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A DISCRETE COLLOCATION METHOD FOR
BOUNDARY INTEGRAL EQUATIONS

YAJUN YANG

ABSTRACT. We propose a discrete collocation method
for the boundary integral equations which arise from solving
Laplace’s equation Δu = 0. The Laplace’s equation is defined
on connected regions D in R3 with a smooth boundary S.
The piecewise polynomial interpolation in the parametrization
variables along with the collocation method is used, and a
numerical integration scheme for collocation integrals is given.
We give an estimation on the rate of convergence and present
some numerical examples for the exterior Neumann problem.

1. Introduction. We propose a discrete collocation method for the
boundary integral equations of the second kind for solving Laplace’s
equation Δu = 0 on connected regions D in R3. The integral equations
we considered have the following form:

(1.1) 2πρ(P ) +
∫

S

ρ(Q)
∂

∂νQ

[
1

|P − Q|
]

dSQ = g(P ), P ∈ S.

Symbolically, we rewrite the integral equation (1.1) as

(2π + K)ρ = g

where K : C(S) → C(S) defined by

Kρ(P ) =
∫

S

ρ(Q)
∂

∂νQ

[
1

|P − Q|
]

dSQ

is a bounded compact linear operator.

To see where the above integral equations may arise in solving
Laplace’s equation, consider the following two problems:

Received by the editors on March 7, 1994, and in revised form on January 25,
1995.

Key words. Numerical integration, quadratic interpolation, adaptive refinement,
collocation method.

AMS MOS Subject Classification. 65D30, 65D32, 65R20.

Copyright c©1995 Rocky Mountain Mathematics Consortium

233



234 Y. YANG

A. The interior Dirichlet problem. Let D be a bounded, open,
simply connected region in R3, and let its boundary S be smooth,
which is defined more precisely in Section 2. The problem is to find
u ∈ C(D) ∩ C2(D) such that

Δu(A) = 0, A ∈ D

u(P ) = f(P ), P ∈ S.

We assume that u can be represented as a double layer potential:

(1.2) u(A) =
∫

S

ρ(Q)
∂

∂νQ

[
1

|A − Q|
]

dSQ, A ∈ D.

The density function ρ is determined from the integral equation

(1.3) 2πρ(P ) +
∫

S

ρ(Q)
∂

∂νQ

[
1

|P − Q|
]

dSQ = f(P ), P ∈ S.

For notation, νQ denotes the unit normal to S at Q (if it exists),
pointing into D.

B. The exterior Neumann problem. Let D and S be as above, and let
De = R3\D, the region exterior to D and S. The problem is to find
u ∈ C(De) ∩ C2(De) such that

(1.4)

Δu(A) = 0, A ∈ De

∂u(P )
∂νP

= f(P ), P ∈ S

u(P ) = O(|P |−1), |∇u(P )| = O(|P |−2)
as |P | → ∞.

It can be shown that such a function u exists (under suitable assump-
tions on S and f) and that Green’s third identity can be applied to
u:
(1.5)

4πu(A) =
∫

S

f(Q)
1

|A−Q| dSQ−
∫

S

u(Q)
∂

∂νQ

[
1

|A−Q|
]

dSQ, A∈De.
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To find u on S, we solve the integral equation
(1.6)

2πu(P )+
∫

S

u(Q)
∂

∂νQ

[
1

|P−Q|
]

dSQ =
∫

S

f(Q)
1

|P−Q| dSQ, P ∈S.

Then (1.5) gives u on De. The integral equation (1.6) is of the form
(1.1) with

g =
∫

S

f(Q)
1

|P − Q| dSQ ≡ Sf.

S is the single layer potential integral operator.

The collocation method has been used with piecewise polynomial
approximations to solve (1.1) and problems arising in potential theory.
Piecewise constant collocation has been discussed by Jaswon and Symm
[15], Lynn and Timlake [20], and others. The piecewise quadratic
method is analyzed by Atkinson [2, 3] and Wait [25]. A simple
framework for the analysis of collocation methods that use piecewise
polynomial interpolation is also presented in [2]. The most general
convergence results for collocation methods are given by Wendland
[26]. He used polynomials of degree k to approximate surfaces and
polynomials of degree d to approximate functions, and he showed that
the error of the numerical solution is of order n, where n is the minimum
of d + 1 and k + 1. The superconvergence result for the collocation
method with piecewise quadratic approximations for both the surface
S and the unknown solution ρ was obtained by Atkinson and Chien
[8].

The key to the implementation of the collocation method is the nu-
merical quadratures for the collocation integrals. For the boundary
integral equations we considered in (1.1), there are no straightforward
quadrature rules available. This is simply because several different
types of integrals are involved, including the singular integrals appear-
ing in the collocation system. When the integrand has singularities
within the integration region, the use of a standard quadrature method
may be very inefficient. Schwab and Wendland [24] presented and
analyzed methods for the accurate and efficient evaluation of weakly
singular, Cauchy singular and hypersingular integrals. The approach of
using extrapolation methods to construct new and more accurate inte-
gration formulas based on the asymptotic expansion for the quadrature
error was discussed in Lyness [18] and [19]. Rathsfeld [22, 23] gave
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numerical integration methods associated with graded meshes when
numerically solving the integral equation over the boundary of a poly-
hedron.

Atkinson [5] and Atkinson and Chien [8] presented numerical schemes
for evaluating collocation integrals. Their numerical integration meth-
ods were chosen after much experimentation with other approaches
and were shown to be very efficient in the numerical examples. The
collocation method described in [8] was then implemented with these
schemes. The empirical convergence rate for the approximate solution
of boundary integral equations is consistent with the superconvergence
result for the collocation solution. However, there is no error analy-
sis for the approximate solution. In this paper we propose a discrete
collocation method by choosing a proper integration scheme and show
that the superconvergence result of [8] is still valid for the approximate
solution obtained by the discrete collocation method.

The rest of the paper is organized as follows. In Section 2 we describe
the triangulation of the surface S and the refinement scheme we use.
The interpolation-based quadrature formulas are given in Section 3.
Section 4 contains the collocation method with piecewise polynomial
interpolation. A discrete collocation method based on previous three
sections is presented in Section 5, and numerical examples are given in
Section 6.

2. The triangulation and refinement. We assume that S is a
smooth surface in R3. By this, we mean that for each point P ∈ S,
there is a neighborhood on S of P , with the neighborhood having a
local five-times continuously differentiable parametrization in R2. We
also assume that S is closed and can be written as

(2.1) S = S1 ∪ S2 ∪ · · · ∪ SJ

and for each Sj there is a mapping

(2.2) Fj : Rj
1−1−→
onto

Sj , j = 1, . . . , J,

where Rj is a polygonal domain in the plane and Fj ∈ C5(Rj).
Moreover, the only possible intersection of a pair Si and Sj is to be
either a common vertex or along a common portion of the edges of
these two sub-surfaces.
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The surface S of (2.1) is divided into a triangular mesh

(2.3) τn = {Δk,n | k = 1, . . . , Nn}
for a sequence n = 1, 2, . . . . One way of obtaining the triangulation
(2.3) is by means of the parametric representation (2.2) for the region
Sj of (2.1). We create triangulations for S by first triangulating each
Rj and then mapping this triangulation onto Sj . Since the Rj ’s are
polygonal domains and can be written as a union of triangles, without
loss of generality, we assume in this paper that the Rj ’s are triangles.
We choose

Δk,1 = Fk(Rk) = Sk, k = 1, . . . , J

and
τ1 = {Δk,1 | k = 1, . . . , J}.

The sequence of triangulations (2.3) will usually be obtained by
successive refinements. Given a triangulation τ̂n at level n, and given a
triangle Δ̂k,n in some Rj , j = 1, . . . , J , refine it into smaller triangles
by using straight line segments to connect the midpoints of the three
sides of Δ̂k,n (see Figure 1). The four new triangles will be congruent,
and they will be similar to the original triangle Δ̂k,n. More importantly,
any symmetric pair of triangles, say Δ̂k and Δ̂l as shown in Figure 2,
have the following property:

v̂2,k − v̂1,k = −(v̂2,l − v̂1,l)(2.4)

and

v̂3,k − v̂1,k = −(v̂3,l − v̂1,l).

After such a refinement of all triangles in the triangulation τ̂n, we
will have a new triangulation τn+1 under the parametric representation
(2.2) with four times the number of triangles in τn, i.e., Nn+1 = 4Nn.
And the total number of symmetric pairs of triangles in τ̂n is O(Nn)
and the remaining triangles in τ̂n is O(

√
Nn). Define the mesh size of

τ̂n by

(2.5)
δ̂n = max

1≤k≤Nn

diam (Δ̂k),

diam (Δ̂k) = max
p,q∈Δ̂k

|p − q|
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then δ̂n+1 = δ̂n/2.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

v̂1 v̂6 v̂3

v̂4

v̂2

v̂5

FIGURE 1. Symmetric triangulation.
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FIGURE 2. A symmetric pair of triangles.

We will refer to triangulations with this form of refinement as symmet-
ric triangulations. The property of symmetry will increase the degree of
precision of a quadrature formula which we will use in this paper. An-
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other important feature is that the set of all vertices of triangles in the
triangulation τn is a subset of all vertices of τn+1. This will reduce the
number of function evaluations when approximating a definite integral,
eventually leading to a fast algorithm of numerical integration.

With this special type of refinement strategy for the triangulation,
the collocation method with piecewise quadratic approximations has
superconvergence results for a collocation solution [8]. In most practical
problems, the evaluation of the integrals for the matrix elements in
the collocation system will require numerical integration. And the
calculation of some matrix elements needs special attention when the
kernel is weakly singular or nearly weakly singular. A numerical
integration scheme for collocation integrals is given in Section 5. It is
based on another type of special refinement which is called an ‘La + u’
refinement about P with L a positive integer and P a vertex of a triangle
Δ. The remainder of this section is devoted to the presentation of the
‘La+u’ refinement. The superconvergence of the approximate solution
associated with the numerical integration scheme is proven in Section
5.

For simplicity, we assume Δ is a planar triangle. The initial trian-
gulation τ1 of Δ is obtained by connecting the midpoints of the sides
of Δ using straight lines. Then τ1 consists of four new triangles. To
obtain τ2, we divide the triangle containing the vertex P into four new
triangular elements. For the resulting triangulation, repeat the pre-
ceding subdivision. After doing this L times, we divide simultaneously
every triangle into four new triangles. The final triangulation produces
τ2 = {Δk,2 | k = 1, . . . , N2}. In general to get from level n to level n+1,
we perform L times an adaptive subdivision on a triangle containing P ,
and then we do one simultaneous subdivision of all triangles. Thus, the
mesh size δn → 0 as n → ∞. An advantage of this form of refinement
is that each set of mesh points contains those at the preceding level.

As an example, we illustrate the ‘2a + u’ refinement for n = 1, 2 in
Figures 3 and 4. When n = 2, there are three regions in Δ, each of
which is divided by symmetric triangulation, but with different levels
of subdivision. So the triangles in τ2 vary in size. Note that there are
only three different triangular elements in size. A finer mesh is placed
near the vertex, where the integrand usually is ill-behaved, to improve
the performance of a standard quadrature method.
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FIGURE 3. n = 1.
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FIGURE 4. n = 2.
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More generally, by examining the structure of the ‘La+u’ refinement,
we can calculate the total number Nn of triangles at level n: this
is (L + 1)22n − 4L = O(22n). There are Ln − (L − 1) different
triangular elements in size. The closer the triangle is to the point
P , the smaller it is. As the triangles vary in size from large to
small, we name the region containing the triangles of the same size
to be B0, B1, . . . , BLn−L, respectively. The diameter of triangles in Bl,
denoted by rl, is O(2−(n+l)). Then the mesh size is

δn = max
0≤l≤Ln−L

rl = r0 = O(2−n)

and

(2.6) O(δn) = O(N−1/2
n ).

Let Nl be the number of triangles in Bl. Then Nl is proportional to
4n−i where l = iL + i1 for 0 ≤ i1 ≤ L− 1. The distance from the point
P to Bl, denoted by dl, is O(1/2(L+1)(l−i1)/L).

If L = 0, then the ‘La+u’ refinement is the symmetric triangulation.
The analysis given in [9] indicates that the symmetric triangulation
is a better scheme to use with smooth integrands in the numerical
integration, while a graded mesh is needed with the singular integrals.
See [28].

3. Interpolation. Let σ denote the unit simplex in the st-plane

σ = {(s, t) | 0 ≤ s, t, s + t ≤ 1}.

Let ρ1, . . . , ρ6 denote the three vertices and three midpoints of the sides
of σ, numbered according to Figure 5.

To define interpolation, introduce the basis functions for quadratic
interpolation on σ. Letting u = 1 − (s + t), define

l1(s, t) = u(2u−1), l2(s, t) = t(2t−1), l3(s, t) = s(2s−1),

l4(s, t) = 4tu, l5(s, t) = 4st, l6(s, t) = 4su.
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FIGURE 5. The unit simplex.

We give the corresponding set of basis functions {lj,k(q)} on Δk

by using its parametrization over σ. Let Δ̂k be an element in the
triangulation of Rj , corresponding to ΔK , and let v̂1, v̂2 and v̂3 be its
vertices. Define

(3.1) mk(s, t) = Fj(uv̂1+tv̂2+sv̂3), u = 1−s−t, (s, t) ∈ σ,

where Fj : Rj
1−1→
onto

Sj is a five-times continuously differentiable func-

tion. Then mk is a bijective mapping from σ to Δk with mk ∈ C5(σ).
Introduce the node points for Δk by vj,k = mk(ρj), j = 1, . . . , 6. The
first three are the vertices and the last three are approximate midpoints
of the sides of Δk. Define

lj,k(mk(s, t)) = lj(s, t), j = 1, . . . , 6, k = 1, . . . , N.

Given a function f , define

(3.2) PNf(q) =
6∑

j=1

f(vj,k)lj,k(q), q ∈ Δk,
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for k = 1, . . . , N . This is called the piecewise quadratic function
interpolating f on the nodes of the mesh {Δk | k = 1, . . . , N} for S.
Although our analysis is using quadratic approximation, the method
can be generalized to using other degrees of piecewise polynomial
approximation. The error analysis is the same except that the argument
is somewhat more complicated.

It is straightforward that PN is a bounded projection operator and
||PN || = 5/3. Also, for any f ∈ C3(S),

(3.3) ||f − PNf ||∞ = O(δ̂3
N)

where δ̂N is the mesh size of the triangulation {Δ̂k | k = 1, . . . , N} of
Rj ’s. See [2].

The numerical integration formula used in this paper is

(3.4)
∫

σ

g(s, t) ds dt ≈ 1
6
[g(ρ4) + g(ρ5) + g(ρ6)]

which is based on integrating the quadratic polynomial interpolating
g on σ at ρ1, . . . , ρ6. This integration has degree of precision two,
integrating exactly all quadratic polynomials.

With the triangulation {Δk} and the mappings mk : σ
1−1→
onto

Δk, we
have

(3.5)
∫

Δk

f(q) dS =
∫

σ

f(mk(s, t)) | Dsmk(s, t) × Dtmk(s, t)| ds dt.

Ds and Dt denote differentiation with respect to s and t, respectively.
The quantity |Dsmk(s, t)×Dtmk(s, t)| is the Jacobian determinant of
the mapping mk(s, t) used in transforming surface integrals over Δk

into integrals over σ. When Δk is a planar triangle, the Jacobian is
twice the area of Δk.

Applying (3.4) to the right side of (3.5), we have

(3.6)
∫

Δk

f(q) dS ≈ 1
6

6∑
j=4

f(mk(ρj))|Dsmk(s, t) × Dtmk(s, t)|ρj
.

A major problem with (3.6) is that Dsmk and Dtmk are inconvenient
to compute for some elements Δk on many surfaces S. Therefore, we
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use interpolation to approximate mk(s, t) in terms of only its values at
ρ1, . . . , ρ6. Define

m̃k(s, t) =
6∑

j=1

mk(ρj)lj(s, t) =
6∑

j=1

vj,klj(s, t).

Thus, m̃k(s, t) interpolates mk(s, t) at ρ1, . . . , ρ6, and each component
is quadratic in (s, t). Then

(3.7)

∫
Δk

f(q) dS ≈ 1
6

6∑
j=4

f(mk(ρj))|Dsm̃k(s, t) × Dtm̃k(s, t)|ρj

=
6∑

j=4

ω̃j,kf(vj,k)

where
ω̃j,k = |Dsm̃k(s, t) × Dtm̃k(s, t)|ρj

/6.

4. The collocation method. Any collocation method for solving
an integral equation (λ + K)ρ = g can be written as

(4.1) (λ + PNK)ρn = PNg, λ = 2π.

The function g can be the function f of (1.3) or Sf of (1.6). For our
work, the operator PN is the projection operator defined by (3.2). We
discuss results for this approximation; and then in the next section, we
give error results for the discrete collocation method which is based on
the numerical integration scheme given in [27] and [28].

For S being smooth, the solvability of (4.1) is determined from the
standard theory for projection methods; for example, see Atkinson [1,
p. 50 62]. With the assumption of (a) compactness for K : C(S) →
C(S) and (b) pointwise convergence on C(S) of the projections PN to
I, we have that

||(I − PN )K||∞ → 0 as n → ∞.

From this, we have the standard result that if (λ+K)−1 exists on C(S),
then (λ + PNK)−1 exists and is uniformly bounded for all sufficiently
large N , say N ≥ N0.
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In [8], Atkinson and Chien considered the iterated collocation solu-
tion

ρ̂n =
1
λ

(g −Kρn).

It satisfies the equations

(λ + KPN )ρ̂n = g(4.2)
PN ρ̂n = ρn.(4.3)

The questions of stability for (4.1) and (4.2) are linked by the
identities

(4.4)
(λ + KPN )−1 =

1
λ

[I −K(λ + PNK)−1PN ]

(λ + PNK)−1 =
1
λ

[I − PN (λ + KPN )−1K].

The existence of uniform boundedness of (λ + KPN )−1 then follows
from (4.4).

The errors in ρn and ρ̂n can be expressed as

ρ − ρn = λ(λ + PNK)−1(ρ − PNρ)
ρ − ρ̂n = −(λ + KPN )−1K(ρ − PNρ).

The quantity K(ρ − PNρ) sometimes converges to zero more rapidly
than does ρ − PNρ. Using (4.3), it can be shown that ρn is supercon-
vergent to ρ at the collocation node points, and we will make use of
this in the following.

Theorem 1. Consider the integral equation (1.3) and (1.6) with
solution ρ. Let S be a smooth surface in R3, and assume the unknown
function ρ ∈ C4(S). Then

(4.5) max
1≤i≤Nv

|ρ(vi) − ρn(vi)| = O(δ̂4
n ln δ̂n)

where δ̂n is the mesh size of the triangulation {Δ̂k,n|k = 1, . . . , Nn}
of the Rj’s obtained by the symmetric triangulation. The set {vi |
i = 1, . . . , Nv} is the collection of the node points of the triangulation
{Δk,n} with Nv the number of distinct node points.
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Proof. See [8].

5. A discrete collocation method. Given {vi | i = 1, . . . , Nv},
the collection of the node points of the triangulation, the linear system
for (4.2) becomes

(5.1) 2πρ̂n(vi) +
Nn∑
k=1

6∑
j=1

ρ̂n(vj,k)
∫

σ

κ(vi, mk(s, t))lj(s, t)

· |Dsmk × Dtmk| dσ = g(vi), i = 1, . . . , Nv

where κ(P, Q) denotes the kernel function for the double layer integral
operator, i.e.,

κ(P, Q) =
∂

∂νQ

[
1

|P − Q|
]
.

Let 2πI +KN be the matrix of coefficients of (5.1). Then we can write
(5.1) as

(5.2) (2πI + KN )ρ̂n = gn

where ρ̂n = (ρ̂n(vi)), gn = (g(vi)). By the equation (4.3), ρ̂n(vi) =
ρn(vi) for i = 1, . . . , Nv; and then (5.2) becomes

(2πI + KN )ρn = gn

where ρn = (ρn(vi)).

The collocation integrals in the matrix of coefficients KN are given
by

(5.3)
∫

σ

κ(vi, mk(s, t))lj(s, t)|Dsmk × Dtmk| dσ

and (5.3) must be evaluated numerically for i = 1, . . . , Nv, j = 1, . . . , 6
and k = 1, . . . , Nn. For the exterior Neumann problem, we also need
to evaluate numerically the corresponding single layer integrals

(5.4)
∫

σ

f(mk(s, t))
|vi − mk(s, t)| |Dsmk × Dtmk| ds.
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We consider two cases in evaluating (5.3), depending on whether vi

is inside or outside of Δk,n. The numerical integration method being
used is (3.4). We also use the approximate surface m̃k. The following
scheme is based on the error analyses in [27, 28].

Case 1. If vi ∈ Δk,n, then κ(vi, Q) is singular at Q = vi. The
singularity of the integrand in (5.3) is 1/|vi − Q| as Q → vi (see
[27]). The interpolation-based numerical integration associated with
the ‘La+u’ refinement for this type of function has been studied in [28].
It was shown that to retain the optimal rate of convergence O(1/N2),
or O(δ4

n) by (2.6), as for smooth integrands, the value of L must be
greater than 3. Here N means the total number of triangles in the
triangulation of a triangular element at level n, δn the mesh size of the
triangulation. It motivates us to use the ‘4a + u’ refinement to further
divide the element Δk,n for the purpose of numerically evaluating (5.3)
and (5.4). Assume the collocation node vi is a vertex, say vi = mk(0, 0).
We perform n loops of ‘4a + u’ refinement about (0, 0) on σ, and then
we integrate (5.3) by applying (3.7) to each of the integrals over each of
the corresponding subtriangles. If the collocation node vi is a midpoint
of a side, then we split Δk,n into two parts (see Figure 6) and treat the
integral over each part as described above.

Case 2. For vi /∈ Δk,n, the integrand in (5.3) is analytic; but it is
increasingly peaked as the distance between vi and Δk,n decreases. We
numerically evaluate these integrals in the following way.

If
0 < dist (vi, Δk,n) ≤ (2 − 1)δn,

where δn is the mesh size of {Δk,n} as defined in (2.5), then integrate
(5.3) using (3.7) with n levels of symmetric triangulation of Δk,n (thus
dividing Δk,n into 4n congruent subtriangles, with (3.7) applied to the
integral over each of the corresponding subtriangles). If vi /∈ Δk,n and

(2 − 1)δn < dist (vi, Δk,n) ≤ (22 − 1)δn,

then integrate (5.3) using (3.7) with max{n− 1, 1} levels of symmetric
triangulation of Δk,n. If vi /∈ Δk,n and

(22 − 1)δn < dist (vi, Δk,n) ≤ (23 − 1)δn,
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FIGURE 6. Splitting triangles.

then integrate (5.3) using (3.7) with max{n− 2, 1} levels of symmetric
triangulation of Δk,n. Continue with this in the obvious way. A similar
method of numerical integration for vi /∈ Δk,n was suggested in [8],
without analysis.

Analysis of quadrature error. Consider the error from evaluating (5.3)
over S associated with the resulting triangulation. We have found that
the error is O(δ̂4

n), where δ̂n is the mesh size of Δ̂k,n. The argument
is more complicated than the one used in [27], because there are many
more triangles within a small distance of the point vi.

The integrand in (5.3) varies from singular to quite smooth. To
handle this varied behavior, we classify triangles in the triangulation
{Δk,n} into two groups. Let T1 be the collection of triangles Δk,n

containing P , let T2 be the collection of triangles Δk,n with P /∈ Δk,n.
Let Ei denote the error contributed by Ti for i = 1, 2.
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Case 1. According to the numerical integration scheme, each triangle
Δk,n ∈ T1 is further divided by the ‘4a + u’ refinement. Let δ̂∗k,n be
the mesh size of the resulting triangulation for Δ̂k,n, then the error
contributed by each triangle Δk,n is O(δ̂∗ 4

k,n) by Lemma 1 in [27]. Since
the number of triangles Δk,n in T1 is finite, in fact, at most 6, therefore
E1 = O(δ̂∗ 4

k,n). Notice that δ̂∗k,n = O((1/2n)δ̂n), the error E1 is much
smaller than O(δ̂4

n).

Case 2. For the error from T2, the collection of triangles not
containing vi, we note that the size of triangles in T2 varies. The
quadrature mesh size becomes larger as the distance from vi increases.
We examine the structure of T2 based on the triangulation of a generic
Δk,n. Define

dk,n = dist (vi, Δk,n)
dn = min

k
{dk,n | dk,n > 0}

δ̂n = the mesh size of {Δ̂k,n}.

Then dn = O(δ̂n) and δ̂n = O(δ̂/2n), with δ̂ the mesh size of the
original parametrization domains {Rj | j = 1, . . . , J}. To simplify the
argument, without any loss of generality, we take dk,n

.= dn, 2dn, . . . ,
depending on how far the Δk,n is from the point vi. And the number
of Δk,n at distance i · dn is proportional to i. Define

A(n)
m = {Δk,n | (2m − 1) · dn ≤ dk,n < (2m+1 − 1) · dn}

for m = 1, 2, . . . , m(n). The value of m(n) is at most n because we only
consider triangles near the node point vi. With the refinement we used,
we know that each triangle in A

(n)
m is divided into 4n−m subtriangles

uniformly. There are two types of triangles in A
(n)
m . Those triangles

that are part of symmetric pairs of triangles (cf. Figure 2) are of the first
type and remaining triangles are of the second type. Denote triangles
in A

(n)
m by Δ∗

k,n.
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Define

A
(n)
mj =

{
Δ∗

k,n ⊂ A(n)
m | (2m−1) · dn + j

δ̂n

2n−m

≤ dist (vi, Δ∗
k,n) < (2m−1) · dn+(j+1)

δ̂n

2n−m

}
,

j = 0, 1, . . . , tm − 1

where tm ≤ O(2n) because dn = O(δ̂n). Let cmj , c′mj be the
numbers of triangles of the first type and the second type at distance
(2m − 1) · dn + j(δ̂n/2n−m), respectively. Then cmj = O(2m2n−m) =
O(2n), c′mj = O(1). In addition, δ̂∗k,n, the mesh size of A

(n)
mj is δ̂n/2n−m.

Let d∗k,n ≡ dist (vi, Δ∗
k,n), d∗k,n ≥ (2m − 1) · dn + jδ̂n/2n−m for triangles

Δ∗
k,n ⊂ A

(n)
mj .

Following an argument similar to that in [27], the error from the
numerical integration over triangles of the first type in A

(n)
m is bounded

by

tm−1∑
j=0

cmjO

(
δ̂∗ 6
k,n

d∗ 5
k,n

)
=

tm−1∑
j=0

O(2n)O
(

δ̂∗ 6
k,n

d∗ 5
k,n

)

≤
tm−1∑
j=0

O(2n)O
([

δ̂n

2n−m

]6 1
[(2m−1) · dn+jδ̂n/(2n−m)]5

)

≤
tm−1∑
j=0

O(2n)O
(

δ̂6
n

26n−6m

1
(2m − 1)5 · d5

n

)

≤
tm−1∑
j=0

O(2n)O
(

δ̂n
1

26n−6m

1
25m

)

≤ O(2n)O(2n)O
(

1
2n

1
26n−6m

1
25m

)
= O

(
1

24n

1
2n−m

)
.

The error from the numerical integration over triangles of the second
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type in A
(n)
m is bounded by

tm−1∑
j=0

c′mjO

(
δ̂∗ 5
k,n

d∗ 4
k,n

)
=

tm−1∑
j=0

O(1)O
(

δ̂∗ 5
k,n

d∗ 4
k,n

)

≤
tm−1∑
j=0

O

([
δ̂n

2n−m

]5 1

[(2m − 1) · dn + jδ̂n/(2n−m)]4

)

≤
tm−1∑
j=0

O

(
δ̂n

1
25n−5m

1
24m

)

≤ O(2n)O
(

1
2n

1
25n−m

)
= O

(
1

24n

1
2n−m

)
.

Consequently, the error from A
(n)
m is O((1/24n)(1/2n−m)).

The error from the numerical integration over T2 is bounded by
m(n)∑
m=1

O

(
1

24n

1
2n−m

)
= O

(
1

24n

)
= O(δ̂4

n).

By a similar calculation, we can show that the error from the approxi-
mate surface m̃ over T2 is also O(1/24n) = O(δ̂4

n). Hence, E2 = O(δ̂4
n).

Combining the above error analysis and noticing that the error from
the single layer integral (5.4) can be obtained in the same way, we give
the global error for the single layer and double layer integrals in the
following theorem.

Theorem 2. Let S, {Δk,n}, {vi}, δ̂n be as in Theorem 1. Assume
that f ∈ C4(S). Let S̃n(f), D̃n(f) be the numerical integration associ-
ated with the scheme given above for the single layer integral and double
layer integral, respectively. Then

max
1≤i≤Nv

∣∣∣∣ ∫
S

f(Q)
|vi − Q| dSQ − S̃n(f)

∣∣∣∣ = O(δ̂4
n)(5.5)

max
1≤i≤Nv

∣∣∣∣ ∫
S

f(Q)
∂

∂νQ

[
1

|vi − Q|
]

dSQ − D̃n(f)
∣∣∣∣ = O(δ̂4

n).

(5.6)
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The method being used has retained the same rate of convergence
as the one with uniform meshes for smooth integrands. Nonetheless,
the integration of (5.3) and (5.4) are still the most expensive parts
of our computation. Several methods have been tried for evaluating
(5.3) and (5.4). Besides the method suggested in Atkinson and Chien
[8], a method with automatic error control could be based on what
was described in Atkinson [3] and [5]. Numerical quadratures with no
approximation of the surface was presented in Guermond and Fontaine
[14] and Guermond [13]. But we believe our method is easier to
implement and gives a better approximation.

With the preceding numerical integration scheme, the collocation
integrals in KN are evaluated numerically. The resulting linear system
is denoted by

(5.7) (2πI + K̃N )ρ̃n = g̃n

where
ρ̃n = (ρ̃(v1), ρ̃(v2), . . . , ρ̃(vNv

))
g̃n = (g̃(v1), g̃(v2), . . . , g̃(vNv

))

g̃(vi) ≡
{

f(vi) if g = f

S̃n(f)(vi) if g = Sf .

Recall that S̃n(f)(vi) is the preceding numerical integration for the
single layer integral at P = vi. The vector ρ̃n is called the discrete
collocation solution, and it is more explicitly computable than ρn or
ρ̂n.

The error analyses of layer potentials help us establish the rate of
convergence of the discrete collocation method.

Theorem 3. Consider the integral equations (1.3) and (1.6) with
solution ρ. Let S be a smooth surface in R3, and assume the unknown
function ρ ∈ C4(S). Then

(5.8) max
1≤i≤Nv

|ρ(vi) − ρ̃n(vi)| = O(δ̂4
n ln δ̂n).

Proof. We use a perturbation analysis, based on regarding the system
(5.7) as a perturbation of the corresponding linear system (5.2)

(2πI + KN )ρn = gn.
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As noted earlier following (4.4), (2π + KPN )−1 is uniformly bounded
for all sufficiently large N . Also, since the iterated collocation equation
can be considered as being a Nyström method, we have that (2πI +
KN )−1 exists (see Atkinson [1, p. 88 93]). Moreover, we can bound
||(2πI + KN )−1||∞ in terms of c by following a standard derivation,
where the matrix norm || · ||∞ is the standard matrix row norm.

For any G ∈ RNv with Nv the number of node points, we choose a
function g ∈ C(S) with

g(vj) = Gj , j = 1, . . . , Nv

and
||g||∞ = ||G||∞.

Then the solution of the approximating equation

(2π + KPN )ρn = g

in C(S), and the solution of the linear system

(2πI + KN )Z = G

in RNv are related by ρn(vj) = Zj , j = 1, . . . , Nv. Therefore,

||(2πI + KN )−1G||∞ = ||Z||∞ ≤ ||ρn||∞
= ||(2π + KPN )−1g||∞
≤ ||(2π + KPN )−1||∞||g||∞
= ||(2π + KPN )−1||∞||G||∞.

This implies that

(5.9)
||(2πI + KN )−1||∞ ≤ ||(2π + KPN )−1||∞

≤ c < ∞, N ≥ N0.

The present analysis uses the result

(5.10) ||KN − K̃N ||∞ = O

(
1

24n

)
= O(δ̂4

n)
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with the matrix row norm. The proof of (5.10) is essentially the same
as the one for (5.6). Using (5.10) and the invertibility of 2πI +KN with
the uniform boundedness of (2πI + KN )−1 for all sufficiently large N ,
the geometric series theorem implies that

[I − (2πI + KN )−1(KN − K̃N )]−1

exists and is bounded by

(5.11)
1

1 − ||(2πI + KN )−1(KN − K̃N )||∞
.

Therefore,

2πI + K̃N = (2πI + KN )[I − (2πI + KN )−1(KN − K̃N )]

is invertible and the inverse of 2πI +K̃N is uniformly bounded for some
sufficiently large N0.

By straightforward manipulation of (5.7) and (5.2), we have

(5.12)
ρn − ρ̃n = (2πI + K̃N )−1[K̃N − KN ]gn

+ (2πI + K̃N )−1[gn − g̃n].

The first term on the right side is O(δ̂4
n), from (5.10). The second term

is either zero or O(δ̂4
n), from (5.5). When considered with Theorem 1,

this shows the result (5.8).

Comparing Theorem 3 with the result stated in Theorem 1, the error
formula (5.8) is for the computable approximate solution ρ̃n. The same
error estimate in (4.5) is for the collocation solution ρn with exact
integration over the true surface, which is originally proven in [8]. The
error analysis shows that our numerical integration scheme has given
sufficiently accurate approximations of collocation integrals to match
the accuracy of the collocation solution ρn.

6. Numerical examples. The integral equations (1.3) and (1.6)
are different only in their right-hand inhomogeneous term. With
(1.6), we can study the error in the numerical solution of the integral
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equation by using problems for which we know the true solution of
(1.4). With equation (1.3), we do not know the true solution in general
(except when f ≡ 1); and thus the numerical solution must be checked
indirectly by evaluating (1.2) numerically and comparing it to a known
solution u. Our numerical examples are given for the exterior Neumann
problem only.

Two smooth surfaces were used in our experiments. Surface #1
(denoted by S#1) was the ellipsoid(

x

a

)2

+
(

y

a

)2

+
(

z

c

)2

= 1

with a, b, c > 0.

The ellipsoid is convex and symmetric. For that reason, we also
devised and used a surface which is not symmetric and which is slightly
nonconvex. Surface #2 (S#2) is defined by

(x, y, z) = ρ(ξ, η, ζ)(Aξ, Bη, Cζ), ξ2 + η2 + ζ2 = 1

with

ρ(ξ, η, ζ) = 1 − [(ξ − .1)2 + 2(η − .1)2 − 3(ζ − .1)2]/α

and A, B, C > 0, α ≥ 2.43. The case we use here is α = 10 and
(A, B, C) = (2, 2, 1). Figure 7 gives the cross-sections of S#2 when
intersecting S with vertical planes containing the z-axis, intersecting
at angles of φ = 0, π/4, π/2 with respect to the positive x-axis.

We begin with the solution of (1.4) for the ellipsoid (S#1)(
x

a

)2

+
(

y

b

)2

+
(

z

c

)2

= 1

with (a, b, c) = (2, 2.5, 3). The exterior Neumann problem (1.4) was
solved with the function f so chosen that the true solution is known.
The two cases used here are

(6.1) u1(P ) =
1
r
, u2(P ) =

1
r
ex/r2

cos(z/r2)
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FIGURE 7. Cross sections of “squash” surface. Solid curve: φ = 0; dash
curve: φ = π/4; dot curve: φ = π/2.

with P = (x, y, z) and r = |P |. In this case ρ = um, and we use um

and um,n, m = 1, 2, for the true solution and the discrete collocation
solution at level n in our discussion, respectively. We initially divide
the surface into eight triangular elements. Each of these elements is a
portion of the surface within one octant.

The method was implemented with a package of programs written by
K. Atkinson, which is described in [2, 7]. All examples were computed
on a Hewlett-Packard workstation in double precision arithmetic. Table
1 contains the maximum error at the node points for solving boundary
integral equation (1.6). The column labeled Ratio gives the value
En/En+1 where E = ||um − um,n||∞ is the error at level n. The
results are consistent with an asymptotic rate for the error of O(δ̂4

n)
or O(δ̂4

n ln δ̂n), in agreement with the theoretical result in Theorem 3.
Here n, Nn and δ̂n are defined as before.
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TABLE 1. Maximum errors on ellipsoid S#1.

n Nn ‖u1 − u1,n‖∞ Ratio ‖u2 − u2,n‖∞ Ratio
1 8 1.53E 2 1.12E 2
2 32 1.43E 3 10.7 2.72E 3 4.1
3 128 9.50E 5 15.1 2.51E 4 10.8
4 512 6.02E 6 15.7 1.62E 5 15.5

TABLE 2. Maximum errors on surface S#2.

n Nn ‖u1 − u1,n‖∞ Ratio ‖u2 − u2,n‖∞ Ratio
1 8 6.56E 2 6.64E 2
2 32 5.33E 3 12.3 4.75E 3 14.0
3 128 8.66E 4 6.2 1.35E 3 3.5
4 512 1.10E 4 7.9 1.98E 4 6.8

We give results for the surface S#2. The initial triangulation of S #2
consists of eight triangular elements. Each of these elements is a portion
of the surface with one octant. The Neumann data f was chosen from
(6.1). In Table 2, the asymptotic pattern for the maximum error at the
node points appears to be O(δ̂3

n); and to check in more detail whether
the error is truly O(δ̂3

n) or O(δ̂4
n), Tables 3 and 4 give the errors for

u1,n and u2,n at a representative sampling of the 18 nodes used in the
coarsest triangulation of S (for n = 1),

v1 = (0, 0, 1.24), v2 = (1.84, 0, 0),

v5 = (0,−1.52, 0), v7 = (1.5156, 0, 0.7578),

v8 = (1.2621, 1.2621, 0), v12 = (−1.1421,−1.1421, 0),

v13 = (0,−1.3849, 0.6925), v15 = (1.6356, 0,−0.8178),

v18 = (0,−1.5049,−0.7525)
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TABLE 3. Errors at representative vi on S#2, for u = u1.

i E1 E2 E3 E4

1 −2.51E 2 −5.02E 3 −4.73E 4 −3.41E 5
2 −4.09E 2 −4.18E 3 −2.79E 4 −1.78E 5
5 −6.56E 2 −5.33E 3 −3.27E 4 −2.24E 5
7 −3.11E 2 −2.96E 3 −7.80E 5 1.31E 5
8 −3.20E 2 −4.44E 3 −3.77E 4 −2.62E 5
12 −3.27E 2 −5.23E 3 −4.59E 4 −3.35E 5
13 −2.91E 2 −3.01E 3 −1.48E 4 2.91E 6
15 −2.65E 2 −2.39E 3 −7.59E 5 9.22E 6
18 −2.21E 2 −2.38E 3 −1.49E 4 −2.97E 6
i |E1/E2| |E2/E3| |E3/E4|
1 5.0 10.6 15.1
2 9.8 15.0 15.7
5 12.3 16.3 14.6
7 10.5 37.9 6.0
8 7.2 11.8 14.3
12 6.3 11.3 13.7
13 9.7 20.3 50.9
15 11.1 31.5 8.2
18 9.3 16.0 50.1

along with the ratios by which these errors decrease, respectively. The
subscripts refer to the indexing of node points used in our triangulation
package. When looking at the individual errors, there is a pattern of
an O(δ̂4

n) rate of convergence at a large number of the points.
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TABLE 4. Errors at representative vi on S#2, for u = u2.

i E1 E2 E3 E4

1 −4.28E 2 −8.06E 4 1.77E 4 1.42E 5
2 −4.75E 2 −4.62E 3 −4.63E 4 −3.24E 5
5 −4.45E 2 −2.10E 4 −1.30E 4 −1.40E 5
7 −5.75E 2 −3.17E 3 −3.53E 4 −1.79E 5
8 −6.61E 2 −3.96E 3 −4.67E 4 −2.86E 5
12 −2.73E 2 −3.84E 4 −1.87E 4 −2.09E 5
13 −4.53E 2 1.03E 4 −1.27E 4 −1.97E 5
15 −5.08E 2 −2.31E 3 −3.24E 4 −2.04E 5
18 −3.98E 2 2.81E 4 −1.11E 4 −1.90E 5
i |E1/E2| |E2/E3| |E3/E4|
1 53.1 4.6 12.5
2 10.3 10.0 14.3
5 211.9 1.6 9.3
7 18.1 9.0 19.7
8 16.7 8.5 16.3
12 71.1 2.1 8.9
13 439.8 0.8 6.4
15 22.0 7.1 15.9
18 141.6 2.5 5.8

Acknowledgments. I am grateful to K. Atkinson for helpful
discussion and his interest in this problem.
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