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A STABILITY THEORY FOR INTEGRAL EQUATIONS

T.A. BURTON AND TETSUO FURUMOCHI

1. Introduction. In large measure, stability theory of differential
equations centers around equilibrium points, either those occurring
naturally in the equation or constructed by a change of variable. Thus,
if we are interested in a stability theory for integral equations, then
we need to decide just what will play the role of an equilibrium point.
This is particularly important if we wish to employ Liapunov functions
because they are constructed so as to be positive definite with respect
to an equilibrium point.

In this paper we offer one choice for equilibrium points and we show
that it is a good choice by developing a Liapunov theory around it and
use it to obtain new results on limit sets for three problems of classical
interest.

In particular, we study three forms of the integral equation

(1) x(t) = a(t) −
∫ t

α(t)

Q(t, s, x(s)) ds

where α(t) ≥ α ≥ −∞. We focus on functions which are analogous to
equilibrium points of ordinary differential equations and obtain results,
by way of Liapunov’s direct method, concerning the long-time behavior
of solutions.

Definition 1. A pair of functions (ψ,Ψ), each mapping [α,∞) → Rn

with α ≤ 0, is said to be a near equilibrium for (1) if

(2) Ψ(t) := a(t) − ψ(t) −
∫ t

α(t)

Q(t, s, ψ(s)) ds ∈ L1[0,∞).

Thus, if (1) is perturbed by the L1 function Ψ, then ψ is a solution
of (1); in other words, ψ fails to be a solution of (1) by an amount of
an L1 function.
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We will discuss the relation of a near equilibrium to the concept of
an equilibrium point for an ordinary differential equation in a moment.

Example 1. (i) If a ∈ L1[0,∞) and Q(t, s, 0) = 0, then ψ(t) = 0
and Ψ(t) = a(t) so (ψ,Ψ) is a near equilibrium for (1).

(ii) If x(t) = a(t) +
∫ t

−∞C(t − s)x(s) ds where a ∈ L1[0,∞) and∫ ∞
0
C(t) dt = 1, then for every constant x0, ψ(t) = x0 and Ψ(t) = a(t),

so (ψ,Ψ) is a near equilibrium for this equation.

(iii) If x(t) = a + a1(t) +
∫ t

−∞C(t − s)x(s) ds where a is constant,
a1 ∈ L1[0,∞),

∫ ∞
0
C(t) dt = c �= 1, then for α defined by α(1−c) = a, it

follows that ψ(t) = α and Ψ(t) = a1(t) so (ψ,Ψ) is a near equilibrium.

(iv) If ψ is an L1 solution of x(t) = a(t)+
∫ t

−∞D(t, s)g(x(s)) ds and
if E ∈ L1, then (ψ,Ψ) is a near equilibrium for

x(t) = a(t) +
∫ t

−∞
D(t, s)g(x(s)) ds+

∫ t

0

E(t− s)x(s) ds

where Ψ(t) :=
∫ t

0
E(t− s)ψ(s) ds.

Remark. In the work to follow we frequently ask that not only Ψ, but
powers of Ψ be L1[0,∞). A number of transformations may be used to
achieve this. In the equation

x(t) = a(t) +
∫ t

0

C(t− s)x(s) ds

with a and c in L1[0,∞) and C(t) → 0 as t → ∞, let y = x − a(t) so
that

y(t) =
∫ t

0

C(t− s)a(s) ds+
∫ t

0

C(t− s)y(s) ds.

The first term on the right is L1[0,∞) and it tends to zero. Hence, all
powers are L1[0,∞).

For a given t0 we require a continuous initial function ϕ : [α, t0] → Rn

and seek a solution x(t, t0, ϕ) of (1) with x continuous on [α,∞),
x(t) = ϕ(t) on [α, t0], and x(t, t0, ϕ) satisfying (1) for t ≥ t0. While
existence theory may be given for (1) which allows a discontinuity of
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x at t0, in most of our work we perform certain integration by parts
which requires continuity; thus, ϕ must be selected with care.

Definition 2. A metric space (Ω(t0), ρ) of continuous functions
ϕ : [α, t0] → Rn is said to be admissible if for each ϕ ∈ Ω(t0) there
is a solution x(t, t0, ϕ) of (1) with x(t, t0, ϕ) = ϕ(t) for α ≤ t ≤ t0,
x(t, t0, ϕ) satisfies (1) for t ≥ t0 and x(t, t0, ϕ) is continuous on [α,∞).

Thus, given ϕ ∈ Ω(t0), Equation (1) is usually written as

x(t) = a(t) −
∫ t0

α(t)

Q(t, s, ϕ(s)) ds−
∫ t

t0

Q(t, s, x(s)) ds

and the first two terms on the right are taken as the inhomogeneous
term. In this form there is much existence theory, as may be seen in
Corduneanu [2] or Gripenberg-Londen-Staffans [3], for example.

Notation. The symbol Ω(t0) will always denote an admissible set.
If ϕ ∈ Ω(t0) and Ψ : [α,∞) → Rn, then ρ(ϕ,Ψ) means Ψ is restricted
to [α, t0].

Clearly, ϕ must be chosen so that

(3) ϕ(t0) = a(t0) −
∫ t0

α(t0)

Q(t0, s, ϕ(s)) ds.

However, if for large t we have α(t) > α(t0) then (3) can be avoided,
as we will see in the next section.

But what is important here is that any bounded continuous ϕ on
(−∞, 0] can be approximated arbitrarily well by a function satisfying
(3) with t0 = 0.

Proposition. Let Q : R×R×Rn → Rn be continuous and suppose
that

∫ 0

−∞Q(0, s, ϕ(s)) ds converges for each bounded and continuous
ϕ : (−∞, 0] → Rn. Let ϕ : (−∞, 0] → Rn be an arbitrary bounded and
continuous function. For each ε > 0 there is a t1 < 0, t1 near 0, and
ϕ1 : (−∞, 0] → Rn which is continuous, which satisfies

ϕ1(0) = a(0) −
∫ 0

−∞
Q(0, s, ϕ1(s)) ds,(3∗)

ϕ(t) = ϕ1(t) for −∞ < t ≤ t1,
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and
|ϕ̃(0) − ϕ1(0)| ≤ ε

where

ϕ̃(0) = a(0) −
∫ 0

−∞
Q(0, s, ϕ(s)) ds.

Proof. For any x ∈ Rn and any t1 < 0 define

ϕx =
{
ϕ(s), if s ≤ t1,
[(t1 − s)x+ sϕ(t1)]/t1, if t1 < s ≤ 0.

Now, let t1 be any number such that for any x ∈ Rn with |x− ϕ̃(0)| ≤ ε
we have

(∗)
∣∣∣∣
∫ 0

−∞
Q(0, s, ϕ(s)) ds−

∫ 0

−∞
Q(0, s, ϕx(s)) ds

∣∣∣∣ ≤ ε.

By the continuity of Q and the assumed convergence, (∗) can be
satisfied. Also, t1 is as near 0 as we please.

Next, let S = {x ∈ Rn : |x − ϕ̃(0)| ≤ ε} and define P : S → S by
x ∈ S implies that

P (x) = a(0) −
∫ 0

−∞
Q(0, s, ϕx(s)) ds.

Now P is continuous and, by construction, maps S into S. By
Brouwer’s theorem, there is a fixed point x1 and ϕx1 is the required
function.

Remark. The next definition is a straight-forward generalization of
the standard definition of stability from differential equations and, in
fact, contains it as a special case, as we later see. We will also point out
why the standard definition may be inadequate for integral equations.

In the next definition and throughout the paper we use continuous
scalar functions Wi which are strictly increasing and 0 at 0, called
wedges.
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Definition 3. A near equilibrium (ψ,Ψ) is said to be stable relative
to Ω if there is a wedge W and continuous functions γ(t) and p(t),
where γ ∈ L1[0,∞), while p(t) → 0 and W (t) → ∞ as t → ∞, and
for each ε > 0 and t0 ∈ R there is a δ > 0 such that [ϕ ∈ Ω(t0),
ρ(ϕ,Ψ) < δ] imply that

W (|x(t, t0, ϕ) − Ψ(t)|) < ε+ p(t0) +
∫ t

t0

γ(s) ds.

If, in addition, |x(t, t0, ϕ) − Ψ(t)| → 0 as t → ∞, then (ψ,Ψ) is
asymptotically stable relative to Ω.

To relate this to differential equations, first note in (1) that if a(t) ≡ 0
and Q(t, s, 0) ≡ 0, then ψ and Ψ may be both zero so (0, 0) is a near
equilibrium. If we take W as the identity function and p(t) = γ(t) = 0
then our definition is the usual one for stability of an integrodifferential
equation

x′(t) =
∫ t

α(t)

Q(t, s, x(s)) ds, Q(t, s, 0) ≡ 0,

so that the zero function is a solution (equilibrium point). See, for
example, Yoshizawa [11; pp. 27 31, 183 190], Burton [1; pp. 12 3,
33 34, 227 237].

Next, if ϕ(t) is a solution of (1) and we wish to study the behavior
of solutions starting near it, we can write x = y + ϕ so that

(1∗) y(t) = −
∫ t

α(t)

[Q(t, s, y(s) + ϕ(s)) −Q(t, s, ϕ(s))] ds

has the near equilibrium (0, 0).

The very construction of a differential equation frequently produces
an equation with some constant solutions, say x = 0 is a solution. And
the vast majority of stability considerations surround stability of x = 0.
By contrast, uncontrived forms of (1) seldom have constant solutions,
nor do they have easily recognizable solutions ϕ so that (1∗) can be
treated, except in the linear case. Even in the linear case, when (1∗)
is analyzed without the knowledge of ϕ, stability of the zero solution
tells little about ultimate behavior of all solutions.
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The natural idea in the study of (1) is to show that x(t) follows a(t)
in some sense. For example, consider

(1∗∗) x(t) = a(t) +
∫ t

−∞
D(t− s)x(s) ds

where D ∈ L1[0,∞). Three facts are derived by elementary considera-
tions which motivated Definitions 1 and 3:

(i) Does (1∗∗) have any constant solutions?

It does if and only if a(t) is constant.

(ii) Does (1∗∗) have a solution in L1[0,∞)?

It does only if a(t) ∈ L1[0,∞).

(iii) Does (1∗∗) have any solutions tending to zero?

It does only if a(t) → 0 as t→ ∞.

Part (ii) is the most interesting. We frequently show that there is not
only a solution in L1, but it converges pointwise to a(t) as t→ ∞.

2. A finite delay problem. In our discussions we always consider
a pair of equations: one is linear, one nonlinear. The linear equation
will be the prototype and will lead us to the results; in effect, it will be
an example. But the basic theory is nonlinear and we provide nonlinear
examples.

Let h be a positive constant, Q be continuous, and consider the scalar
equations

(4) x(t) = a(t) −
∫ t

t−h

D(t, s)x(s) ds

and

(4N ) x(t) = a(t) −
∫ t

t−h

Q(t, s, x(s)) ds

with

(5) a : R → R being continuous, a and a2 ∈ L1[0,∞),
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and suppose there is a P > 0 with

(6)
D(t, t) ≤ P, D(t, s) ≥ 0, Ds(t, s) ≥ 0,

Dst(t, s) ≤ 0, D(t, t− h) = 0.

Condition (6) might be called the Volterra-Levin condition because
of work in differential equations of both bounded and unbounded delay
found in Levin [6, 7], Levin and Nohel [8, 9], extended by Hale in
[4, 5], and summarized in Corduneanu [2] and Gripenberg-Londen-
Staffans [3]. But (6) has also been used extensively in circuit theory
and statistics for a very long time. There are technical reasons for these
assumptions, but elementary considerations strongly suggest them.

For example, let a(t) be bounded and consider the convolution
equation

x(t) = a(t) −
∫ t

t−h

C(t− s)x(s) ds.

If C(t) < 0 and large, for a positive initial function, we readily expect
x(t) to grow; thus, we ask C(t) > 0. But this is an equation with
memory and, although the memory is lost on each interval of length
h, we still expect the memory to immediately begin to fade with time;
thus, we ask that C ′(t) ≤ 0. For technical reasons we ask that C(h) = 0,
but if C(h) > 0 a translation could be made. Hence, there is an
uncontrived reason for D(t, s) ≥ 0, Ds(t, s) ≥ 0, and D(t, t − h) = 0,
and investigators traditionally ask Dst ≤ 0 out of technical necessity.
One of our goals is to reduce Dst ≤ 0.

The discussion here is the same for any t0 so we take t0 = 0 and
Ω = Ω(0) to be the set of continuous ϕ : [−h, 0] → R with

(7) ϕ(0) = a(0) −
∫ 0

−h

D(0, s)ϕ(s) ds

for the stability statements. But (7) will not be needed for the study
of limit sets.

The metric ρ on Ω will be the L2-norm, |||·|||. Also, if q : [−h,A) → R,
A > 0, then qt(s) = q(t+ s) for −h ≤ s ≤ 0 and

(8) |||qt|||2 =
∫ 0

−h

q2(t+ s) ds.
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Clearly, the pair (0, a(t)) is a near equilibrium for (4) and we will
show that it is asymptotically stable relative to Ω. In addition, it will
motivate a general theorem. It is convenient to give them in reverse
order and to prove Theorem 1B first.

Theorem 1A. Suppose that for some continuous function ψ :
[−h,∞) → R,

Ψ(t) := a(t) − ψ(t) −
∫ t

t−h

Q(t, s, ψ(s)) ds ∈ L1[0,∞),

and that there exist continuous functions p, q : [0,∞) → [0,∞),
p(t) → 0 as t → ∞, q ∈ L1[0,∞), a continuous function V (t, x(·))
defined for a solution x(t) = x(t, 0, ϕ) of (4N ) with ϕ ∈ Ω, and wedges
Wi such that W1(r) → ∞ as r → ∞,

(i) W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤W2(|||(x− Ψ)t|||) + p(t), and

(ii) V ′(t, x(·)) ≤ −W3(|x(t) − Ψ(t)|) + q(t).

Then the near equilibrium (ψ,Ψ) of (4N ) is asymptotically stable rela-
tive to Ω. If p and q depend on ϕ, then |x(t) − Ψ(t)| → 0 as t→ ∞.

Theorem 1B. Let (5), (6), (7) hold. Then there exist continuous
functions p, q : [0,∞) → [0,∞), p(t) → 0 as t → ∞, q ∈ L1[0,∞), a
continuous function V (t, x(·)) defined for a solution x(t) = x(t, 0, ϕ) of
(4) with ϕ ∈ Ω, and wedges Wi such that W1(r) → ∞ as r → ∞,

(i) W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤W2(|||(x− a)t|||) + p(t),

and

(ii) V ′(t, x(·)) ≤ −W3(|x(t) − a(t)|) + q(t).

Thus, the near equilibrium (0, a(t)) of (4) is asymptotically stable
relative to Ω.

Proof. To prove Theorem 1B, let ϕ ∈ Ω, x(t) = x(t, 0, ϕ), and define

(9) V (t) = V (t, x(·)) =
∫ t

t−h

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds.
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Then

V ′(t) = −Ds(t, t− h)
(∫ t

t−h

x(v) dv
)2

ds

+
∫ t

t−h

Dst(t, s)
(∫ t

s

x(v) dv
)2

ds

+ 2x(t)
∫ t

t−h

Ds(t, s)
∫ t

s

x(v) dv

≤ 2x(t)
[
D(t, s)

∫ t

s

x(v) dv
∣∣∣∣
t

t−h

+
∫ t

t−h

D(t, s)x(s) ds
]

= 2x(t)[a(t) − x(t)]
= −x2(t) − (x(t) − a(t))2 + a2(t)
≤ −(x(t) − a(t))2 + a2(t)
=: −W3(|x(t) − a(t)|) + q(t)

so (ii) holds.

Next, from (4) we have

W1(|x(t) − a(t)|) := (x(t) − a(t))2

=
(
−

∫ t

t−h

D(t, s)x(s) ds
)2

=
{
D(t, s)

∫ t

s

x(v) dv
∣∣∣∣
t

t−h

−
∫ t

t−h

Ds(t, s)
∫ t

s

x(v) dv ds
}2

≤
∫ t

t−h

Ds(t, s) ds
∫ t

t−h

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds

≤ PV (t)

≤ P

∫ t

t−h

Ds(t, s)2
[( ∫ t

s

|x(v) − a(v)| dv
)2

+
( ∫ t

s

|a(v)| dv
)2]

ds

≤ 2P
∫ t

t−h

Ds(t, s)(t− s)
∫ t

s

|x(v) − a(v)|2 dv
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+ 2P
( ∫ t

t−h

Ds(t, s) ds
)( ∫ t

t−h

|a(v)| dv
)2

≤ 2P 2h

∫ t

t−h

|x(v)−a(v)|2 dv+2P 2

(∫ t

t−h

|a(v)| dv
)2

=: W2(|||(x− a)t|||) + p(t)

where p(t) → 0 as t → ∞; hence, (i) holds and Theorem 1B will be
proved when we have proved Theorem 1A.

To that end, in Theorem 1A we note that an integration of (ii) yields
V (t) bounded and, since W1(r) → ∞ as r → ∞, in (i) we see that
|x(t) − Ψ(t)| is bounded. This means that (ii) can be sharpened to

(ii∗) V ′(t) ≤ −W4(|x(t) − Ψ(t)|2) + q(t)

where W4 is convex downward. (See Natanson [10, pp. 36 46] for a
good discussion of convexity and Jensen’s inequality. In particular, if
W is a wedge, then for 0 ≤ r ≤ 1 we have

W ∗(r) =
∫ r

0

W (s) ds = W (ξ)r ≤W (r)

for some ξ in [0, r] and W ∗ is convex downward.)

From (i) and (ii) we have

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·))

≤ V (0) +
∫ t

0

q(s) ds

≤W2(|||(ϕ− Ψ)0|||) + p(0) +
∫ t

0

q(s) ds,

(as we have taken t0 to be zero for convenience) and this is the required
stability.

We now show that |x(t) − Ψ(t)| → 0 as t → ∞. If it does not, then
there is an ε > 0 and {tn} ↑ ∞ with h < tn, tn+1 > tn + h, and
|x(tn) − Ψ(tn)| ≥ ε. Using (i) and the fact that p(t) → 0, we can say
that there is a δ > 0 with |||(x − Ψ)tn

|||2 ≥ δ for large n, say n ≥ 1.
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Using (ii∗) and Jensen’s inequality, we take N large, integrate (ii∗) from
t1 to tN and obtain

V (tN ) − V (t1) ≤ −
∫ tN

t1

W4(|x(s) − Ψ(s)|2) ds+
∫ tN

t1

q(s) ds

≤ −
N∑

i=2

∫ ti

ti−h

W4(|x(s) − Ψ(s)|2) ds+
∫ tN

t1

q(s) ds

≤ −
N∑

i=2

hW4

(
1
h

∫ ti

ti−h

|x(s) − Ψ(s)|2 ds
)

+
∫ tN

t1

q(s) ds

≤ −
N∑

i=2

hW4(δ/h) +
∫ tN

t1

q(s) ds,

a contradiction for large N since V (t) ≥ 0 and q ∈ L1[0,∞). This
proves Theorem 1A, so 1B is also true.

The only place (7) was used was in the integration by parts when
differentiating V . For any continuous ϕ there is a solution x(t, 0, ϕ)
for t > 0 of (4) which may have a discontinuity at t = 0 but V is
differentiable for t > h. There is the question of stability, but it can be
resolved using continuous dependence of solutions on initial conditions
in conjunction with the following result.

Corollary 1. If (5) and (6) hold, then there exist continuous
functions p, q : [0,∞) → [0,∞), p(t) → 0 as t → ∞, q ∈ L1[0,∞),
and wedges Wi such that if ϕ : [−h, 0] → R is continuous and
x(t) = x(t, 0, ϕ) solves (4), then there is a continuous function V (t, x(·))
satisfying (i) of Theorem 1B for t > 0 and (ii) for t > h. In particular,
|x(t) − a(t)| → 0 as t→ ∞.

One of our main stated goals is to reduce Dst ≤ 0, and the next result
gives us one way to do that. But it forces us to write (ii) as an integral
inequality, which we do in later results. Here f+ = max(f(t), 0).

Corollary 2. Let the conditions of Theorem 1B hold except

2h2

∫ t

t−h

(Dst(t, s))+ ds ≤ 1.
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Then (0, a(t)) is asymptotically stable relative to Ω.

Proof. We readily obtain

V ′(t) ≤ −x2(t) − (x(t) − a(t))2 + a2(t)

+
∫ t

t−h

(Dst(t, s))+

( ∫ t

s

x(v) dv
)2

ds

≤ −x2(t) − (x(t) − a(t))2 + a2(t) +
1
2h

∫ t

t−h

x2(v) dv.

Again, take t0 = 0 and let t = 2Nh. On each interval [(n − 1)h, nh],
choose tn such that

∫ tn

tn−h

x2(v) dv ≥
∫ t

t−h

x2(v) dv on [(n− 1)h, nh].

An integration of V ′ will yield

0 ≤ V (t) ≤ V (0) −
∫ t

0

x2(s) ds−
∫ t

0

(x(s) − a(s))2 ds

+
∫ t

0

a2(s) ds+
1
2h

∫ t

0

∫ s

s−h

x2(v) dv ds

≤ V (0) − 1
2

N∑
i=1

∫ 2ih

2ih−2h

x2(s) ds− 1
2

N∑
i=2

∫ (2i−1)h

(2i−1)h−2h

x2(s) ds

+
1
2

N∑
i=1

∫ t2i

t2i−h

x2(s) ds+
1
2

N∑
i=1

∫ t2i−1

t2i−1−h

x2(s) ds

−
∫ t

0

(x(s) − a(s))2 ds+
∫ t

0

a2(s) ds

(Notice that the lengths of intervals of integration in the first pair of
integrals is 2h, but only h in the second pair.)

≤ V (0) + constant −
∫ t

0

(x(s) − a(s))2 ds+
∫ t

0

a2(s) ds
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and this will allow us to prove the result as before.

Theorem 1A emphasizes that linearity is not essential; it merely serves
as a convenient example with fewer hypotheses. We now give examples
of superlinear and sublinear cases. The wedges in the theorems still
arise in a natural way.

For the equation

(4∗) x(t) = a(t) −
∫ t

t−h

D(t, s)g(s, x(s)) ds

with (5), (6), g bounded for x bounded, and

(7∗) ϕ(0) = a(0) −
∫ 0

−h

D(0, s)g(s, ϕ(s)) ds

then

V (t, x(·)) =
∫ t

t−h

Ds(t, s)
(∫ t

s

g(v, x(v)) dv
)2

ds

satisfies
(x(t) − a(t))2 ≤ D(t, t)V (t, x(·))

and
V ′(t, x(·)) ≤ −2g(t, x)[x− a(t)].

Example 2. If (5), (6) and (7∗) hold and if a3 and a4 ∈ L1[0,∞),
then conditions (i) and (ii) of Theorem 1A hold when g(t, s) = x3 in
(4∗) and |x(t) − a(t)| → 0 as t→ ∞.

Proof. We have just defined V , and we have

V ′(t) ≤ −2x4 + 2a(t)x3

= −x4 − (x− a(t))4 − 2a(t)x3

+ 6x2a2(t) − 4xa3(t) + a4(t)

so that

V (t) ≤ V (0) −
∫ t

0

x4(s) ds−
∫ t

0

(x(s) − a(s))4 ds



458 T.A. BURTON AND T. FURUMOCHI

+ 2
( ∫ t

0

a4(s) ds
)1/4( ∫ t

0

x4(s) ds
)3/4

+ 6
( ∫ t

0

x4(s) ds
)1/2( ∫ t

0

a2(s) ds
)1/2

+ 4
( ∫ t

0

x4(s) ds
)1/4( ∫ t

0

a4(s) ds
)3/4

+
∫ t

0

a4(s) ds

and it follows that each term in the expression for V ′ is L1[0,∞).
Indeed, if

∫ t

0
x4(s) ds → ∞, then it dominates all the positive terms,

so the righthand side tends to −∞. Thus, all the positive terms have
finite integrals and, therefore, so does (x− a)4. We may write

V ′(t) ≤ −(x(t) − a(t))4 + q(t)

where q ∈ L1[0,∞), satisfying (ii) of Theorem 1A. Next, if we take

r(s) = 3(x(s) − a(s))2|a(s)| + 3|x(s) − a(s)|a2(s) + |a(s)|3,

then we have

∫ t

t−h

x2(s)|a(s)| ds ≤
( ∫ t

t−h

|x(s)|3 ds
)2/3( ∫ t

t−h

|a(s)|3 ds
)1/3

≤ h1/6

( ∫ t

t−h

|x(s)|4 ds
)1/2( ∫ t

t−h

|a(s)|3 ds
)1/3

→ 0 as t→ ∞

and

∫ t

t−h

|x(s)|a2(s) ds ≤
(∫ t

t−h

|x(s)|3 ds
)1/3( ∫ t

t−h

|a(s)|3 ds
)2/3

→ 0 as t→ ∞.

Clearly, ∫ t

t−h

|a(s)|3 ds→ 0 as t→ ∞.
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Thus, we have, for r defined above,

V (t, x(·)) =
∫ t

t−h

Ds(t, s)
(∫ t

s

x3(v) dv
)2

ds

≤
∫ t

t−h

Ds(t, s)2
{( ∫ t

s

|x(v)−a(v)|3 dv
)2

+
( ∫ t

s

r(v) dv
)2}

ds

≤
∫ t

t−h

Ds(t, s)2
{
h1/4

( ∫ t

t−h

|x(v)−a(v)|4 dv
)3/4

+
(∫ t

t−h

r(v) dv
)2}

ds

≤ 2D(t, t)h1/4

(∫ t

t−h

(x(v) − a(v))4 dv
)3/4

+ p(t)

where we have verified that p(t) → 0 as t→ ∞, so that (i) of Theorem
1A is satisfied and the conclusion follows.

Example 3. If (5), (6) and (7∗) hold for (4∗), and if g(t, x) = x1/3,
while a(t) is bounded, then the conditions of Theorem 1A hold and
|x(t) − a(t)| → 0 as t→ ∞.

Proof. We have

V ′(t) ≤ −2x4/3 + 2x1/3a(t)

so that

0 ≤ V (t) ≤ V (0) − 2
∫ t

0

x4/3(s) ds

+ 2
( ∫ t

0

x4/3(s) ds
)1/4( ∫ t

0

a4/3(s) ds
)3/4

and so the terms in V ′ are L1[0,∞). Moreover, familiar arguments
yield (i). Hence, V is bounded so (x(t) − a(t))2 is bounded; but a(t)
bounded yields x(t) bounded. Thus, there exists M > 0 with

∫ t

0

x2(s) ds =
∫ t

0

x2/3(s)x4/3(s) ds ≤M

∫ t

0

x4/3(s) ds.
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Hence, (x− a)2 = x2 − 2ax+ a2 is in L1[0,∞), and we can write

V ′(t) ≤ −(x(t) − a(t))2 + q(t)

so that (ii) of Theorem 1A holds and the proof is complete.

Theorem 1A is predicated on finding a near equilibrium; once that is
found, the limit set of all solutions is specified by Corollary 1. To find
a near equilibrium is to find a function which fails to solve (4) only by
an amount of an L1-function. If we can find a function which fails to
solve (4) only by an amount of a bounded function, then we can locate
a bounded set which contains the limit set of all solutions of (4). When
the conditions of this theorem hold, then we are assured that all stable
near equilibria are a bounded distance from that function.

Theorem 2A. Let x(t) solve (4N ) with x(t) = x(t, 0, ϕ) and ϕ :
[−h, 0] → R be continuous. Suppose there is a continuous function
Ψ : [−h,∞) → R, positive constants Q and L, wedges Wi with
W1(r) → ∞ as r → ∞, and a continuous function V (t, x(·)) so that
for t > h

(i)

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤W2(|||(x− Ψ)t|||) +Q

and for t > h

(ii)
V ′(t, x(·)) ≤ −W3(|x(t) − Ψ(t)|2) + L

with W3 convex downward. Then there is a number B independent of
ϕ with |x(t)| ≤ B for large t.

Proof. Consider the intervals In = [(n − 1)h, nh] for n = 2, 3, . . . .
Either (a) V (nh) ≥ V ((n− 1)h) − 1 so that from (ii)

−1 ≤ V (nh) − V ((n− 1)h) ≤ −hW3

(
1
h
|||(x− Ψ)nh|||2

)
+ Lh

or
|||(x− Ψ)nh|||2 ≤ hW−1

3 (L+ 1/h)
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so from (i)

(A)
V (nh) ≤W2((hW−1

3 (L+ 1/h))1/2) +Q =: C

or

(b)
V (nh) ≤ V ((n− 1)h) − 1.

Since (b) cannot hold for all n, there is a k with (A) holding for n = k:

V (kh) ≤ C.

From (ii) we have

V (t) ≤ C + Lh if kh ≤ t ≤ (k + 1)h.

But by the arguments in (a) and (b), either

V ((k + 1)h) ≤ V (kh) − 1 < C by (b)

or
V ((k + 1)h) ≤ C by (A).

Hence,
W1(|x(t) − Ψ(t)|) ≤ V (t) ≤ C + Lh

for all large t, and we take

B = W−1
1 (C + Lh).

This completes the proof.

Suppose there is an A > 0 with

(5∗) a : R→ R is continuous and |a(t)| ≤ A for t ≥ 0.

Theorem 2B. Let (5∗) and (6) hold. Then there are constants Q and
L, wedges Wi with W1(r) → ∞ as r → ∞ and a continuous function
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V with the following properties. If ϕ : [−h, 0] → R is continuous, and
if x(t) = x(t, 0, ϕ) satisfies (4), then

(i)

W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤W2(|||(x− a)t|||) +Q

and for t > h

(ii)
V ′(t, x(·)) ≤ −W3(|x(t) − a(t)|2) + L

where W3 is convex downward. Thus, there is a B > 0 independent of
ϕ with |x(t)| ≤ B for large t.

Proof. The proof of (i) proceeds by familiar arguments. We have

Q = 2P 2h2A2

and in (ii) L = A2.

Remark. When we study the proof of Theorem 2A, part (b), we see
that for each B1 > 0 there is a B2 > 0 such that |||(ϕ−Ψ)0||| < B1 and
t ≥ 0 imply |x(t, 0, ϕ)| < B2. Also, for each B3 > 0 there is a T > 0
such that |||(ϕ−Ψ)0||| < B3 and t ≥ T imply |x(t)| ≤ B. This may be
called uniform boundedness and uniform ultimate boundedness.

3. Infinite delay. Consider the equation

(10) x(t) = a(t) −
∫ t

−∞
D(t, s)x(s) ds

or

(10N ) x(t) = a(t) −
∫ t

−∞
Q(t, s, x(s)) ds

where Q is continuous,

(11) a : R → R is bounded and continuous, a ∈ L1[0,∞),
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there is a constant P > 0 with

(12) D(t, s) ≥ 0, Ds(t, s) ≥ 0, D(t, t) ≤ P,

(13)
∫ t

−∞
[D(t, s) + {Ds(t, s) + |Dst(t, s)|}(t− s)2] ds is continuous

(14) lim
s→−∞(t− s)D(t, s) = 0 for fixed t,

there is a function

(15)
g : [0,∞) → (0, 1], g decreasing,

g(0) = 1,
∫ ∞

0

g(s) ds =: G <∞,

there are constants L > 0 and M > 0 with MG < 1 and∫ t

−∞
[Ds(t, s)(t− s)/g(t− s)] ds ≤ L and(16)

2
∫ 0

−∞
[(Dst(t, s))+(t− s)/g(t− s)] ds

+
∫ t

0

[(Dst(t, s))+(t− s)/g(t− s)] ds ≤M,

(17) d∗(t) :=
∫ 0

−∞
(Dst(t, s)+)s2 ds ∈ L1[0,∞)

and for each T > 0,

then
∫ T

−∞
Ds(t, s)(t− s)2 ds→ 0 as t→ ∞.

Define Ω by

(18) Ω =
{
ϕ : (−∞, 0] → R,ϕ ∈ C,ϕ bounded,

ϕ(0) = a(0) −
∫ 0

−∞
D(0, s)ϕ(s) ds

}
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where C denotes a set of continuous functions on (−∞, 0] and ρ by

(19) ϕ ∈ Ω implies that ρ(ϕ) =
∫ 0

−∞
g(−s)|ϕ(s)| ds.

Solutions are denoted as before.

Theorem 3A. Suppose that there is a continuous function ψ : R →
R with Ψ(t) := a(t)− ψ(t)− ∫ t

−∞Q(t, s, ψ(s)) ds in L1[0,∞), and that
there are continuous functions p, q : [0,∞) → [0,∞), p(t) → 0 as
t → ∞, q ∈ L1[0,∞), wedges Wi with W1(r) → ∞ as r → ∞, and a
continuous function V (t, x(·)) defined for a solution x(t) = x(t, t0, ϕ)
of (10N ) such that

(i)

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·)) ≤W2(ρ(W3(|x− Ψ|t))) + p(t)

and for V (t) = V (t, x(·)), then

(ii)

V (t) ≤ V (t0) −
∫ t

t0

W3(|x(s) − Ψ(s)|) ds+
∫ t

t0

q(s) ds.

Then the near equilibrium (ψ,Ψ) of (10N ) is asymptotically stable
relative to Ω. If p and q depend on x(t), then |x(t) − Ψ(t)| → 0 as
t→ ∞.

Theorem 3B. Let (11) (18) hold. Then there are continuous func-
tions p, q : [0,∞) → [0,∞), p(t) → 0 as t → ∞, q ∈ L1[0,∞), wedges
Wi with W1(r) → ∞ as r → ∞, and a continuous function V (t, x(·))
defined for a solution x(t) = x(t, t0, ϕ) of (10) with ϕ ∈ Ω such that

(i)

W1(|x(t) − a(t)|) ≤ PV (t, x(·)) ≤W2(ρ(W3(|x− a|t))) + p(t)

and for V (t) = V (t, x(·)), then

(ii)

V (t) ≤ V (t0) −
∫ t

t0

W3(|x(s) − a(s)|) ds+
∫ t

t0

q(s) ds.
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Moreover, the near equilibrium (0, a(t)) of (10) is asymptotically stable
relative to Ω.

Proof. We begin the proof of Theorem 3B first. As before, we can
obtain

(x(t)−a(t))2 ≤D(t, t)
∫ t

−∞
Ds(t, s)

(∫ t

s

x(v) dv
)2

ds

=: D(t, t)V (t, x(·))

≤P
∫ t

−∞
Ds(t, s)2

{( ∫ t

s

|x(v)−a(v)| dv
)2

+
(∫ t

s

|a(v)| dv
)2}

ds

≤2P
∫ t

−∞
Ds(t, s)(t−s)

∫ t

s

|x(v)−a(v)|2 dv ds

+ 2P
∫ t

−∞
Ds(t, s)

(∫ t

s

|a(v)| dv
)2

ds

≤2P
∫ t

−∞
[Ds(t, s)(t−s)/g(t−s)]

×
∫ t

s

|x(v)−a(v)|2g(t−s) ds

+ 2P
∫ t

−∞
Ds(t, s)

(∫ t

s

|a(v)| dv
)2

ds

(g decreasing implies that g(t− v) ≥ g(t− s))

≤2P
∫ t

−∞
[Ds(t, s)(t−s)/g(t−s)]

∫ t

−∞
|x(v)−a(v)|2g(t−v) dv

+ 2P
∫ t

−∞
Ds(t, s)

(∫ t

s

|a(v)| dv
)2

ds

≤2PLρ(|x− a|2t ) + p(t)

where p is the last integral. We later show that p(t) → 0 as t→ ∞.



466 T.A. BURTON AND T. FURUMOCHI

A calculation yields

V ′(t, x(·)) ≤−2x[x−a(t)]+
∫ t

−∞
(Dst(t, s))+

( ∫ t

s

x(v) dv
)2

ds

≤−x2−(x−a(t))2+a2(t)+
∫ t

−∞
(Dst(t, s))+

( ∫ t

s

x(v) dv
)2

ds.

Now there is a positive constant H with |ϕ(t)| ≤ H on (−∞, 0] so the
last term can be bounded by

2
∫ 0

−∞
(Dst(t, s))+

( ∫ 0

s

ϕ(v) dv
)2

ds

+ 2
∫ 0

−∞
[(Dst(t, s))+(t− s)/g(t− s)] ds

∫ t

0

g(t− v)x2(v) dv

+
∫ t

0

[(Dst(t, s))+(t− s)/g(t− s)]
∫ t

0

g(t− v)x2(v) dv

≤ 2d∗(t)H2 +M

∫ t

0

g(t− v)x2(v) dv.

If we now integrate V ′ and interchange the order of integration in the
last term above, taking a2(t) + 2d∗(t)H2 = q(t), then we will have, by
taking t0 = 0 for brevity,

V (t) ≤ V (0) −
∫ t

0

x2(s) ds+
∫ t

0

q(s) ds

+M

∫ t

0

∫ u

0

g(u− v)x2(v) dv ds−
∫ t

0

(x(s) − a(s))2 ds

= V (0) −
∫ t

0

x2(s) ds

+
∫ t

0

M

∫ t

v

g(u−v) du x2(v) dv +
∫ t

0

q(s) ds−
∫ t

0

(x(s)−a(s))2 ds

≤ V (0)−(1−MG)
∫ t

0

x2(s) ds+
∫ t

0

q(s) ds−
∫ t

0

(x(s)−a(s))2 ds

yielding (ii).



STABILITY THEORY 467

We now complete the proof of (i) by noting that (x(t)−a(t))2, x2(t),
and a2(t) are all in L1[0,∞). From the first line of the proof we have

PV (t) ≤ 2P
∫ t

−∞
[Ds(t, s)(t−s)/g(t−s)]

∫ t

s

|x(v)−a(v)|2g(t−v) dv ds

+ 2P
∫ t

−∞
Ds(t, s)

(∫ t

s

|a(v)| dv
)2

ds

≤ 2PL
∫ t

−∞
|x(v) − a(v)|2g(t− v) dv

+ 2P
∫ T

−∞
Ds(t, s)(t− s)2 ds||a||2

+ 2P
∫ t

T

Ds(t, s)
(∫ t

s

|a(v)| dv
)2

ds

where ||a|| is the bound on a and T will be large. The second term tends
to zero by assumption; the last term can be made small by taking T
large since a ∈ L1[0,∞). This proves (i).

We now prove Theorem 3A which will also complete the proof of
Theorem 3B. Using (ii) we have V (t) ≤ V (t0) +

∫ t

t0
q(s) ds which in (i)

yields

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·))

≤W2(ρ(W3(|ϕ− Ψ|t0))) + p(t0) +
∫ t

t0

q(s) ds.

This yields stability. From (ii), W3(|x(t) − Ψ(t)|) ∈ L1[0,∞) and
g(t) → 0 so ρ(W3(|x − Ψ|t)) → 0 as t → ∞. Since p(t) → 0 as
t→ ∞, V (t) → 0, completing the proof.

We now give a general boundedness result for (10N ) and for (10)
when a(t) is bounded. Let

(11∗) a : R → R be bounded and continuous,

(12∗)
D(t, s) ≥ 0, Ds(t, s) ≥ 0, D(t, t) ≤ P, Dst(t, s) ≤ 0,
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and for g defined in (15) let

∫ t

−∞
[Ds(t, s)(t− s)/g(t− s)] ds ≤ L.

Theorem 4A. Let g satisfy (15), V , f , p : [0,∞) → [0,∞) be
continuous p(t) → 0 as t→ ∞, W be a wedge, and let M be a positive
constant. Suppose that

(i)

V (t) ≤W

(∫ t

0

f(s)g(t− s) ds
)

+ p(t),

(ii)
V ′(t) ≤M − f(t),

and that V (t) being bounded implies that f(t) is bounded. Then V (t) ≤
B := W (MG+ 1) + 1 for large t.

Theorem 4B. Let (11∗), (12∗), (13) (15), (16∗) hold. Suppose also
that there are wedges Wi, M > 0, p : [0,∞) → [0,∞) with p(t) → 0 as
t→ ∞, such that W1(r) → ∞ as r → ∞. If ϕ ∈ Ω and x(t) = x(t, 0, ϕ)
solves (10), then there is a continuous function V (t, x(·)) with

(i)

W1(|x(t) − a(t)|) ≤ PV (t, x(·))

≤W2

( ∫ t

0

W3(|x(s)|)g(t− s) ds
)

+ p(t)

and

(ii)
V ′(t, x(·)) ≤M −W3(|x(t)|)

so that V (t, x(·)) ≤ B := W (MG+ 1) + 1 for large t.

Proof. We first verify the conditions in Theorem 4B. If a2(t) ≤ M ,
then the calculations in the proof of Theorem 3B yield (ii) with
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V ′(t) ≤M − x2. For the same V we have

(x(t) − a(t))2 ≤ P

∫ t

−∞
Ds(t, s)

(∫ t

s

x(v) dv
)2

ds

= PV (t, x(·))

≤ P

∫ t

−∞
[Ds(t, s)(t− s)/g(t− s)] ds

∫ t

−∞
x2(v)g(t− v) dv

≤ PL

∫ t

0

x2(v)g(t− v) dv + PL

∫ 0

−∞
x2(v)g(t− v) dv

so (i) is satisfied since g ∈ L1[0,∞). Notice that M is independent of
ϕ.

We now consider Theorem 4A and suppose there is a t > 0 with
V (t) ≥ V (s) for 0 ≤ s ≤ t. Then

g(t− s)V ′(s) ≤Mg(t− s) − g(t− s)f(s)

so by a mean value theorem, there is a ξ ∈ [0, t] with

0 ≤ g(0)[V (t) − V (ξ)]

= g(0)
∫ t

ξ

V ′(s) ds

=
∫ t

0

g(t− s)V ′(s) ds

≤M

∫ t

0

g(s) ds−
∫ t

0

g(t− s)f(s) ds

or ∫ t

0

g(t− s)f(s) ds ≤MG

where G =
∫ ∞
0
g(s) ds. This means that either V (0) is the maximum

of V or V (t) ≤W (MG) + ||p||. In either case, V is bounded and there
is a k > 0 with f(t) ≤ k.

Let {tn} ↑ ∞ have the property that V (tn) → lim supt→∞ V (t), and
find m such that

(∗) t ≥ tm implies that V (t) ≤ V (tj) + 1 if j ≥ m.
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Now let n > m and, from (ii), consider

g(tn − s)V ′(s) ≤Mg(tn − s) − f(s)g(tn − s)

so that if tm ≤ t∗ < tn there is some ξ ∈ [t∗, tn]. We have from (∗) that

−g(0) ≤ g(0)[V (tn) − V (ξ)]

= g(0)
∫ tn

ξ

V ′(s) ds

=
∫ tn

t∗
g(tn − s)V ′(s) ds

≤MG−
∫ tn

t∗
g(tn − s)f(s) ds

or ∫ tn

t∗
g(tn − s)f(s) ds ≤MG+ 1.

Thus, if tm ≤ t∗ < tn, then

V (tn) ≤W

( ∫ t∗

0

f(s)g(tn − s) ds+MG+ 1
)

+ p(tn)

For t∗ fixed and tn → ∞,
∫ t∗

0
f(s)g(tn − s) ds → 0 since f is bounded

and g ∈ L1[0,∞). This means that

V (tn) → lim sup
t→∞

V (t) ≤W (MG+ 1) + 1 = B.

This completes the proof.

Example 4. Let

(10NN ) x(t) = a(t) −
∫ t

−∞
D(t, s)r(s, x(s)) ds

where a and D satisfy (11∗), (12∗) and

(16∗∗)
∫ t

−∞
[Ds(t, s)/g2(t− s)] ds ≤ L, g defined in (15).
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Let r be continuous, bounded for x bounded, and suppose that there is
an M > 0 with −2r(t, x)[x−a(t)] ≤M−|r(t, x)|. For ϕ : (−∞, 0] → R

bounded and continuous with ϕ(0) = a(0) − ∫ 0

−∞D(0, s)r(s, ϕ(s)) ds,
let x(t) = x(t, 0, ϕ) solve (10NN ). Then for f(t) = |r(t, x(t))| and

V (t) =
∫ t

−∞
Ds(t, s)

(∫ t

s

r(v, x(v)) dv
)2

ds,

the conditions of Theorem 4A are satisfied.

Proof. A calculation yields V ′(t) ≤M − |r(t, x)| and

(x(t)−a(t))2 ≤ PV (t, x(·))

≤ P

∫ t

−∞
[Ds(t, s)/g2(t−s)]

( ∫ t

s

|r(v, x(v))|g(t−v) dv
)2

ds

≤ 2PL
( ∫ t

0

|r(v, x(v))|g(t− v) dv
)2

+ 2PL
( ∫ 0

−∞
|r(v, ϕ(v))|g(t− v) dv

)2

=: W
(∫ t

0

f(v)g(t− v) dv
)

+ p(t).

4. Unbounded delay. While the theory for the following equations
is generally quite different from that for (10) and (10N ), they can be
treated in much the same way in this context. Let

(20) x(t) = a(t) −
∫ t

0

D(t, s)x(s) ds

or

(20N ) x(t) = a(t) −
∫ t

0

Q(t, s, x(s)) ds

with Q continuous,

(21) a : [0,∞) → R is continuous, a and a2 ∈ L1[0,∞),



472 T.A. BURTON AND T. FURUMOCHI

(22)
D(t, s) ≥ 0, D(t, t) ≤ P, Dt(t, s) ≤ 0,
Ds(t, s) ≥ 0, tD(t, 0) → 0 as t→ ∞.

Let
(23)

g : [0,∞) → (0, 1], g(0) = 1, g decreasing,
∫ t

0

g(s) ds ≤ G

and suppose there are constants L > 0, M ≥ 0 with GM < 1 and for
t ≥ 0, then

(24)

∫ t

0

[Ds(t, s)(t− s)/g(t− s)] ds ≤ L,

∫ t

0

[(Dst(t, s))+(t− s)/g(t− s)] ds ≤M.

Now for each t0 ≥ 0 and each continuous ϕ : [0, t0] → R there is
a solution x(t, t0, ϕ) satisfying (20) if t > t0 and x(t, t0, ϕ) = ϕ(t) for
0 ≤ t ≤ t0. We then require that

(25) ϕ(t0) = a(t0) −
∫ t0

0

D(t0, s)ϕ(s) ds

so that x(t, t0, ϕ) is continuous on [0,∞) enabling us to integrate by
parts when we compute V ′.

Theorem 5A. Suppose that for a continuous function ψ : [0,∞) →
R, Ψ(t) := a(t) − ψ(t) − ∫ t

0
Q(t, s, ψ(s)) ds is in L1[0,∞), and that

there are continuous functions p, q : [0,∞) → [0,∞) with p(t) → 0 as
t → ∞, q ∈ L1[0,∞), a continuous function V (t, x(·)) defined for a
solution x(t) = x(t, t0, ϕ) of (20N ) with ϕ ∈ Ω, and wedges Wi such
that

(i)

W1(|x(t) − Ψ(t)|) ≤ V (t, x(·))

≤W2

( ∫ t

0

W3(|x(v) − Ψ(v)|)g(t− v) dv
)

+ p(t)
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where W1(r) → ∞ as r → ∞, and

(ii)

V (t, x(·)) ≤ V (t0) −
∫ t

t0

W3(|x(s) − Ψ(s)|) ds+
∫ t

t0

q(s) ds.

Then the near equilibrium (ψ,Ψ) of (20N ) is asymptotically stable
relative to Ω. If p and q depend on x(t), then |x(t) − Ψ(t)| → 0 as
t→ ∞.

Theorem 5B. Let (21) (25) hold. Then there are wedges Wi such
that W1(r) → ∞ as r → ∞, and for any solution x(t) = x(t, t0, ϕ) of
(20) with ϕ ∈ Ω, there are continuous functions p, q : [t0,∞) → [0,∞),
p(t) → 0 as t→ ∞, q ∈ L1[t0,∞) and a continuous function V (t, x(·))
such that

(i)

W1(|x(t) − a(t)|) ≤ 2(D(0, 0) + P )V (t, x(·))

≤W2

( ∫ t

0

W3(|x(v) − a(v)|)g(t− v) dv
)

+ p(t)

and for V (t) = V (t, x(·)), then

(ii)

V (t) ≤ V (t0) −
∫ t

t0

W3(|x(s) − a(s)|) ds+
∫ t

t0

q(s) ds+G

∫ t0

0

ϕ2(s) ds

and |x(t) − a(t)| → 0 as t→ ∞.

Proof. We consider Theorem 5B first. Let

V (t, x(·)) =
∫ t

0

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds+D(t, 0)
(∫ t

0

x(s) ds
)2

so that

(x(t) − a(t))2 =
(
−

∫ t

0

D(t, s)x(s) ds
)2
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=
(
D(t, s)

∫ t

s

x(v) dv
∣∣∣∣
t

0

−
∫ t

0

Ds(t, s)
∫ t

s

x(v) dv ds
)2

=
(
−D(t, 0)

∫ t

0

x(v) dv −
∫ t

0

Ds(t, s)
∫ t

s

x(v) dv ds
)2

≤ 2D2(t, 0)
(∫ t

0

x(v) dv
)2

+ 2
∫ t

0

Ds(t, s) ds
∫ t

0

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds

≤ 2D2(t, 0)
(∫ t

0

x(v) dv
)2

+ 2[D(t, t) −D(t, 0)]
∫ t

0

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds

≤ 2[D(t, 0) +D(t, t)]V (t, x(·))
≤ 2[D(0, 0) +D(t, t)]V (t, x(·))

or
(x(t) − a(t))2 ≤ 2[D(0, 0) + P ]V (t, x(·))

satisfying the lefthand side of (i).

Next

V ′(t, x(·)) ≤ 2
∫ t

0

Ds(t, s)
∫ t

s

x(v) dv ds x(t)

+Dt(t, 0)
(∫ t

0

x(s) ds
)2

+ 2D(t, 0)x(t)
∫ t

0

x(s) ds

+
∫ t

0

Dst(t, s)
(∫ t

s

x(v) dv
)2

ds

= 2x(t)
[
D(t, s)

∫ t

s

x(v) dv
∣∣∣∣
t

0

+
∫ t

0

D(t, s)x(s) ds
]

+Dt(t, 0)
(∫ t

0

x(s) ds
)2

+ 2x(t)D(t, 0)
∫ t

0

x(s) ds

+
∫ t

0

Dst(t, s)
(∫ t

s

x(v) dv
)2

ds
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= −2x(t)D(t, 0)
∫ t

0

x(v) dv + 2x(t)[a(t) − x(t)]

+Dt(t, 0)
(∫ t

0

x(s) ds
)2

+ 2x(t)D(t, 0)
∫ t

0

x(s) ds

+
∫ t

0

Dst(t, s)
(∫ t

s

x(v) dv
)2

ds

≤ −x2 − (x− a(t))2 + a2(t)

+
∫ t

0

(Dst(t, s))+(t− s)
∫ t

s

x2(v) dv ds

≤ −x2 − (x− a(t))2 + a2(t)

+
∫ t

0

[(Dst(t, s))+(t− s)/g(t− s)]
∫ t

s

x2(v)g(t− s) dv ds

≤ −x2 − (x− a(t))2 + a2(t) +M

∫ t

0

x2(v)g(t− v) dv

so that

V (t, x(·)) ≤ V (t0, ϕ) −
∫ t

t0

x2(s) ds

−
∫ t

t0

(x(s) − a(s))2 ds+
∫ t

t0

a2(s) ds

+M

∫ t

t0

∫ u

0

x2(v)g(u− v) dv du

and the last term is

M

∫ t

t0

x2(v)
∫ t

v

g(u− v) du dv +M

∫ t0

0

∫ t

t0

x2(v)g(u− v) du dv

≤MG

∫ t

t0

x2(v) dv +M

∫ t0

0

x2(v)Gdv

and this verifies (ii). In particular, a2 ∈ L1[0,∞) and so is (x(t)−a(t))2,
as MG < 1 we can also argue that x2 ∈ L1.

To satisfy the righthand side of (i), we note that

D(t, 0)
(∫ t

0

x(v) dv
)2

≤ D(t, 0)t
∫ t

0

x2(v) dv =: p1(t) → 0
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as t→ ∞ by (22) and the fact that x2 ∈ L1[0,∞). Next,

∫ t

0

Ds(t, s)
(∫ t

s

x(v) dv
)2

ds

≤
∫ t

0

Ds(t, s)2
{( ∫ t

s

|x(v) − a(v)| dv
)2

+
( ∫ t

s

|a(v)| dv
)2}

ds

≤ 2
∫ t

0

[Ds(t, s)(t− s)/g(t− s)]
∫ t

s

(x(v) − a(v))2g(t− s) dv ds

+ 2
∫ t

0

Ds(t, s)
(∫ t

s

|a(v)| dv
)2

ds

≤ 2L
∫ t

0

(x(v) − a(v))2g(t− v) dv

+ 2
∫ t

0

Ds(t, s)
(∫ t

s

|a(v)| dv
)2

ds

=: 2L
∫ t

0

(x(v) − a(v))2g(t− v) dv + p2(t)

and L is defined in (24), g is defined in (23), while one can argue from
(24) and a ∈ L1[0,∞) that p2(t) → 0 as t→ ∞. Clearly, the integral on
the right tends to zero as it is the convolution of an L1-function and a
function tending to zero. Also, p(t) = 2(D(0, 0)+P )(p1(t)+p2(t)) → 0
as t→ ∞ and so (i) is satisfied.

Looking now at Theorem 5A, since (ii) implies that W3(|x(t) −
Ψ(t)|) ∈ L1[0,∞), it readily follows that V (t) → 0. The stability
region follows by familiar arguments.

Clearly, Theorem 4A applies to (20) and (20N ) as well.
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