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RUNGE-KUTTA TIME DISCRETIZATIONS OF
PARABOLIC VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

H. BRUNNER, J.-P. KAUTHEN AND A. OSTERMANN

ABSTRACT. In this paper we prove optimal convergence
results for implicit Runge-Kutta methods applied to parabolic
Volterra integro-differential equations in Hilbert spaces. For
this purpose, we show that such equations can be rewritten as
parabolic differential equations in appropriate function spaces.
Since Runge-Kutta methods are invariant under this transfor-
mation, it is sufficient to show that these methods converge
for the resulting differential equations. While our theoret-
ical framework is applicable to general (nonlinear) Volterra
integro-differential equations, it is realized here in detail for
the linear case.

1. Introduction. The aim of this paper is the study of the
approximation properties of implicit Runge-Kutta methods for the
abstract linear Volterra integro-differential equation (VIDE)

(1.1) (1) + At)y(t) =f(t)+/0 B(t,r)y(r)dr,  0<t<T,

subject to the initial condition y(0) = yo in a Hilbert space. We are
mainly interested in the case where A(t) and B(t,7) are differential
operators. More precise conditions will be given in Section 3 where
we will specify the function spaces which form the framework of our
analysis.

Abstract VIDEs of the general form (1.1) or of convolution type,

(1.2) J(8) + Ay(t) = () + / B(t — r)y(r) dr,
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have received considerable attention over the last 15 years. The recent
monograph by Priiss [13] conveys a good picture of these developments;
it also contains an extensive bibliography.

Much of this development has been motivated by partial VIDEs
arising in the mathematical modeling of various physical phenomena,
such as heat conduction in materials with memory (compare, e.g., Yanik
and Fairweather [18] and Thomée [16] for relevant references on various
applications of partial VIDEs). As a simple illustration, motivating the
analysis presented in Section 3, we briefly recall a linear model for heat
flow in a rigid heat conductor with fading memory [2]. It is given by
the partial VIDE (the energy balance equation),

(1.3) coue(z,t)—V - (c1(x)Vu(z, t))+b(0)u(z, t)
= r(w,t)—/o (V- (a(z,t—7)Vu(z, 7))+ (t—7)u(z, 7)) dr,
with

u(z,0) = uo(z), ze€QcRY
u(z,t) =0, (z,t) € 0 x (0,T).

Here ¢g > 0 and c¢;(x) > v > 0 denote, respectively, the heat capacity
and the thermal conductivity; r(z,t) is the external heat supply. The
unknown function wu(z,t) represents the temperature, and a(z,t) and
b(t) are given (positive) memory functions.

Partial VIDEs like the one given above can be reformulated as
abstract (parabolic) VIDEs (1.2) (or, in more general situations, (1.1))
in suitable function spaces.

The literature on the discretization of abstract VIDEs (1.1), (1.2), is
now quite extensive; we refer the reader to the survey papers by Thomée
[16] and Wahlbin [17] as well as to Tavernini [15], Sloan and Thomée
[14], Yanik and Fairweather [18], Pani, Thomée and Wahlbin [12],
Kauthen [9] and Zhang [19] for details and further references. Most of
these papers consider only low-order time discretizations; moreover, the
techniques employed in their analyses will not lead to optimal temporal
convergence rates for higher-order methods.

It has recently been shown by Lubich and Ostermann [10] that
strongly A(6)-stable Runge-Kutta methods for

(1.4) v+ Ay =17f  y(0)=uyo,
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exhibit a fractional order of convergence. More precisely, assume that
A is ¢-sectorial, with § > ¢. If the Runge-Kutta method has stage
order ¢ and order p > g+ 1+ 3, then there result asymptotically sharp
error estimates of the form O(h?t1#) where the value of 3 > 0 depends
on the given (homogeneous or nonhomogeneous) Dirichlet or Neumann
boundary conditions for the underlying partial differential equation.
Similar results are valid for quasilinear and nonlinear parabolic equa-
tions, see [10].

The present paper applies this theory to abstract VIDEs

(15) v =1(tto), [ gt mu(r) i)

We show that (1.5) may be written as a differential equation in a Hilbert
space. This will be done formally in Section 2. In Section 3 we present
the realization and the mathematical justification of these ideas for
the VIDE (1.1). Although reminiscent of the direction chosen, e.g., in
Grimmer [5], our approach uses a different framework; in particular,
it is such that the transformation leading from (1.1) to the differential
equation leaves the Runge-Kutta approximations invariant.

In Section 4 we establish the optimal (fractional) convergence rates
indicated above, using the Runge-Kutta approximations to the differ-
ential equation. This section also includes a numerical illustration for
these results. Finally, some additional remarks regarding possible ex-
tensions and applications may be found in Section 5.

We conclude this section by introducing the Runge-Kutta terminol-
ogy, see, e.g., Butcher [4] or Hairer and Wanner [7]. Consider the
ordinary differential equation

u = F(t,u), u(to) = uo.

For a positive stepsize h and t,, = tg + nh, let u,, denote the Runge-
Kutta approximation of u(t,). This approximation is defined by the
recursion

un—l—l = Un + thjF(tn+th, Unj); n Z 0,

i=1

Uni = tn+h Y aijF(tn+ch,Unj),  i=1,...,s, n>0.

i=1
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This method has order p if ||u(t,) — un|| < ChP for nh < const
whenever F' is sufficiently smooth. It has stage order ¢ if, for all
1=1,...,s,

Zaijc?_lch/k, k=1,...,q.
j=1
The stability function R(z) of a Runge-Kutta method is defined by
R(z)=1+2b" (I —2zA)'1,
where we used the notation
A: (aij)i7j:17___7s, b: (bl,... ,bS)T, 1= (]., ,l)T.

The Runge-Kutta method is A(6)-stable if I — z.A is invertible in the
sector |arg(—z)| < 6 and the stability function is bounded therein by
1. The method is strongly A(6)-stable if it is A(f)-stable, has invertible
coefficient matrix A and if the value of the stability function at infinity,
R(00) =1 —bT A1, satisfies |R(c0)| < 1.

2. Outline of the main ideas. We are interested in numerical
methods for abstract Volterra integro-differential equations of the form

(2.1) M@)zf(ty@%%lﬂtny@ﬁﬁh>, 4(0) = yo.

For this purpose we rewrite the integro-differential equation as an
abstract differential equation. We then apply a Runge-Kutta method
to this differential equation and obtain in this way a numerical method
for (2.1). In this section we carry out this task heuristically. The exact
formulation, including the definition of the appropriate function spaces,
is given in the next section. There we illustrate the approach of this
section for linear parabolic Volterra integro-differential equations.

To reformulate (2.1) as a differential equation, we first introduce a
function z(t,r) which, on the diagonal r = ¢, gives the lag term

(2.2) NWZAﬂWW@Mf
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We define

(2.3) St r) = /0 o(r, 7 y(7)) dr-

This approach has been pointed out to us by E. Hairer and Ch.
Lubich [6]. It has the advantage that, in the context of parabolic
integro-differential equations it leads to differential equations with
sectorial operators. For Runge-Kutta methods applied to equations
with sectorial operators, sharp error estimates are available [10]. We
note that several other possibilities for defining z can be found in the
literature. We just mention Brunner and van der Houwen [3, p. 101]
and Grimmer [5]. For our purposes, however, the latter approach does
not yield the optimal orders of convergence.

We now consider the second variable of z as a real parameter,
differentiate (2.3) with respect to ¢t and obtain the differential equation

» V() = LU0 PO, y0) =0,
9

alz(tv') = ("tvy(t))v Z(Oa ) =0.
Here 9; denotes differentiation with respect to the first variable and

the substitution operator P(t) is defined for a continuous function 1
by

(2.5) P(t)y = ¥(t).

We next apply a Runge-Kutta method to (2.4) which results in the
following recursion (using t,; = t, + c¢;h):

(2.6) YUnt1 = Yn+th D b; f(tnj, Ynj, Znj(tns)),
j=1
(2.7) Zny1(t) = Zn(')+hzbjg('7tnjvynj)v
j=1
(28) Yni = yn+h Z aijf(tnja Ynja an (tnj))a
j=1

1=1,...,s,
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(2.9) Zni(+) = Zn(')+hzaij9(‘,tnj,ynj),
j=1
1=1,...,s.

Inserting recursively (2.7) into (2.9) and evaluating at r = t,,; gives

Zni (tnz) =h Z aijg(tnia tnja Yn])
=1
(2.10) !

n—1 s

v=0 j=1

Here we used zo(-) = 0. Inserting (2.10) back into (2.6) and (2.8) finally
yields the following numerical scheme for equation (2.1):

(211) Yn41 =yn + thjf(tnj,Ynj, Ry ag(tng, tor, Yor)

j=1 =1

n—1 s

+h Z Z big(tnjstuts Yul))a
v=0 I=1

(2.12)
Yni =yn+h Zaijf<tnjaynja hzajlg(tnjatnlaynl)
=1 =1
n—1 s
YD hgltass Yo )
v=0[=1
1=1,...,s.

We thus obtained an extended Pouzet-Volterra-Runge-Kutta method,
see Brunner and van der Houwen [3].

The approach sketched above is, of course, not limited to Runge-
Kutta methods. Any numerical method for differential equations
can be used. The resulting methods for (2.1) all have in common
that they treat the differential part and the lag term by the same
numerical scheme. Since the differential equation (2.4) is partitioned



RUNGE-KUTTA TIME DISCRETIZATIONS 7

in a natural way, different numerical methods for the two equations
of (2.4) can be used (with possibly different stepsizes). Methods that
treat the differential part and the lag term in a different way have been
considered, e.g., by Sloan and Thomée [14]; see also Zhang [19].

In order to obtain convergence results for (2.11) and (2.12), it is
sufficient to study the convergence of (2.6)—(2.9). This will be done in
Section 4.

3. Abstract setting for linear parabolic problems. In the
remainder of this paper, we illustrate the ideas developed in Section 2
for the linear parabolic Volterra integro-differential equation

oy (6) + AWy() = £(t) + / B(t,7)y(r) dr,
0<t<T, y(0) = yo.

(3.1)

We are mainly interested in the case where A and B are differential
operators. Therefore we study this equation in an abstract Hilbert
space setting. As framework for the operator A, we use the setting of
[11].

Let V and H denote two separable complex Hilbert spaces with norms
[| - || and |-, and scalar products ((+,-)) and (-,-), respectively. We
assume that V' is continuously and densely embedded in H. This allows
us to consider the evolution triple (see, e.g., Aubin [1, pp. 62-65])

VcCH=H cV/,
where V' denotes the dual of V. Recall that this construction implies
(v*, vy = (v*,v), forallveV, v' e H.

Here (-,-) stands for the anti-duality between V' and V. The norm on
V' will be denoted by || - ||..
We make the following assumptions on the data of (3.1), which must
hold uniformly for all ¢, € [0, T]:
the mappings t — A(t) € L(V,V') and (t,7) — B(t,T)
(3.2) € L(V,V') are continuous and possess sufficiently

many continuous derivatives;
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(3.3) a+ A(t) : V — V' has a uniformly bounded inverse
’ for some a > 0;

A(t) is sectorial on V (cf., Henry [8, p. 18]), i.e., it is closed, has a
dense domain and its resolvent satisfies

My

(3.4) A+ A®) Hlverv < 3l

in the sector |arg(A —a)| <7 — ¢ with 0 < ¢ < 7/2;
(3.5) f:[0,T] — V' is sufficiently smooth.

We now give the framework for the differential equation (2.4) which
for (3.1) takes the form

(3.6) U+ KBU=F,  ¥(0) =T,

where W(t) = (y(t), 2(t,")) ", ¥o = (v0,0) ", F(t) = (f(¢),0)", and

(3.7) K(t) = <_§((f?t) —Ig(t)> .

For (3.6) we consider the evolution triple
VxWCHxWCV' xW

where W = H™(0,T; V'), with the norm

m

(3.8) |¢4W::§3<T%—{AT|¢“N0l@h>”3

k=0

We will always assume that m > 2 and note that the norm defined in
(3.8) is equivalent to the standard norm on W. The operator P(t) is
a continuous projection from W to V'. It is defined in (2.5), and we
have ||P(t)] [y w = 1.

To enter the Hilbert space setting of [10], it remains to show that the
linear operator K (t) has appropriate regularity properties.
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Lemma 1. Suppose that (3.2) and (3.4) hold. Then

a) the mapping t — K(t) € L(V x W,V' x W) has m — 1 bounded
derivatives. For m > 2 it is, in particular, Lipschitz continuous.

b) K (t) is sectorial on V x W, i.e., it is closed and densely defined and
its resolvent satisfies

(3.9) 1O+ K@) vxwevaw < ML

~ k|
in the sector |arg(A — k)| < ™ — ¢ with the same ¢ as in (3.4).

Proof. Part a) follows from (3.7) and the corresponding properties of
A(t) and B(-,t), see (3.2). For P(t) we have ||[P®)(t)||yew = TF.
This follows from (3.8). To prove part b), we note that the operator
K (t) is a bounded perturbation of the sectorial operator

wo- (40, )

with domain Dy «w (Ko(t)) D Dy (A(¢)) x H™(0,T;V). O

Example. Let A and B denote two second-order differential opera-
tors with smooth and bounded coefficients on a smooth and bounded
domain 2. We assume that A(t) is strongly elliptic, uniformly in ¢. We
equip this operator with homogeneous Dirichlet boundary conditions.
For the Sobolev spaces V = Hj(Q), H = L*(Q) and V' = H~(Q),
the assumptions (3.2)—(3.4) are easily verified. In particular, equation
(1.3), described in the introduction and written as an abstract integro-
differential equation, fits into this framework.

4. Convergence results. We now prove convergence of extended
Pouzet-Volterra-Runge-Kutta methods applied to (3.1). These results
rely on the reformulation of (3.1) as an abstract differential equation
(3.6) and on convergence results for Runge-Kutta approximations for
the latter, given in [10]. As the estimates stated below are in terms of
the solution, we assume that the solution of (3.1) is sufficiently smooth
in time.
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Theorem 1. For the numerical solution of (3.1)—(3.5) we consider a
strongly A(8)-stable Runge-Kutta method (defined by (2.11) and (2.12))
with @ > ¢, with stage order q and order p > q+1. Ify*) € L2(0,T;V)
for0 <k <q+1 and y'9t? € L2(0,T; V"), we have the error estimate

N
4.1 — ynll? —ynl?
(4.1) hzluy(tn) vall® + | max ly(tn) = vl
q+1

T T
sc<hq+1>2(2 [ oaiea [ |y<q+2><t>||idt).
k=0

This bound is valid for Nh < T and the constant C' depends only on
the Runge-Kutta method, on the constants in (3.2)—(3.4), and on T.

Proof. We use the notations introduced in Sections 2 and 3. In
particular, ¥,, denotes the Runge-Kutta approximation of ¥(t,). We
have, for r € [0, 7],

N
B3t =wull*+, max [y(t) =l
n=

N N
<h Y ly(tn)=yall® + 7D |l2(tn,7) = 2a(r)I[2
n=1

n=1

+max (jy(ta) =yal* + |2(tn, 7) = za(r)]12)

N
(4.2) <hY NE(tn) = Tnl[3 o + max | [[¥(tn) = Tl [Frw-
n=1

The last inequality follows from the embedding
|2(tn,7) = 2 (r)[l« < [[2(En, ) = 20 ()] |w-

We now apply Theorem 3.2 of [10] to obtain the following bound for
(4.2):

T T
(43) 0<hq+1>2( | IO dr ||w<q+2)<t)||%fxwdt)-
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Inserting the definition of ¥ into (4.3) and using (3.2), we obtain the
desired bound (4.1). o

Remark. Theorem 1 remains valid for p = g = 1 if h9T! is replaced
by h? in (4.1). This includes the backward Euler method. Different
convergence proofs for this scheme, combined with space discretization,
can be found, e.g., in Sloan and Thomée [14] and Kauthen [9].

The convergence estimate in Theorem 1 is not sharp. In the follow-
ing we will derive the optimal convergence rate. In addition to the
conditions (3.2)—(3.5), we further require that

(4.4) |1B(r,t)(a + A(t)) " |vev < C
and
(45)  [l(a+ A1) (0105 B(r, 1)) (a+ A1) P||viev < C,

for 0 < < m and 0 < k < g, uniformly in r and ¢. The value of g is
specified in Theorem 2 below.

If the solution has more spatial regularity, we can now show the
following improved temporal convergence rates.

Theorem 2. In addition to the conditions of Theorem 1, let p > q+2.
We further suppose that (4.4), (4.5) and the regularity assumptions
yat2) ¢ L2(0,T;V) and y9t3) € L2(0,T;V') hold. Let B € [0,1]
be such that Dy ((a + A(t))P) is independent of t (with uniformly
equivalent norms) and (o + A)Py*®) € L2(0,T;V) for 0 < k < g+ 1.
Then we have the error estimate, valid for Nh < T

_ _ 2
(4.6) hZHy yal* + | max [y(tn) = vl

)

g+1

< O(RTHIHAY2 Z/ l(a + APy ® (1)]2 de

q+2
Oy (Z/ () ||2dt+/ 0]t
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The constant C depends on the same quantities as in Theorem 1 as
well as on the constants in (4.4) and (4.5).

Proof. The proof relies on the techniques used in the proof of Theorem
3.3 in [10]. We have to estimate

40 X [ et KRG O vt

for fixed 7 and sufficiently large ¢ > 0. Using the representation [8,
p. 25]

o+ Ky = BT [Thsi0s g4 k() Ty

T 0

for 0 < f < 1and
(KO = (g P )

with
S(r)=(y+AM) " I =B, m)(y + A(r) ™7,

it can be verified easily that the operator

(0+ K (7))~ K (tn) ((a ’ Aét"))_ﬂ (o + A(Ztn))“* )

is bounded on V x W. This also holds for 5 = 0 and 8 = 1. Therefore,
(4.7) can be estimated by a constant times

T T
[ @+ 4y @R [l a0nse v
0 0
Due to (4.5) this is bounded itself by a constant times

q+1

> [ llta+ 0Py o) P ae
k=070
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The rest is now identical with the proof of Theorem 1 where q is replaced
by ¢+ 1. ]

Remarks. a) The above theorem yields the convergence rate ¢+ 1+ .
In the example given at the end of the preceding section, 3 is equal
to 3/4 — € for arbitrarily small positive ¢; see the example following
Theorem 3.3 in [10]. Thus, for parabolic equations, Runge-Kutta
approximations do not converge with their classical order p, but one
observes an order reduction from p to ¢ + 1 + 3, in general.

b) If (3.1) results from space discretization of a partial integro-
differential equation, with conditions (3.2)—(3.4), (4.4) and (4.5) hold-
ing uniformly in the meshwidth, then one has the estimate

N
Y 1G(ta) — ynl P+ max [(ta) — yal?
2 ax
N s
SO@+M2HMwmwwth§jmmm)

n=0j=1

Here B denotes the righthand side expressions in (4.1) or (4.6), and § is
a projection of the solution of the partial integro-differential equation
onto the finite-dimensional approximation space, satisfying

ﬁ@+A®ﬁﬂ=ﬂﬂ+ﬂﬂfAB@ﬂmﬂM,
9(0) = yo + eo,

with d(t) denoting the space truncation error. This estimate can be
proved as for parabolic differential equations; see the last remark in
[10, Section 3].

Numerical illustration. We solved the problem
t
e, ) — ala, tuse (2, 8) = f(z,1) + / b(, b, 7)uga (1, 7) dr,
0
0<t<1,

with u(z,0) = ug(z), z € [0,1] and u(0,t) =u(1,t) =0, t € [0,1].
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Example 1. uy(z) = z(1 — z), a(z,t) = 1, b(z,t,7) = z(1 +
t)exp(—tr) and f(x,t) such that the exact solution is u(z,t) = z(1 —
x) exp(—t).

Example 2. wp(z) = z(z — 1/3)(1 — z), a(z,t) = 2 + sin(xt),
b(z,t,7) = (1 — 2z)(1 + t)exp(—t7) and f(z,t) such that the exact
solution is u(z,t) = z(z — 1/3)(1 — z) exp(—t).

We approximated the space derivatives by standard three-point finite
differences; details for space discretization can be found in [9]. For time
discretization we used Radau ITA methods [7, p. 76] with s stages
(s = 1,...,5). These methods have order p = 2s — 1 and stage
order ¢ = s. They are strongly A(6)-stable with § = w/2 and satisfy
R(o0) = 0. The temporal convergence rates we observed in the norm
(hSSN_ |y(t) — yn||?)'/? are given in Tables 1 and 2. They are in
perfect agreement with the value of 8 given above. One observes the
order min{p,q + 1 + 3/4}.

TABLE 1. Convergence rates of s-stage Radau IIA methods for Example 1.

N 2 4 8 16 32 64 | 128
s=1|1.04|1.04|1.04|1.02|1.01|1.01 | 1.00
s=2|2541]311|3.02 296 295|296 | 2.97
s=3 242|397 |4.35| 4.54 | 4.65 | 4.69 | 4.72
s=41570|591 584|586 |579|578|5.78
§=95 (739|707 690 |6.81]|6.79|6.79 | 6.81

TABLE 2. Convergence rates of s-stage Radau IIA methods for Example 2.

N 2 4 8 16 32 64 | 128
s=1|1.06| 110 | 1.07 | 1.04 | 1.02 | 1.01 | 1.01
s§=213.07|289 279|279 |283 288|292
s=3|293]|3.69|4.03|415 | 4.31 | 4.46 | 4.57
s=414.86|525|532|524|546|5.69 |5.73
s§=5(634|6.59 |6.17]6.29 | 6.69 | 6.74 | 6.75
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We do not know if (4.6) is sharp in the norm maxp—1, .~ |[y(tn) — Yn|-
We note, however, that we observed numerically the higher order
min{p, ¢ + 2 4+ 1/4} for this norm.

5. Concluding remarks. We have chosen a Hilbert space setting
for (3.1) because the convergence theory of Runge-Kutta methods for
differential equations with time-dependent, unbounded operators in
Banach spaces is not yet sufficiently developed. In the context of
Banach spaces X it would be natural to replace the space H™(0,T; V")
by C™(0,T; X).

The same orders of convergence as in Theorems 1 and 2 remain valid
for quasilinear integro-differential equations with possibly nonlinear
kernels. For the corresponding framework for differential equations,
we refer to [10].

We finally give a remark on the case where f and g of (2.1) take
values in finite-dimensional spaces. Let f : [0,7] x R? x R! — R4
and g : [0,7] x [0,T] x RY — R! be sufficiently smooth. Then (2.4) is
an ordinary differential equation in R% x C™(0,T; R!) with bounded
(nonlinear) operator. Due to its boundedness, no order reduction
occurs and any numerical method for (2.4) converges with its (classical)
order p. Therefore, the corresponding numerical scheme for (2.1) also
converges with order p.
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