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INTEGRAL EQUATIONS CONVERTIBLE TO
FIXED POINT EQUATIONS OF
ORDER-PRESERVING OPERATORS

L.H. ERBE AND SHOUCHUAN HU

1. Introduction. In this paper we study integral equations of Ham-
merstein type and show that under certain conditions such a problem
is equivalent to a fixed point problem for a certain compact order-
preserving operator. This conversion is quite interesting since funda-
mental work has been done for the study of fixed point equations with
compact order-preserving operators, see [1,2,3,5,6]. Consequently,
upon having such a conversion, one can establish for the integral equa-
tions various results based on the corresponding results for fixed point
equations for compact order preserving operator. For instance, the min-
imal and maximal solutions, and the numerical iterative techniques, due
to Krasnoselskii [6], the existence of solutions involving discontinuous
functions due to Amann [3], and the existence of multiple solutions,
see Amann [1].

More specifically, we consider problems of the form

1) o(z) = /Q k() f (4, o)) dy

where (2 is some bounded closed domain in R™ with Lebesgue measure
1(). Here f : QxR — R need not be continuous in its second variable,
but we assume k : X Q — R™T is continuous (this can be relaxed). A
solution of (1) is understood to be an element of X = C(Q,R).

Let P = C(,R"). Then (X, P) is an ordered Banach space. The
operator B : X — X is said to be order-preserving or increasing
if Bx > By for x > y. It is clear that, if B is linear, this is
equivalent to assuming B is positive on P. Define f,, : 2 x R =+ R by
fm(z,u) = f(z,u) + mu for real m. Our ultimate goal in this paper is
to show that Equation (1) is equivalent to

2  pl) = /Q K@, ) iy 0(y)) dy + /Q K (2, ) (y) dy
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for some kY and k°°, continuous and nonnegative on ©Q x Q. It is
clear that the righthand side of (2) is a compact and order-preserving
operator if f,(z,u) is increasing in u.

The paper is organized as follows. In Section 2 we prove the equiv-
alence results between Equations (1) and (2). In Section 3 some ap-
plications of these results are provided. We conclude this paper with
some additional remarks in Section 4.

2. Equivalence conversions. Let K : X — X be the
linear compact operator defined by K¢ = [, k(z,y)e(y)dy, and
let (Fyp)(z) = f(z,p(x)) be the Nemytskii operator. Similarly,
(Frp)(2) = fm(z,¢(2)), o(K) denotes the spectrum of K, and r(K)
the Gelfand radius of the spectrum.

Theorem 1. Assume that —1 ¢ o(K) and (I + K)"™K is order-
preserving for some positive integer m. Then

(3) p=KFp
is equivalent to
(4) ¢ =KFrnp+ K%

where K°, K% : X — X are linear, compact and order-preserving. If,
in addition, r(K) < 1, then K° and K° may be represented in terms
of nonnegative continuous kernels k° and k°°, respectively, i.e.,

(5) K= / o n)ew) dy, K% = / K (2, 1) (y) dy.

Proof. —1 ¢ o(K) implies that (I + K)™' : X — X is bounded and
linear. Hence, from (3),
p=KFy—Kp
so that
¢=I+K)'KFip=(I+K) 'KFp —(I+K) 'Ky
=(I+K)'KFp-Ko+[I - (I+K) YKy
p=I+K)?KFp+(I+K)?(+K)-IKeg.
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Similarly, we have

=({I+K)?KFp+(I+K)?°[(I+K)*-IKyg
+(I+EK)?(I+K)-IKep.

Inductively, we obtain
m—1

6) ¢=I+EK) "KFno+(I+EK)™) [(I+K)"-IKep.
n=1

Therefore, (6) becomes (4) if we define
K’=(I+K)™"K
and

m—1
K =(I+K)™™ > [(I+K)" - I]K.
n=1

Obviously, K° and K% are order-preserving, compact and linear.

If, additionally, r(K) < 1, then, see [9], (I + K)~! can be expressed
explicitly as

([+K)'=> (-K)"
n=0

which converges in the norm of operators. The proof will be finished if
we can show that (I + K) ™! is generated by a continuous kernel, since
then (I + K) ™K = [(I+ K) !|™K is also generated by such a kernel,
and so are K° and K%,

Let k, : @ x O — RT be the kernel generating the operator K",
namely, ki (z,y) = k(z,y) and kn—‘,—l z,y) = [okn n,y) dn for
n > 1. Thus, formally, (I + K) ! is generated by

(7) 0(z,y) = (-

n=0

Since r(K) < 1, we have

(8) > IE"| < oo
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Also, for n > 2 and (z,y) € Q2 x Q,

(9) kn(z,y) = (K" k(,9)](2) < [K"Y - k()]
S C|Kn71|

where C = max{k(z,y)|(z,y) € Q x Q}.

By (8) and (9), the series (7) is absolutely and uniformly conver-
gent. Therefore, (I + K) ! is generated by the continuous function
3 (1)K, (z,y). Consequently, K° is generated by

n=0

Ky = [ O [Tn)

"'/Q(ym,n)/k(n,y) dn dymdym_1 - - - dy1

and similarly, K is generated by some continuous function £°.
Furthermore, k% and k% are also nonnegative since, by assumption,
K° = (I + K)™™K is increasing and therefore so is K% = (I +
K)—™ ZZ:;[(I + K)" —1] as ZZ:;[(I + K)™ — I] is increasing. The
proof is thus complete. O

Remark 1. In case r(K) < 1, direct calculations show that if
(I — K)™K is increasing, so is (I + K) ™K.

We recall that a total cone P in a Banach space Y is a cone which
satisfies P — P = Y and a mormal cone is a cone which satisfies
|z +y|| > 6> 0forall z,y € Y with ||z|| = ||y|| = 1.

Before we state the next result, we quote the following lemma (see

[7])-

Lemma 1 (Krein, Rutman). Let Y be a Banach space, P C'Y a
total cone, and let T :' Y — Y be compact, linear and positive on P
with r(T) > 0. Then r(T) is an eigenvalue with a positive eigenvector.

Theorem 2. Assume that for some m >0 and € > 0,

(10) k(z,y) = (m+ €)ka(z, y)
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on Q X Q with ko(z,y) := fQ k(z,n)k(n,y)dn. Then Equation (3) is
equivalent to

(11) o= (I+mK) 'KF,¢
where (I + mK) 'K is generated by some nonnegative continuous

kernel.

Proof. Let K = (m + ¢)K. Then the assumptions imply

K > K?.

Assume for the moment that 7(X) > 0. By Lemma 1,
(12) Ko =r(K)p

for some ¢ € P\{0}. Hence, by (2)

K*p = [r(K)¢ < Ko =r(K)ep.

Thus we have r(K) < 1. Therefore, if we let K = mK, then we always

have r(K) < 1.

Write ¢ = KFp as ¢ = K((1/m)Fp). Equation (3) is then
equivalent to
(13) p=(+EK)"E(1/mFg+¢)

where, since r(K) < 1, again see [9],

(14) (I+F) 'K = i(ff)nﬂ - i(fff)?".
n=0 n=0

It is clear that (10) and (14) imply that (I + K)~'K is generated by
some nonnegative continuous kernel and so is (I + mK)~'K. Notice
that (1/m)Fo+¢ = (1/m)F,,¢ so we see that (13) is the same as (11).
The proof is therefore complete. u]

Remark 2. If 0 < a < k(z,y) < con Q x Q, k(z,y) > (m+e)ka(z,y)
is then satisfied with any m < a/(c*u(£2)) and some & > 0.
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3. Some applications. Because of the equivalence of (3) and (4),
the well-known results of fixed point equations for increasing operators
can be applied to (3), provided f,,(z,u) is increasing in u. To illustrate
this, we prove some simple results which only need the following lemma.

Lemma 2 [3]. Let (X, K) be an ordered Banach space with a normal
cone K. Assume that for u < v, A : [u,v] = [u,v] is compact and
increasing. Then A has mazimal and minimal fized points in [u,v].

Theorem 3. Assume that —1 ¢ o(K), (I + K)"™K is order-
preserving and fm,(z,u) is increasing in u, for some integer m > 0.
Assume further that there exist v,0 € X with v < ¥ such that

(15) (I+K)™KFv-v)>0, (I+K)"™5—KFp)>0.
Then the equation (1) has minimal and mazimal solutions in [v, ¥].
Proof. By Theorem 1, Equation (1) is equivalent to
o=Ap with Ap=KF, o+ K%.

It is clear that A is compact and increasing since F,, is. Therefore, in
order to apply Lemma 2, it remains to prove

(16) v < Av, A < 0.

We only prove v < Av since Av < ¥ can be similarly proved. From
(15), one has (I + K)"™(KFv—v) >0, ie.,

(17) (I+K) "™ KF,v—mKv—v)>0

and we claim that

(18) (I—l—K)mv—va—v:m_ [(I+K)"—IKv.

n=1
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This is clearly true when m = 1. Assume that it is true for m = p.
Then if m = p+ 1, we have

(I+K)P* v —(p+1)Kv—v
=+ K)?-pKv—v+[(I+K)? —I|Kv

p—1

=3I+ K)" - I|Kv + [(I + K)? — ]Kv

3
Il
—

[
K

[(I+ K)" — I|Kv.

Il
-

n

Thus, by mathematical induction we see that (18) is true. Now (17)
and (18) yield

(I+K)™ <KFmv + mz_ (I + K)" — I[Kv— (I+ K)%) >0

n=1

which is the same as v < Av. Therefore, Lemma 2 is immediately
applicable and the proof is thus complete. a

In Theorem 3 the condition that (I + K) ™K is order preserving
may appear to be difficult to verify. However, from Remark 1, we
may instead verify that (I — K)™K is increasing which may be easier
to determine in some instances. We note also that the restriction in
Remark 1 that 7(K) < 1 is harmless since one may always replace K
by aK for some a > 0. It is interesting to determine conditions under
which (I — K)™K is increasing for some (or for all) m € N. Along this
line we consider the following integral equation

b
(19) o(z) = / eV £y, o(y)) dy.

Ezample 1. Assume that a < b, f : [a,0] x R — R is graph
measurable, and [ (z,u) is increasing in u for some integer m > 0.
Assume further that

(20) fim Macy<ef B 0)  pa

u—0+ u

>e
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and

(21) lim SPey<b W0 ),

uU—00 u

Then (19) has a solution ¢ such that ¢(y) > 0 for all y € [a, b].

Proof. Tt is clear that (19) is equivalent to ¢ = K Fo with (Kv¢)(z) =
ff e=@=y(y)dy and Fyp = f(y,o(y)). Now it is easy to see that
KK = (b—a)K. Thus we can find n € N such that, with K = (1/n)K,
r(K) < 1and KK = aK with = (b —a)/n < 1. By condition (20)
we can choose n so large that for all y € [a, b],

(22) nf(y,v(y)) > 1

where v(y) = (1/n) f; e~W=?)dz. Now n € N is fixed. A direct
calculation shows that for any m € N we have (I—K)™K = (1—a)™K.

Hence, by Remark 1, (I + K)~™K is increasing for all m € N. If we
let f =nf and F = nF, then (19) is equivalent to

(23) o=KFy

and F,(z,y) is increasing in u for m = nim. Thus, if we fix m = nim
then by (22) it is easy to check that

(24) (I+K)™KF(@)—v)>0

since A(I + K)_m(ﬁ'ﬁ(v) —v) = (I + k)_m(nf(y,v(y)) — 1) and
(I + K)"™K is increasing.

By (21) we can choose a sufficiently large 8 > 1 such that, with
5(y) = (8/n) [’ e~ @) dz we will have

(25) 8> nf(y,5(y) forall yela,b].
As in the proof of (24), we may now obtain

(26) (I+K)"™(o— KF(7)) > 0.
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Thus the condition (15) is satisfied by K and F. Therefore, we may
apply Theorem 3 to get minimal and maximal solutions of (23) in [v, 7],
which are also solutions of (19). O

Remark 3. In order to achieve the same result for (19) without using
Theorem 3, we would have to assume that f(z,) is jointly continuous
in x and u, and increasing in u.

The next theorem can be analogously proved by applying Theorem 2
and Lemma 2.

Theorem 4. Assume that for some m > 0 and € > 0,
k(z,y) > (m+e)ka(z,y) onQxQ

and fm(x,u) is increasing in u. Assume further that there are p, g € X
with ¢ < @ such that

(27) ¢ <FKyp, FKp<o.

Then Equation (1) has mazimal and minimal solutions in [K ¢, K@|.

Proof. By Theorem 2, equation (1) is equivalent to
p=Ap:= (I +mK) 'KF,p

and (I + mK)™1K is increasing. Let v = K¢ and v = K. Equation
(27) implies

(I+mK)" " (KFv—v)>0 and (I+mK) '(5— KFv)>D0.

Hence,
v<Av and Av =7

and Lemma 2 applies to [v,7]. The proof is complete. o

4. Final remarks. In general, it is difficult to check if (I+K) ™K is
indeed increasing. Therefore we also proved the more concrete Theorem



44 L.H. ERBE AND S. HU

2 and used the easy-to-check condition (27) instead of (15) in Theorem
4. Hence, it is very interesting to know when (I + K) ™K is an
increasing operator.

When m = 1, (15) reduces to
(28) (I+K) ' (KFv—v)>0 and (I+K)™ ‘(v - KF7)>0.

This may seem to be an artificial condition. However, we show next
that it is automatically satisfied by the Dirichlet problem for differential
equations

FEzxzample 2. Consider

(29) { —Au = f(u) inQ
u=20 on 0N}

where we assume that OS2 is sufficiently smooth. Let v be a lower
solution of the BVP (29), namely,

{Avﬁf(v) in Q

30
(30) v <0 on 0f).

We claim that v must automatically satisfy
(I+K)"Y(KFv—v)>0

where K is the Green’s function for —Au = 0 subject to u = 0 on 0.
To this end, let £(z) be a solution of

{—Af =f(v)+Av inQ
E=—z on 0f).

Then 1 = v + £ satisfies

—An=f(v) inQ
n=20 on 0f.

That is,
n=KFu= / K(z,9)f(0(y)) dy.
Q
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Let (Ig) ¢ = p, ie., p+ Kp = £. Hence, by (30),

—Ap+p=—-A&=f(v)+Av>0 in
p=&§20 on 9Q.

The maximum principle thus implies p(z) > 0 on Q, i.e., (I +K)~*¢ >
0. Consequently,

(I+K)'w<(I+K) v+ ({I+K)%
={I+K)"'n=(I+k)"'KFu.

Similarly, any upper solution of v of the BVP (29) also automatically
satisfies (28).

If K is a Green’s function as in Example 1, the maximum principle
implies that (I + mK)~'K is increasing for all m > 0. Of course,
K(z,y) is nonnegative and symmetric in that situation. One might
conjecture that perhaps all nonnegative symmetric K(z,y) enjoy this
property. Unfortunately, this is false, even for matrices as the next
example reveals.

Ezample 3. Take three orthogonal unit vectors

1 V2 1
= 2
a- (1) i-(2). e %
7 0 —V22

and assume that they are eigenvectors of a symmetric matrix K
corresponding to the eigenvalues Ay = 3, A2 = 2 and A3 = 1,
respectively. Then

K = \@at + Mobbt 4+ N3+

1 142 2 2
i 174 e i, 4 0
_ 1 1 2
=31z 3 G |*t2|-1 1 0
V2 V2 2 0 0 O
4 4 4
1 1_ 42
4 4 4 \/5
+ i i =20
V2 V2 2
4 4 4
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We claim that (I + mK) 1K is not an increasing operator for large m.
More specifically, we shall show that

1 >\2 )\3
A 2 bbby — 23
1+m)\1a1a2 + 1,, A2 102 + 1+ mAs
for large m. To this end, we have

3
i Ao A3
A 2 ppa 8
(H 1 +mi)\i)>a1a2 + 1+ mAs 102 + 1 +m)\30102>

i=1

C1C2 > 0

1 2
=M1 +mX)(1+ m>\3)Z + X2(1 4+ mAy) + (1 4+ mAs) < - Z)

1

(A 2Xx A3 9 5
(-] em(Fae ) <o

for large m.
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