) = dom (L), it is sufficient to show the
following estimate for a suitable constant Mjy:

(43)  [IL5 (1 + Ap(s)Lg) "wjll < Mas|"0 || Lgw; |-
We define a vector x and scalars (, n, depending on s, by
z = (1+ Ap(s)Lg) " wj,
¢ = (e, Lpz) = || Lg*=|* > ,
n=(Lgw, Ap(s)Lpz) € C.

Evidently,
Lgw; = L3(1 + Ag(s)Lg)z.

Inequality (4.3) is then rewritten as
(4.4) IL5™ el < Ma|s|" U2 LG(1 + Ap(s)Lp)z].
We will prove the following sufficient condition for (4.4):
IL5~ ]| < Mals|"@ 2 (Lg%, LE(1 + Ag(s)Lp)x)]
which can be rewritten as
(4.5) IL5 || < Ma|s|"=2%)|(z, Lpz) + (Lpz, Ap(s) )|
= Myfs| 02 ¢ 1.

Lemma 4.4 implies that
|ILgz||* < Mz |s|" (Lo, A(s)Laz)| = Mg |s|" |nl.
By interpolation there exists a constant M5 such that

ILY2||? < Ms|Lgz | 4| Ly *z||*

(4.6) 2a—1| 17(1-2a) |, |1—2a 2«
< MsMj |s| | (G
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On the other hand, since |arg(n)| is bounded away from 7 uniformly
for s € ¥y, there exists a constant Mg such that

(4.7) ¢+ nl = Me(¢ + [nl).

Combining (4.6) and (4.7) and dividing by ¢|s[7(*~2®) we see that the
following is a sufficient condition for (4.5):

(4.8) M5M§°‘—1 <|%>1_2a < MyMsg [1 + <%|>]

Since the righthand side of this equation is bounded away from zero and
grows faster than the lefthand side as |7|/{ — oo, there is a suitable
constant My such that (4.8) is satisfied. o

Proof of Theorem 3.2. We show that the entry S;;(s) of the transfer
matrix is the Laplace transform of a locally integrable function h;;(t).
According to Lemma 4.5 h;; should be of the form

hij(t) = (Dw;, R~ Dw;) + Blwi, w;) + kij(t),
where the Laplace transform of k;; is

1 _
kij(s) =~ (wi, Lg(1 + Ap(s)Lp) twj).
We will show that such a function k;; exists and that for small ¢
|ij (8)] < Myt~ 1+

with some constants ¢ > 0 and M7 > 0, while k;;(¢t) grows at most
exponentially when ¢t — oo.

Our proof is based on the complex inversion formula
kii(0) = 5 [ (o) d
i = — e i\ S S
I 2me Jr /

with a contour consisting of two rays pointing into the negative half
plane and an arc around the origin I' = I'y + I'; + I's, where
Iy(r)=-712z, 7€ (—00,—T0),
Uo(1) = 1oe'", 7 € (—arg(2),arg(z)),
Is(r) =71z, T € [rp,0).
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Here z € C is taken with |z| = 1, arg(z) € (7/2,6) and 75 > r1 so that
all estimates derived in the lemmas above hold for s on the paths I'y
and I's.

Evidently the contribution of the arc I's to the contour integral
is uniformly bounded for ¢ in compact intervals and grows at most
exponentially when ¢ — oco. Therefore we have only to worry about
the contributions of the rays. Of course, I'y and I's can be treated the
same way. We give the estimate for I's. Utilizing Lemma 4.6 we see
that for s € I's the following estimate holds:

|kij(s)| < Ms|s|" 72071 = Ma|s|~*
with e =1 — (1 — 2a) € (0,1). We infer the estimate

1 st7,
%/Fse kij(s)ds

tl—s

< Mgtl_s/ ert?R(z)T—s dr

To

< M3/ eTt?R(z)(Tt)_E tdr
0

= Mg/ etR(2) g —e gy
0

= M; < .

Therefore the inversion integral converges and |k;; ()| < Myt *. O

Proof of Theorem 3.3. Since S is the Laplace transform of a locally
integrable function with exponential growth, it is bounded in some right
half-plane {s € C | R(s) > w}. As a consequence |le *" K.S(s)|| is small
if R(s) is large. Therefore the inverse (1 + e 57K S(s)) ! exists and is
analytic. ]

4.3. Proofs of Theorem 3.4 and Example 3.1.

Proof of Theorem 3.4. We set up the Fourier series

wj =Y wikdr With gk = (B, w;).
k=1
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Then wj; is contained in dom L® if and only if

o0

D A |mjkl? < oo
k=1

However, p;, can be expressed in terms of the jth entry of PR D¢y,
(We use D = —D},.)

(PR™'D¢y); = (PR™' D¢y, Pw;)
= (DR 'D¢y,w;) + (R 'Déy, Dw;)
= (=Léx,wj) = (¢, DR™' Dw;))
(=Ak = B){(¢r, wj)-

Therefore w; € dom L* if and only if

S XAk +B) (PR 'Déy)j)* < 0. O
k=1

Proof of Example 3.1. For simplicity we rescale all physical constants
(p, I, I, etc.) to 1. Once « is found, the estimates for v and v follow
immediately from

’)/ + ]. ~ E1 E2
> — d A(s)=—+ ———.
a 5 an (s) . + 1oy
The operator L is given by
64
L= ———
6= =550
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A straightforward computation yields the eigenvalues and eigenvectors:

Me = &k,
¢ (w) = ck(cosh(&ex) + cos(&px))
— Br(sinh(§kx) + sin(&xx))],
By = sinh (&) — sin(&)
cosh(k) + cos(&r)
(R™'D¢y)(x) = cré&i](cosh(&pz) — cos(Epa))
— Br(sinh(&pz) — sin(&xx))],
PR™'D¢y, = cx&}[(sinh(&x) + sin(ér))
— Br(cosh(&x) — cos(&x))]-

Here ¢, has to be chosen such that ||¢x|| = 1, and & is the kth positive
root of

cosh (&) cos(&x) = —1.

The estimates in [10, p. 80], with w; = &7, and with ¢, replaced
by v2¢k, and PR™'D¢;, replaced by v/2£2¢y, give the asymptotic
behavior for £ — oo:

1 -
G~ (k=3)m G~ e~ [PRTDG ~ 2

Theorem 3.4 says that w; € dom (L®) if and only if

00 > ) (€77 ~ Y KPR
k=1 k=1

This is true if and only if o < 1/8. o

4.4. Proof of Theorems 3.5 and 3.6. The proofs of these
theorems requires some lengthy linear algebra, which we defer to
Section 5.

Proof of Theorem 3.5. Let vg € Y and oy in X be given. For all
JCNletdy;:U —Y and 65 : U — X solve System 3.1 subject to the
boundary condition (3.2). We put ps(s) = P& ;(s) and §5(s) = Pos(s).
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We start from the formulas

i(s) = > As(s)is(s)

JCN
5(s) =Y As(s)6(s)
JCN
Z )\J(S) =1.

JCN

Since for fixed s the vectors 0(s) and 6(s) are linear combinations
of solutions to the inhomogeneous linear System 3.1, and since the
coefficients of the linear combination sum up to 1, ¥ and & themselves
are solutions to System 3.1.

We have only to check the boundary condition (3.4):
(4.9) P5(s) = —K Pi(s),

ie.,

D Ai(8)pa(s) ==K > As(s)ds(s).

JCN JCN

Our knowledge about the vectors p;(s) and ¢, (s) includes the boundary
conditions (3.2). Moreover, for any two subsets J, L C N the differences
0y — 0, and 65 — 0, satisfy the homogeneous System 3.1, where vy and
o are replaced by 0. Therefore their boundary data are linked by the
open loop transfer matrix:

(Gs — o) = S(s)(Ds — L)

Summing up, the vectors p; and §; fit exactly into Hypothesis 5.3.

We can therefore take the functions A; from Proposition 5.1 to
guarantee (4.9). All estimates claimed in Theorem 3.5 are given in
Proposition 5.1. An explicit formula for the coefficients is given in
Proposition 5.2. a

Proof of Theorem 3.6. For w > 0, let V,, be the algebra of functions
f :[0,00) — C such that e™“!f is integrable, with the convolution
as product and with the delta distribution é added formally as a unit
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element. We define the half-plane U, = {s € C | R(s) > w}. Then
the maximal ideal space of V,, is U, U {oo} [11, Section 17], and the
Gelfand transform of an element is simply its Laplace transform.

Theorem 3.2 states that the entries of the transfer matrix are Laplace
transforms of functions h;; € V,, for sufficiently large w. Notice that
the Gelfand transform at oo satisfies S;j(c0) = 0, since the impulse
response h;; is a function and does not contain a J measure.

For sufficiently large w the half-plane U, is contained in the sector
3. Therefore U, satisfies Hypothesis 2.4, and by Theorem 3.2 the
argument of (z,5(s)z) is bounded away from 7 uniformly for z €
C"\ {0} and s € U,. Of course, (2, K '2) > 0 for all z # 0. Therefore
there exists some constant Mg such that

(a10) @ EETEDI= G S()2) + (z, K 12)|
> Mg(z, K™ z).

The same estimate holds for s = co if we take Mg < 1.

Let M = {T € C™"*™ | (4.10) holds for T'}. Then M is open and
because of (4.10) the determinant det(7 + K ~!) is bounded away from
0 uniformly for T € M. The transfer matrix S(s) takes its values in
M whenever s € U, U {oo}. The coefficients A;(s) are obtained from
the entries of S(s) via Proposition 5.2 by a rational function, which
is analytic whenever the denominator det(S(s) + K ) is nonzero. In
particular it is analytic if S(s) € M. Therefore A is a locally analytic
function of the entries S;;. We infer from [11, Section 13, Theorem
1] that Ay is the Gelfand transform (i.e., the Laplace transform) of an
element v ;0 + py € V.

From 9(s) = » -y As(8)0s(s) and 6(s) = D ,;-n As(s)ds(s) we
infer now by the convolution theorem for Laplace transforms

o= 3 (s + [ nate=opato)as),

JCN

o(t)=> <VJUJ(t)+ /0 t py(t — s)os(s) ds).

JCN

(More information on the use of local analyticity to determine integra-
bility of solutions to integral equations can be found in [15].) O
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5. Matrix lemmas. This section contains the linear algebra part
of the proof of Theorem 3.5. We sum up what we need to know about
the transfer matrix from Theorem 3.1:

Hypothesis 5.1. LetU C C be a domain (not necessarily bounded).
For s € U, S(s) is a complex n X n-matriz, depending analytically on
s, with the following properties:

(5.1)  (2,5(s)z) € (—00,0] forallscU andall ze€ C"\{0}.
In particular, S(s) is nonsingular. We define

01(s) = sup{|arg((z, 5(s)2))| | z € C* \ {0}} <.

If Uy C U satisfies Hypothesis 2.4, then 61(s) < max{d,0} for all

selUy. If s € (0,00), then S(s) is self-adjoint and positive definite.
Hypothesis 5.2. ki,...,k, are positive real numbers.
We will consider vectors py and ¢; with the following properties:

Hypothesis 5.3. For each s € U and each subset J C N :=
{1,...,n}, the vectors

pa1(s) Gsi(s)
ps(s) = : , and §y(s) = :
ﬁJTL(s) qAJn(S)
satisfy
(52) ﬁji =0 for ¢ € J,
dsi =0 forieJ,
(5.4) G;—qr = S(s)(ps —pr) for J,L CN.

The proof of Theorem 3.5 depends on the following
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Proposition 5.1. For each subset J C N = {1,--- ,n} there exists
a function Aj(s), analytic in U, such that for any ps(s) and Gs(s)
satisfying Hypothesis 5.3 and for all s € U and all i € N the following
tdentity holds:

(55) Z )\J(S)ﬁji(s) = —k‘i Z )\J(S)qAJi(S).

JCN JCN

The functions A; have the following properties:

(5.6) As(s)eR and A;j(s) >0 forallseR
(5.7) Z As(s)=1 forall sel.
JCN

Moreover there exists a constant M3(6;) depending only on 6y (s) such
that

(5.8) [As(s)] < M2(01(s)) forall s €U.

In particular, My(7/2) = 1.
In order to give an explicit formula for A\; we define:

Definition 5.1. For J C N let Ej be the idempotent diagonal
n X n-matrix with coefficients

c”_{l fi=jelJ
Y 0 else.

Ey = 0. The identity matrix Ey will usually be denoted by 1.

Definition 5.2. For s e U, J C N we define

dy(s) = det(En\ ;s + EsS(s)Ey),
Y;(s) = E;(Exvy + E;S(s)E) !,

Xs(s)=1—-5(s)Ys(s),
Y(s)=(S(s) +1)7"
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Proposition 5.2. Let the conditions of Proposition 5.1 be satisfied.
Then the coefficients Ay introduced in Proposition 5.1 are given by

dy(s) -1

= k>
det(S(s) + K1) i I

As(s)

This section is devoted to proving Propositions 5.1 and 5.2 by a
sequence of lemmas.

Proposition 5.3. Without loss of generality we may assume that K
is the unit matriz.

Proof. Thanks to an anonymous referee for this simple but efficient
observation. In order to justify it, we replace S by K'/2S(s)K'/2 P
by K~'/2P, and P by K'/2P. Some straightforward calculations show
that the statements of the propositions and hypotheses now reduce
precisely to the case K = 1. ]

Definition 5.3. For simplicity we introduce the following notation:
The estimate
A(s) < MyB(s)

means that the estimate holds for s € U with some constant Mpy(s)
depending only on 64(s). Moreover My = 1 if 6;(s) < /2.

Lemma 5.1. LetscU.

(i) (En\s + E;S(s)E;) is nonsingular. Thus d;(s) # 0 and Y;(s)
exists.

(ii) The block matrix

(2, En)

is nonsingular with inverse

(20 T,
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with suitable matrices Uy (s) and Vj(s).
(iii) The block matriz

s nonsingular with inverse

(0 )

Proof. Part (i). We will omit the argument (s) throughout the proof.
Suppose that (En\; + E;SE;)z = 0. Then

Enyz=Enj(Eny+E;jSEs)z=0
and
(Eyz,SEjz) = (2, E;SEsz) = (2, E;(En\y + E;SE;)z) = 0,
so that by assumption (5.1) Ejz = 0. Thus z = Enx\y2 + Eyz = 0.

This proves (i).

Part (ii). To show that ( EIJ Ej\rif) is invertible we have to show

that En\; + E;S is invertible (see [14, Section 0.8.5]). Suppose
(EN\J + EJS)Z = 0. Then EN\JZ = EN\J(EN\J + EJS)Z = 0, thus
z = Ejz. This implies

(EN\J +E;SEj)z = (EN\J +E;S)z=0,
and by part (i) we infer that z = 0.

To show that the first columns of the inverse consist of (jifJ), we

need only to check the product

(1 —S><XJ>< 1-SY;+ 8Y; >
E; Eng =Y, E;—E;SY; —EniyYs )~
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The first component is evidently 1. The second component is

EJ*EJSYJ*EN\JYJ:lf(EN\J-i-EJSEJ)(EN\J—FYJ):0.

(4 o) (%)-():

Part (iii). The last assertion is checked by direct computation. |

Thus

Lemma 5.2. For some s € U let Aj € C satisfy

Z /\le and Z )\JYJ(S):Y(S).

JCN JCN
Let py(s) and 45 (s) satisfy Hypothesis 5.3. Then the numbers Aj satisfy
(5.5) in Proposition 5.1.

Proof. Hypothesis 5.3 can be rewritten in matrix form: MP = 0
with

1§ .- 0 0 - -1 8§
Ex Ey -+ 0 0 ) 0
0 0 1 s 108
M=110 o E; Eny o o |’
0 0 0 0 0 0
0 0 0 0 Eys En
gn
PN
P=|T
by
do
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Equation (5.5) can be rewritten in the form HP = 0 with
H=(Anv1 Anl -+ A1 Ayl - Agl Agl).

Thus, we need to show that the kernels satisfy ker(M) C ker(#), or,
equivalently, that the block row # is linearly dependent on the rows of
M.

We perform row reduction in ( /;/Ll ) , utilizing Part (ii) from Lemma 5.1,

and obtain the block matrix

10 -+ 00 -+ —Xy XpnS
01 -~ 00 -+ Yy -YyS
00 -+ 10 -+ —-X; X;8
00 -~ 01 - Y, -=Y,;8
00 -« 00 -+ 0 1

with

R=X1+4 > M(X;-Yy) = A(1 1)<_X)‘,’J>.

J#S JCN

Therefore the last row depends on the upper rows if and only if R = 0.
Since by assumption (5.7) holds and

this is equivalent to

() (E)-6)

Multiplying by the inverse we obtain the equivalent formulation

= (8- ()

JCN
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Finally, since X; =1— SY; and Y =1 — SY, and again by (5.7), this
is equivalent to ;- y AsY; =Y. ]

Lemma 5.3. Let s € U. Let S(s) satisfy Hypothesis 5.1. Let d;,Y;
be defined according to Definition 5.2. Then the following assertions
hold:

(5.9) Z dy(s) = det(S(s) + 1),

JCN
(5.10) | det(S(s))| < Mo| det(S(s) + 1)],
(5.11) \ds(s)] < Mp|det(S(s) +1)|.

Proof. Equation (5.9) is a special case of [21, formula (23)].

Let K1, ... , k, be the eigenvalues of S(s), with eigenvectors z1, ... , z,.
Since | arg((z;, S(s)z;))| < 61 we infer that |arg(k;)| < 6;. This implies
that |k; + 1| > sin(6;)|k;|. Therefore

n

| det(S(s) +1)| = [] Ixi + 1| > sin(62)™ ] Il
=1 i=1

= sin(f1)"| det S(s)|.
This proves (5.10).
We rearrange the indices such that J = {1,... ,m} and write S + 1

as a block matrix:
Si1+1  Sio
S+1= .
+ ( So1 S22 +1

Then d; = det(Sy1). From (5.10) we infer that |det Sy;| < M(9)
| det(S11 + 1)|. Using ([14, Section 0.8.5]) we see that

|det(S + 1)| = | det(S11 + 1) det[(Saz + 1) — Sa1(S11 + 1)71S12]|
d
> %| det[(S2a + 1) — So1(S11 + 1) 1S12]|.

Therefore we have to show that

1
| det[(Sa2 + 1) — S21(S11 + 1)~ 1S12]]

< M(6).
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A straightforward computation shows for z € C*™™

(z,[(S22 + 1) — S21(S11 + 1) Sp]z)
= ||zl + [|(S11 + 1) " Sraz|> + ¢

¢ = < <—(Sn +;)1S12$> s (—(Su —1—;1)15123:) >,

so that | arg(€)| < ;. Therefore

with

[(z, [(S22 + 1) — S21(S11 + 1)~ "S1a]z)| > sin(6y) |||,

As a consequence, we infer that all eigenvalues ~; of [(S22+1)—S21(S11+
1)~1812] satisfy |y;| > sin(61). Hence

‘ det[(522 + 1) — 521(511 + 1)_1512” Z sin(@l)". m}

Lemma 5.4. Let s € U. Let S(s) satisfy Hypothesis 5.1, and let
dy, Yy be defined according to Definition 5.2. Then

(5.12) > ds(s)Ys(s) = det(S(s) + 1)Y-
JCN

Proof. Let M C N. We show by induction with respect to m = #M:

(5.13) adj(S+ Ey) =det(S+ Ey)(S+Em)™ = Y dsYy.
JON\M

Here adj (A) denotes the adjugate matrix to A. For M = &, Equa-
tion (5.13) is trivial. Suppose (5.13) holds for #M = m. Let L C N
be such that #L = m + 1. Without loss of generality we assume that
leL. Put M =L\{1}.

Separating the first row and column we rewrite

_(o+1 cT
(S+EL)_< b S’+EM>’
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(S + Ey) = (" szEM)

A direct computation shows that

S

(S+Ep)~!

a ! —a YT (S+Ey)t
—ofl(é'—i—EM)*lb (S+EM)71 — ail(g%-EM)ileT(g—i-EM)il

with @ = o — ¢7 (S 4+ Ep)~'b. From [14, Section 0.8.5] we infer that
det(S + En) = adet(S + Ejyr). Therefore,

adj (S + EM)
_ det(S‘ + EM) —cTadj (~ + EM)
T \adj(S+ Ep)b «adj (S + Eyy) — adj (S + Epg)bel (S + Epp)~t

The same computation for L instead of M yields

adJ (S + EL)
_( det(S+En) —cTadj (8+Ey)
“\adj (S+Eu)b (a+1)adj(S+En) — adj (S+Eng)bet (S+Epr) 1
Therefore
adj(S+ Br) —adj(S+ Ear) + (0 .. 0 -

The induction hypothesis may be applied to the adjugates of S + Ep
and S + Ej;. Therefore

: 0 0
adj(S+EL) = Y dj¥s+ > (0 dﬁj>

JON\M JCN\{1}, JON\{1}\M
= Z d;Yy + Z dsYy
JON\L,1eJ JON\L,1¢J
= Z djY;y. O
JON\L

We are now in the position to give the



170 W. DESCH, K.B. HANNSGEN AND R.L. WHEELER

Proof of Propositions 5.1 and 5.2. We put

1

Asls) = det(S(s) + 1)d‘](s)'
Evidently A depends analytically on s € Y. By Lemma 5.4 we infer (5.7)
and (5.12), which in turn implies (5.5) by Lemma 5.2. Equation (5.11)
implies (5.8). Condition (5.1) carries over to En\ ;s + E;SEj; therefore,
all eigenvalues of En\; + E;SE; have positive real part. If s € R, the
matrix En\;+ E;S(s)E; is self-adjoint. Therefore the determinant d;
is positive. This implies (5.6). o
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