JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 7, Number 4, Fall 1995

REDUCTION OF AN INFINITE SYSTEM
OF INTEGRODIFFERENTIAL EQUATIONS FOR
ELECTRIC CURRENTS ON A LATTICE OF CLOSED
CURVES TO A FINITE SYSTEM OF INDEPENDENT
PSEUDODIFFERENTIAL EQUATIONS ON A CIRCLE

VALERY A. KHOLODNYI

ABSTRACT. An infinite system of integrodifferential equa-
tions for electric currents on an infinite network of noninter-
secting infinitely smooth simple closed curves in the plane is
considered. These curves are obtained from a fixed curve by a
parallel translation by vectors belonging to a one-dimensional
lattice. An incident electromagnetic field is assumed to be
harmonically time dependent and to be normally polarized
so that the electric currents flow only along the curves. The
medium is assumed to be linear and isotropic. It is shown that
if the incident electromagnetic field is a T-periodic function
on the lattice, then the original system can be reduced to a
system of T independent pseudodifferential equations on the
unit circle with classic elliptic pseudodifferential operators of
order 1 in the Sobolev scale. Another significant outcome of
this work is that this reduction allows one to apply the many
known powerful methods for the numerical analysis of classic
elliptic pseudodifferential equations on the unit circle to the
original system.

1. Introduction. It is well known (see, for example, [1, 2, 3]) that
boundary-value problems for Maxwell’s equations in a plane isotropic
linear medium in which the boundary consists of a finite number N of
conducting nonintersecting infinitely smooth simple closed curves can
be reduced to a system of N integrodifferential equations for electric
currents along the curves. Harmonic time dependency, normal po-
larization of the electromagnetic field (i.e., that the vector of electric
field strength lies in the plane), and the radiation condition at infinity
were assumed. The N x N matrix integrodifferential operator of the
system was proven to be an N x N matrix classic elliptic pseudod-
ifferential operator of order 1 in the Sobolev scale of N-dimensional
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complex vector functions on the unit circle. The practical benefit of
viewing the original system of integrodifferential equations as a system
of pseudodifferential equations is that one can then apply the many
known powerful methods for the numerical analysis of such systems of
pseudodifferential equations (see, for example, [4-6, 9] and references
therein).

In the present paper we consider a particular boundary formed not
by a finite, but by an infinite number of such curves. We follow
the approach introduced in [7], where we applied the discrete Fourier
transform to reduce an infinite system of integral equations on this
particular boundary to a finite system of independent pseudodifferential
equations on the unit circle with classic elliptic pseudodifferential
operators of order —1 in the Sobolev scale. (This infinite system of
integral equations arises in the reduction of the Dirichlet problem for
the Helmholtz equation in the plane to this particular boundary.) Here
we develop this approach, applying the discrete Fourier transform to
reduce an infinite system of integrodifferential equations for electric
currents along the curves forming this particular boundary to a finite
system of independent pseudodifferential equations on the unit circle
with classic elliptic pseudodifferential operators, but of order 1 in the
Sobolev scale.

Let v be an infinitely smooth, simple closed curve in the plane with
coordinates (x1,z3). Without loss of generality, we assume the length
of v to be equal to 2m. Let Z(§) = (z1(§),z2(£)) define the curve
~ parametrically where £ is the natural parameter on . It is obvious
that z(£) is an infinitely smooth function. We denote by I" the following
infinite network of curves in the plane:

D= {vm:Zm(£) =%(&) +hm,me Z,¢ € [0;2n]},

where h is the vector (h,0) with b > sup{|z1 (&) —z1(n)| : &, € [0,27]},
Zm(§) defines curve 7, parametrically, and Z is the set of integers.

Remark. Since 7 is a closed curve, sup{|z1(§) —z1(n)| : £, n € [0,27]}
is finite. This supremum is chosen as a lower bound for h to ensure
that no two curves from I' intersect. Then I' is an infinite set of
nonintersecting identical curves <, obtained from a fixed curve =

by a parallel translation by vectors hm, m € Z, which form a one-
dimensional lattice with a lattice constant h.
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Each curve 7, from the network I' physically plays either the role
of the cross-section of a hollow cylindrical conductor or the boundary
of the cross-section of a solid cylindrical conductor that is orthogonal
to the plane. We assume that all curves -, have the same surface
conductivity . For the sake of generality we allow o to vary over &.
More precisely, we assume o = ¢(§) to be an infinitely smooth complex
function of £ on . According to the physical meaning, o(§) # 0 for all £
on 7. Also we consider the case of perfect conductors formally described
by o = co. The network of curves I is surrounded by a medium which
we assume to be linear and isotropic with dielectric constant € > 0
and permeability g > 0. The electromagnetic field is assumed to be
harmonically time-dependent and to be normally polarized so that the
electric currents flow only along the curves.

We will treat a complex function on a curve 7, in I' as a complex
function on the unit circle S, and we will identify it with the corre-
sponding 27-periodic function on the real line.

The infinite system of integrodifferential equations for the complex
amplitudes of electric current densities I; along v; in T’ (see the Ap-
pendix for the derivation) can be shown to be:

(1) Z Zm—iI} = Ep, m € Z,
l=—o0
where E,,, = E,,,(§) is the complex amplitude of the tangential compo-
nent of an incident electric field on 7, at the point £, and where the
operator Z,, ; is defined by
R 11

2 YA _—Lm Rm —
(2) l 1+ l+sz’ml

with operators Ly,_;, Ry_; and ( /Cim—1) given by

- 1

(Enett)(€) = [ (€ HE Hlal6)

—Z(n) + h(m — D)) 1i(n) dy
(3) (Ron—i1h)(€) = 6(m — )o ™ (£)11(€)

i 1id [*"
(gn)©--15 [ #P0ee
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Here c¢ is the speed of light in a vacuum, w > 0 is the angular
frequency, k = ,/ep(w/c) is the wave number, (;) and |- | stand for
the standard scalar product and the Cartesian distance in the plane,
7(&) = ((0/9€)z1(E), (0/0&)x=2(€)) is a unit vector tangent to the curve
~ at the point &, HéQ) is the Hankel function, and é(n) is the Kronecker
symbol.

Remark. In the case of perfect conductors, Ry is the identically
zero operator for all m and [ in Z.

Remark. The problem of determining such electric current densities
on the network of curves I' arises in various areas of radio physics
and electrical engineering including diffraction, antenna theory, wave
propagation in periodic structures and many others (see, for example,
[11 and 12]).

Remark. The operators Zm_i, Lm_1, Rm_; and (i/Cm,l) have
the physical meaning of mutual (self, if m = [) operator impedance,
inductance, resistance and inverse capacitance of the conductors with
surfaces 7, and ~;.

We recall [1] that the Sobolev space Hy = H(S) of complex functions
on S is the completion of the space C'*°(S) of infinitely smooth complex
functions on S with respect to the norm

oo

|lulle = ( >« +p2)t|Cp(U)2>l/2,

p=—00

where Cp(u) are the Fourier coefficients of the function v with respect
to the system {e’?¢,p € Z}. The spaces H;,t in R (the set of reals),
form the Banach scale.

Also we recall that if g is an N-periodic map from a set of positive
integers 1,2,..., N into a Banach space, then the discrete Fourier
transform of g is defined by

N
~ i(2w/N)s
gs = m—)sg E e / 9m»
m=1
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where § stands for the discrete Fourier image of g.

The inverse discrete Fourier transform is given by

1 N
_ = 27r/N)ms'~

Hereafter, we will reserve the subscript s to denote the image g5 of the
discrete Fourier transform of g, omitting the hat.

Let us formulate the following conditions:

Condition 1 (Periodicity). There exists a positive integer T such that
E,+r=E,, and I,,,+7 = I, for each m in Z. Hereafter, T" will stand
for the least such integer.

Condition 2 (Nonresonance). The product khT # 0 mod 27.

Remark. Our periodicity condition is a very natural one and holds in
numerous applications dealing with electromagnetic wave propagation,
that is, with electromagnetic processes periodic with respect to the
network of curves I'.

Remark. The T-periodicity of the function FE,, on the lattice cor-
responds to the Th-periodicity of the incident electric field in the x;
direction in the plane. Therefore, the nonresonance condition means
that the electromagnetic wave length of free space A = 27 /k does not
fit into the distance Th an integral number of times.

We denote by Z, the following operator:

T
(4) = e itr/Melz, s=1,...,T,
=1

where the operator Z is given by:

(5) Zi= > Ziper, l€Z

v=—00
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We consider the following system of 7" independent equations in the
unknown functions I:

(6) ZASIs:Es7 S:].,...,T,

where the functions E; are given by

T
Es — Z e—i(27r/T)SmEm‘
m=1

We are now ready to present the main result of this paper.

Theorem. Let Conditions 1 and 2 hold, and let E,,, belong to H; for
allm=1,...,T. Then

i) Systems (1) and (6) are equivalent in the sense that their solutions
I; and I, are the discrete Fourier images of each other:

1 X
_ i(2m/T)ls T .
I = T 5271 e I;
ii) The operators ﬁs for all s = 1,...,T are classic elliptic pseu-

dodifferential operators of order 1 in the Sobolev scale on S;

iii) All solutions I of system (1) belong to Hyyq for alll=1,... ,T.

Remark. Under Conditions (1) and (2) the Theorem reduces the
problem of solving system (1) to that of system (6) which consists of T
independent pseudodifferential equations on the unit circle with classic
elliptic pseudodifferential operators of order 1 in the Sobolev scale. Also
since the kernel subspaces of such pseudodifferential operators are at
most finite dimensional [1], the operators Z,A’s, foralls=1,...,T, are
invertible except at most on some finite dimensional subspaces.

2. Proof of the theorem. In order to prove the theorem we need
some preparation. For convenience of reference, we present here Lemma
1 introduced and proven by the author in [7].
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Lemma 1. The function

Giem =Y HP (kz(€) — 2(n) + h(l +vT)|)

vil+vT#0

is infinitely smooth on the torus S x S whenever | € Z and khT #
0 mod 2.

For each [ € Z we consider the following sequences of operators:

?: Z Ll+vT7 ?: Z Rl+vT
[v|<n lv|<n

in i

[ Crror’
l lu|<n I+0T

where n € Z, the set of nonnegative integers.

We denote by || - |[(¢,—¢,) the norm in the Banach space O, _,) of
bounded linear operators acting from H;, to Hy,.

In what follows, whenever we refer to the order of an operator we
mean the order in the Sobolev scale on S.

Lemma 2. Let Condition 2 hold. Then there exist such operators
L, Ry and (1/C;) that

i) L, Ry and (1/C)) are classic elliptic pseudodifferential operators
(PDO) of orders —1, 0 and 1, respectively, if | = Omod T and
are operators of order —oo if | # 0mod T. In the case of perfect
conductors, Ry is the identically zero operator for all | in Z;

ii) For eachl € Z and each t € R, as n — oo, we have

||ﬁl - i?”(tawrl) — 0, ||7€l - R?H(tﬁt) —0
‘ i I — 05
G G (t—t—1) ’

iii) For eachl € Z,

. . . . i 1
Lisr =L,  Rir =Ry, =_.
+T 1 +7T 1 Cl—l—T Cl
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Proof. 'We prove Lemma 2 for the operators L1, R, and (1/¢)
separately. Let us consider an operator £; with the kernel

(7) w(r(€);T(m)Ki(€,m), L€Z,

®)  KEm=1 > HP M) ~ ) + b+ o))

vV=—00

We are going to show that the operator £; satisfies (i), (ii) and (iii).
To prove (i), we split the kernel (7) into two summands:

(9) (T (&); () (Ko (& m) + K;(€,m)),
where

?

Ko(€,n) = 7Hy (KI2(6) —2(m)]) Y 8(1+T),

Kiem) =5 > HPEE) — () + b +oT)).
v:qiiqu?aoéo

By Lemma 1 the function Kj(&,n) belongs to C*(S x S), the space
of infinitely smooth complex functions on the torus S x S with the
standard topology, for every | € Z. Therefore, using the definition of
the Hankel function [8], we can rewrite the kernel (7) as follows:

1

(10) Por

(r(); 7(m)Jo(kZ(€) — Z(n)]) In(k|Z(£)
—z(n))) Y §(+vT)+gq(&n),

vV=—00

where ¢;(&,n) is in C*°(S x S) for every | € Z, and Jy is the Bessel
function. By construction of the vector 7(£) and by the definition of the
Bessel function Jy [8], the product (7(§); 7(n))Jo(k|Z(§) — Z(n)])|n=c¢ is
not zero (it is equal to 1) for all £ € S. Therefore, according to [1] the
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kernel (10) defines a classic elliptic PDO of order —1 if I = 0 mod T
and an operator of order —oo if [ # 0 mod 7'.

Let us prove (ii). Consider the kernel of the operator ALF = £; — IA/?
given for n > |I/T| by

pr(€7n) S HEP(H2(€) - 2(n) + hI + oT)).

lv|>n

To prove (ii), it is enough to show that, if [ € Z and khT # 0 mod 2,
the above kernel converges to the zero function in the topology of
C*>(S x S) as n — oo. But this follows directly from Lemma 1.

Statement (iii) follows immediately from the explicit form of the
kernel of the operator £; given by expressions (7) and (8).

Let us notice first that in the case of perfect conductors, since R
is the identically zero operator for all m and [ in Z, the identically
zero operator Ry, | € Z, satisfies (i) and (iii). Now let us consider the
operator Ry of multiplication by the function

(11) o (8) i S(14+oT), 1€Z.

vV=—00

We are going to show that the operator R; satisfies (i), (ii) and (iii).
To prove (i), notice that if I = 0 mod T, then R; is the operator of
multiplication by the function o=1(£) in C°°(S) where 0=1(£) # 0 for
any £ € S. Therefore, by [1], R, is a classic elliptic PDO of order 0.
If I # 0 mod T', then R, is the identically zero operator and, hence, by
[1], it is an operator of order —oo.

To prove (ii) notice that, if [ # 0 mod T, the sequence R} is the
stationary sequence of the identically zero operators. If [ = 0 mod T,
the sequence R} for n > |I/T| is the stationary sequence of the
operators of multiplication by the function o—1(¢).

Statement (iii) immediately follows from the explicit form of the
operator R; given by expression (11).

Finally, let us consider the operator

(12) 1: Ld

_ld 4l
Cl Edf

Aldf,

leZ,
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where the operator A; has the kernel K;(£,n) defined by expression (8).
We are going to show that the operator (1/C;) satisfies (i), (ii) and (iii).
To prove (i), we split K;(£,n) into two summands as in expression (9)
and represent the operator (1/C;) as follows

i_1 4 d a4 d
G e\de"%ag TaeTtdae )

where the operators Ay and .A] have the kernels Ky(&,n) and K/(§,n),
respectively. If I = 0mod T, then according to [1], the operator
Ao is a classic elliptic PDO of order —1, and hence the operator
(d/d€)Ap(d/dE) as a composition of three classic elliptic PDOs of orders
1, —1 and 1, respectively, is a classic elliptic PDO of order 1. Since
K/ (&,m) belongs to C*°(S x S) for every [ in Z, Aj] is an operator of
order —oo and hence (d/d€).A;j(d/d€) is also an operator of order —oo.
Thus, if I = 0 mod T, the operator (1/C;), as a sum of a classic elliptic
PDO of order 1 and an operator of order —oco, is a classic elliptic PDO
of order 1. If | # 0 mod T, Ay is the identically zero operator and
hence (1/C;) is an operator of order —oo.

Now let us prove (ii). Consider the operator A(1"/C;) = (1/C;) —
(1™/C) given according to expression (12) by —(1/¢)(d/d§)AAT(d/dE)
where the operator AA} has the following kernel for n > |I/T|:

U5 HP (k) ~ ) + B +oT).
lv|>n

To prove (ii) it is enough to show that, if | € Z and khT # 0 mod 2,
the above kernel converges to the zero function in the topology of
C>®(S x S) as n — oco. But this follows directly from Lemma 1.

Statement (iii) follows immediately from the explicit form of the
operator (1/C;) given by expression (12). This completes the proof
of Lemma 2. O

For each [ € Z, consider the following sequence of operators

7t =" Zisor, nELy.
o] <n
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Lemma 2, along with the definition of operators Zym_y from expression
(2), have the following obvious corollary:

Corollary. Let Condition 2 hold. Then the operator Z defined in
expression (5) has the following properties

i) 2, is a classic elliptic PDO of order 1 if | = 0 mod T' and is an
operator of order —oo if | # 0 mod T

ii) For eachl € Z andt € R, ||Z:’l - ZAl"||(t_,t,1) — 0 as n — oo;
iii) For eachl € Z, 21+T = Z.

Remark. It is also obvious that

L W s 11
Zl:Z—{;[,l-i-Rl*l-.——, leZ.
c iw

Now we are ready to prove the Theorem stated in the introduction.

Proof of the Theorem. Using the operator Z, from expression (5) and
Conditions (1) and (2), we rewrite system (1) in the following way:

T
(13) > Znoidi=En, m=1,..,T.
=1

Let us prove (iii) first. Let Z be the T' x T matrix operator with the
elements Z,,, ; where m,l =1,...,7. Then system (13) becomes

21 =F,

where I and E are T-dimensional vector functions with the elements
I; and FE,,, respectively. According to the Corollary and to reference
[1], Z is a matrix classic elliptic PDO of order 1 in the Sobolev scale of
T-dimensional complex vector functions on S. Therefore all solutions
I; of system (13) belong to Hyyq for every Il =1,... ,T.

Now let us prove (i). The action of the 7" x T' matrix operator Z
on the T-dimensional vector function I given by the lefthand side of
system (13) can be viewed as a discrete convolution over variables m
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and [. Diagonalizing the matrix operator Z by applying the discrete
Fourier transform to both sides of system (13), we arrive at system (6),
where functions I, are given by the discrete Fourier transform of I;:

T
I, = Ze_i(%‘—/T)SlIl.

=1
Let us comment that use of the discrete Fourier transform is justified
since Zl € O(t+1~>t)7 Em S Ht7 Il € Ht+1 for every m,l = 1, ,T,

where O(;11¢), Hy and Hyy1 are Banach spaces. Since the discrete
Fourier transform is nondegenerate, we conclude that systems (13) and
(6) are equivalent. The solution of system (13) and hence of system (1)
can be found as the inverse discrete Fourier transform of the solution
of system (6) as we stated in the Theorem.

In order to prove (ii), it is enough to notice that, according to
expression (4) and to the Corollary, the operator Z, for every s =
1,...,T, is the linear combination of 7" operators: Zh:T which is a
classic elliptic PDO of order 1, and Z; with [ =1,... ,7 — 1, which are
operators of order —oo.

Conclusion. Under natural conditions of periodicity and nonreso-
nance we reduce the infinite system of (1) of integrodifferential equa-
tions to a finite system (6) of independent pseudodifferential equations
on the unit circle with classic elliptic pseudodifferential operators of or-
der 1 in the Sobolev scale. System (1) determines electric currents on
the infinite network I' of nonintersecting infinitely smooth simple closed
curves in the plane obtained from a fixed curve by parallel translation
by vectors belonging to a one-dimensional lattice. An incident elec-
tromagnetic field is assumed to be harmonically time dependent and
to be normally polarized so that the electric currents flow only along
the curves. The medium is assumed to be linear and isotropic. The
problem of determining such electric currents arises in numerous appli-
cations in radio physics and electrical engineering. Another significant
outcome of this work is that this reduction allows one to apply the many
known powerful methods for the numerical analysis of classic elliptic
pseudodifferential equations on the unit circle to the original system
(1).

The result presented in this paper can be generalized easily to the case
of a finite number N of layers of networks I' with, generally speaking,
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different curves for each layer. In this case, the operators Z, of system
(6) are N x N matrix classic elliptic pseudodifferential operators of
order 1 in the Sobolev scale of N-dimensional complex vector functions
on the unit circle. Also we point out that the periodicity condition
may be dropped from the Theorem. In this case system (6) becomes a
one-parameter family of pseudodifferential equations whose properties
we will investigate in the forthcoming papers.
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typing the manuscript, and Drs. Anne Dow and Cathy Gorini and also
Jack Engstrom for their help in editing the manuscript.

APPENDIX

Throughout the Appendix we shall use the terminology and notation
introduced in the paper.

The boundary condition for the electromagnetic field in the case
under consideration has the following form [10]

(A1) In(§) = o(ER(E), mEZ EES,

where E'°(£) is the complex amplitude of the tangential component of
the total electric field at the point £ on curve 7, in I'.

Using the superposition principle for the electromagnetic field we
obtain the following expression for Etot:

(A.2) ER (€)= Em(€) + ) En(),

l=—o00

where E,,,(§) is the complex amplitude of the tangential component of
the incident electric field at the point £ on curve v, and E,,;(§) is
the complex amplitude of the tangential component of the electric field
at the point £ on curve <, induced by the complex amplitude of the
current density I; along curve 7;.

In order to find E, (§) we express it [10] in terms of scalar and
vector potentials as

d w

(A3) Em,l(g) = _d_gq)m,l(é-) - ?Am,l(g)a
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where ®,,;(§) and A, ;(§) are the complex amplitudes of the scalar
potential and of the tangential component of the vector potential,
respectively, at the point £ on curve 7, induced by the complex
amplitude of the current density I; along curve ;. With the help of
Green’s function for the Helmholtz equation in the plane with radiation
condition at infinity, these scalar and the vector potentials can be
expressed in terms of the complex amplitudes of the current density
I; and of the charge density ¢; on curve 7;:

. 2m
Bil€) =27 | H (3 ~ 3(0) + R~ DD)an) d

. 2T
wi 2) 115
Ana® = 25 [ @i m wae)
— (1) + h(m — D)) 1 (n) dn.
Using the continuity equation, which in our case takes the form
a(§) = —(1/iw)(d/d§)Li(€), together with the definitions of the op-

erators L,,_; and (i /Cm—1) from expression (3), and using expression
(A.4), we rewrite the relation (A.3) as follows:

Ena(€) =~ S5 En)(©) ~ - (1) ©)

w m—1

Substituting the above expression into (A.2), we rewrite the boundary
condition for the electromagnetic field (A.1) as follows

n©) = 0@ (Bl + 3 (= B (Enim)(@

l=—o0

_i<ci_l[,>(§)>>, meZ, £cS.

Dividing both sides of the above expression by 0@ ) and taking into ac-
count the definitions of the operators Z,,,_; and R,,_; from expressions
(2) and (3), we arrive at the desired system (1).

In the case of perfect conductors, the boundary condition for the
electromagnetic field (A.1) has to be replaced [10] by Ef°*(¢) = 0 for
all m in Z and ¢ in S, again yielding the desired system (1), but now
with Ry,_; being identically zero operators.
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