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CONTINUOUS SOLUTIONS OF A NONLINEAR
INTEGRAL EQUATION ON AN UNBOUNDED DOMAIN

ARMANDO MAJORANA AND SALVATORE A. MARANO

ABSTRACT. The existence of bounded continuous solu-
tions to the integral equation

z(t) = z0(t) + f (t, z(t))

∫
I

g (t, s, z(s)) ds t ∈ I ,

where I is an unbounded closed real interval, is established.
This is achieved by means of results concerning α-set contrac-
tions. Equations of this type arise in the theories of radiative
transfer, neutron transport and in the kinetic theory of gases.

1. Introduction. Integral equations often arise in many physical
or chemical problems. If the equation involves only compact or linear
integral operators, numerous existence results are available [4, 11].
Most of them assume that the domain of the independent variable is
bounded. When one attempts to solve integral equations on unbounded
domains or containing noncompact terms, many difficulties arise and
the classical methods (as, for instance, Schauder Fixed Point Theorem,
Fredholm theory, . . . ) are not always applicable in a simple way.
Some authors have overcome these difficulties by resorting to different
techniques based on, for example, measures of noncompactness [8, 9]
or on strict convergence in suitable function spaces [1].

In this paper we consider an integral equation containing the term
F K, where F is a superposition operator and K a compact integral
operator. The domain I of the unknown function involved in this
equation is a closed real interval of infinite measure. We look for
solutions that are continuous and bounded in I.

The most famous equation with a term of this type is the Boltzmann
equation, which describes the evolution of a gas in the framework of
the kinetic theory. In fact, consider a simple gas whose molecules are
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spherical, possess only energy of translation, and are subject to no
external forces. If its state is uniform, so that the velocity-distribution
function φ depends only on the time θ and velocity c ∈ R3, the
Boltzmann equation reduces to (see, for instance, [6])

(1)

∂

∂θ
φ(θ, c) =

∫
R3×S2

φ(θ, c′)φ(θ, c′∗)B(c− c∗,w) dc∗ dw

− φ(θ, c)
∫
R3×S2

φ(θ, c∗)B(c− c∗,w) dc∗ dw ,

where c′ = c − (c − c∗,w)w, c′∗ = c∗ + (c − c∗,w)w and the collision
kernel B is a given nonnegative function. The right-hand side of (1)
represents the collisional operator, which is the difference between
two terms. The first is well-behaved, and continuity or compactness
properties are often easily achieved. The second term is of the form
F K. Unfortunately, the Boltzmann equation is an integro-differential
equation; consequently, it is extremely hard to investigate in the general
case. Our aim is less ambitious; we limit ourselves to study a simpler
equation, which nevertheless contains the noncompact operator F K.

The main result of this paper is obtained by using the Darbo Fixed
Point Theorem [5] jointly with a result by Leggett [9, Theorem 1].

2. Preliminaries. Let I be a closed real interval. We denote by
Cb(I) the Banach space of all bounded continuous real-valued functions
ϕ defined on I, with ‖ϕ‖ = supt∈I |ϕ(t)|. The classical Arzelà-Ascoli
Theorem [7, Theorem IV.6.7] characterizes the compact sets of Cb(I)
when I is bounded. The following theorem gives a sufficient condition
of compactness if I is unbounded.

Proposition 1. Let X be a bounded subset of Cb(I). Assume that
X is pointwise equicontinuous in I and

(2) lim
a→+∞ sup

ϕ∈X
{sup {|ϕ(t)| : t ∈ I, |t| ≥ a}} = 0 .

Then X is relatively compact in Cb(I).

Proof. It is sufficient to verify that X is totally bounded (see, for
instance, [7, Theorem I.6.15]. Fix ε > 0. Then there exists aε > 0 such
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that Iε = I ∩ [−aε, aε] is nonempty and sup {|ϕ(t)|, t ∈ I, |t| ≥ aε} <
ε/2 for all ϕ∈X. The assumptions guarantee that the set {ϕ |Iε

: ϕ∈X}
is relatively compact in Cb(Iε). So, there exist ϕ1, ϕ2, . . . , ϕn ∈ X such
that, for every ϕ ∈ X, one has

sup
t∈Iε

|ϕ(t) − ϕi(t)| < ε for some i.

Therefore, for every ϕ ∈ X, ‖ϕ− ϕi‖ < ε for some i.

Let (M,d) be a metric space and let A be a bounded subset of M .
The Kuratowski measure of noncompactness of A is defined by

α(A) = inf {δ > 0 : A can be covered by a finite number of sets of
diameter smaller than δ } .

Let F : M→M be a continuous function which maps bounded sets into
bounded sets. We say that F is an α-set contraction, if there exists a
constant ξ ∈ [0, 1[ such that

α(F (A)) ≤ ξα(A) for every bounded set A ⊆M .

Our results are based on the classical Darbo Fixed Point Theorem [5]
and on the following

Proposition 2. Let A be a subset of the Banach algebra (B, ‖·‖B)
and let F , K be two functions from A into B. Assume that

(i) F maps bounded sets into bounded sets and there exists a constant
λ ≥ 0 such that

α(F (C)) ≤ λα(C) for every bounded set C ⊆ A ,

(ii) K is a compact operator,

(iii) ξ = λ · supz∈A ‖K(z)‖B < 1.

Then the function T : A→B defined by

T (z) = z0 + F (z)K(z), z ∈ A

is an α-set contraction, for any z0 ∈ B.
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The proof is similar to that of Theorem 1 by Leggett [9], so we omit
it.

3. Existence results. In this section we study the existence of
solutions in Cb(I) to the following integral equation

(3) z(t) = z0(t) + f (t, z(t))
∫

I

g (t, s, z(s)) ds, t ∈ I

where z0 belongs to Cb(I).

Throughout this paper, we assume that the function f : I×R→R is
continuous. It is convenient to note that, if the superposition operator
F defined by F (ϕ)(t) = f(t, ϕ(t)), for all ϕ ∈ Cb(I) and t ∈ I, maps
Cb(I) into itself, then the condition (i) of Proposition 2 is equivalent
to the existence of a constant μ such that

|f(t, x1) − f(t, x2)| ≤ μ|x1 − x2| for every t ∈ I and x1, x2 ∈ R .

This can be demonstrated by using quite similar arguments to those of
Theorem 1 by Appell [2], where I was assumed to be compact.

The function g : I × I × R→R satisfies the following conditions:

for every t ∈ I, the function s→ g(t, s, x) is measurable for all x ∈ R
and the function x→ g(t, s, x) is continuous for almost all s ∈ I.

For every r > 0, we define

βr(t, s) = sup
|x|≤r

|g(t, s, x)|, t, s ∈ I ,(4)

γr(t, τ, s) = sup
|x|≤r

|g(t, s, x) − g(τ, s, x)|, t, τ, s ∈ I .(5)

Lemma 1. Assume that

(a1) for every r > 0 and for all t ∈ I, the function s→βr(t, s) belongs
to L1(I),

(a2) limt∈I, |t|→+∞
∫

I
βr(t, s) ds = 0, and, for every τ ∈ I,

limt→τ

∫
I
γr(t, τ, s) ds = 0.



CONTINUOUS SOLUTIONS 123

Then the operator K defined by

(6) K(ϕ)(t) =
∫

I

g(t, s, ϕ(s)) ds , ϕ ∈ Cb(I), t ∈ I ,

maps Cb(I) into itself and is continuous.

Proof. For every r > 0, we set

Br(t) =
∫

I

βr(t, s) ds, t ∈ I .

It is easy to verify that

|Br(t) −Br(τ )| ≤
∫

I

γr(t, τ, s)ds for all t, τ ∈ I ;

so, by (a2), the function Br is continuous in I and bounded because

(7) lim
t∈I, |t|→+∞

Br(t) = 0 .

For every ϕ ∈ Cb(I), the function K(ϕ) belongs to Cb(I) because,
if ‖ϕ‖ ≤ r, then |K(ϕ)(t)| ≤ Br(t) for all t ∈ I, and |K(ϕ)(t) −
K(ϕ)(τ )| ≤ ∫

I
γr(t, τ, s)ds for all t, τ ∈ I. To show that K is a

continuous operator, we consider ϕ ∈ Cb(I) and a sequence {ϕn} ⊆
Cb(I) such that limn→∞ ‖ϕn − ϕ‖ = 0. Fix t ∈ I. The assumptions
on the function g guarantee that

lim
n→∞ g(t, s, ϕn(s)) = g(t, s, ϕ(s))

for almost every s ∈ I. Choose r > 0 such that ‖ϕn‖ ≤ r for all n ∈ N .
Since

|g(t, s, ϕn(s))| ≤ βr(t, s) for almost every s ∈ I and every n ∈ N

and (a1) holds, we can apply the Dominated Convergence Theorem to
get

lim
n→∞K(ϕn)(t) = K(ϕ)(t) .
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Therefore, the sequence {K(ϕn)} converges pointwise to K(ϕ) in I. To
prove the convergence in Cb(I), we first note that, from

|K(ϕn)(t) −K(ϕn)(τ )| ≤
∫

I

γr(t, τ, s)ds for all n ∈ N and t, τ ∈ I,

and (a2), it follows that {K(ϕn)} is equicontinuous at each point
of I. Hence, the sequence {K(ϕn)} is uniformly equicontinuous on
any compact interval J ⊂ I and so (see for instance [10, p. 168])
limn→∞K(ϕn) = K(ϕ) uniformly in J . Since we have

|K(ϕn)(t) −K(ϕ)(t)| ≤ 2Br(t) for every t ∈ I and n ∈ N,

by using (7), we obtain limn→∞ ‖K(ϕn) −K(ϕ)‖ = 0.

We observe that the operator K of Lemma 1 transforms elements
belonging to Cb(I) into continuous functions which vanish at infinity.
This is a consequence of the assumption

(8) lim
t∈I, |t|→+∞

∫
I

βr(t, s) ds = 0 .

The preceding hypothesis cannot be replaced by a different condition
on

lim sup
t∈I,|t|→+∞

∫
I

βr(t, s) ds ,

as the following example shows. Let I = [1,+∞[. For every (t, s, x) ∈
I × I × R, we set

g(t, s, x) =
1

1 + ts2x2
sin(tx2) .

By means of elementary calculations, we obtain

βr(t, s) ≤ 1
s2
, γr(t, τ, s) ≤ |t− τ |(1 + τ )

s2
, t, τ, s ∈ I .

Hence, with the exception of (8), all the assumptions of Lemma 1 are
fulfilled. Nevertheless, the operator K is not continuous. In fact, let
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ϕn(t) = 1/n for all n ∈ N , t ∈ I. Then, limn→∞ ϕn = 0 in Cb(I), but
the sequence {K(ϕn)} does not converge to K(0) = 0 in Cb(I), because

K(ϕn)
(
n2π

2

)
=

√
2
π

(
π

2
− arctan

√
π

2

)
, n ∈ N .

The main result of this paper is given by the following

Theorem 1. Assume the hypotheses (a1) and (a2) of Lemma 1 hold.
Moreover, suppose that

(a3) the function f0 defined by f0(t) = f(t, 0), t ∈ I, is bounded in
I,

(a4) for every r > 0, there exists a constant Lr ≥ 0 such that

|f (t, x1)−f (t, x2)| ≤ Lr |x1−x2| for every t ∈ I and |xi| ≤ r, i = 1, 2 .

If there exists ρ > 0 such that

Lρ sup
t∈I

∫
I

βρ(t, s) ds <1 and ‖z0‖+(‖f0‖+ρLρ) sup
t∈I

∫
I

βρ(t, s) ds ≤ ρ,

then Equation (3) admits at least one solution z ∈ Cb(I) satisfying

lim
t∈I, |t|→+∞

[z(t) − z0(t)] = 0 .

Proof. Due to Lemma 1, the operator K defined by (6) is continuous
in Cb(I). We show that K maps bounded sets into relatively compact
sets. Let r > 0 and let X = {K(ϕ) : ϕ ∈ Cb(I), ‖ϕ‖ ≤ r}. The set X
is bounded because ‖K(ϕ)‖ ≤ ‖Br‖ for every ϕ ∈ Cb(I) with ‖ϕ‖ ≤ r.
Moreover, as proved before, the pointwise equicontinuity is a simple
consequence of (a2). In order to apply Proposition 1, we verify that
condition (2) is fulfilled. In fact,

lim
a→+∞ sup

‖ϕ‖≤r

{sup {|K(ϕ)(t)| : t ∈ I, |t| ≥ a}}

≤ lim
a→+∞ [sup {Br(t) : t ∈ I, |t| ≥ a}] = 0
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by (7). Then X is relatively compact in Cb(I).

Now, we consider the superposition operator F defined by F (ϕ)(t) =
f(t, ϕ(t)), ϕ ∈ Cb(I) and t ∈ I. The hypotheses on the func-
tion f ensure that F maps Cb(I) into itself. We choose A =
{ϕ ∈ Cb(I) : ‖ϕ‖ ≤ ρ}. Since, by (a4), the operator F is Lipschitzian
on every bounded subset of Cb(I), it is a simple matter to see that

α(F (C)) ≤ Lρ α(C) for every set C ⊆ A .

Hence, ξ = Lρ · supϕ∈A ‖K(ϕ)‖ ≤ Lρ ‖Bρ‖ < 1. Thus, the assumptions
of Proposition 2 hold and the operator T defined by

T (ϕ) = z0 + F (ϕ)K(ϕ), ϕ ∈ A ,

is an α-set contraction. The existence of a solution to (3) is achieved by
means of the Darbo Fixed Point Theorem, by showing that T (A) ⊆ A.
In fact, if ϕ ∈ A then

‖T (ϕ)‖ ≤ ‖z0‖ + (‖f0‖ + ρLρ) ‖K(ϕ)‖
≤ ‖z0‖ + (‖f0‖ + ρLρ) ‖Bρ‖ ≤ ρ ,

that is, T (ϕ) ∈ A. Therefore, we get at least one function z ∈ A such
that z = T (z). To complete the proof, we observe that from (3) it
follows that

|z(t) − z0(t)| ≤ |f(t, z(t))|Bρ(t), for every t ∈ I

and so, by (7), limt∈I, |t|→+∞|z(t) − z0(t)| = 0.

We now consider the special but significant case when g(t, s, x) =
k(t, s)h(s, x) with k : I × I→R and h : I × R→R. Thus, Equation
(3) assumes the following form:

(9) z(t) = z0(t) + f(t, z(t))
∫

I

k(t, s)h(s, z(s)) ds , t ∈ I .

Of course, we require that for every t∈I the function s→k(t, s)h(s, ϕ(s))
is Lebesgue integrable, provided that ϕ belongs to Cb(I). This is the
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case if, for every t ∈ I, the function s→ k(t, s) belongs to Lp(I) and
the superposition operator ϕ→h(·, ϕ(·)) maps Cb(I) into Lq(I), where
p ∈ [1,+∞[ or p = +∞ and q is the conjugate exponent of p. The
usual norm of Lp(I) is denoted by ‖·‖p.

Special cases of generalized Boltzmann equations are close to (9). As
an example, this happens for the kinetic equation studied in [3]

(10)
∂

∂θ
ψ(θ, c) + ρ̂ĈSψ(θ, c) = ρ̂ĈS

∫ +∞

0

Π̂S(c, c′)ψ(θ, c′) dc′,

where ρ̂, ĈS are given positive constants and the kernel Π̂S describes
the interactions between the molecules of gas and the field particles.
Usually, Equation (10) is considered jointly with an initial condition;
consequently, it may be reduced to an integral equation by means of
the Laplace transform.

We can state the following

Theorem 2. Assume that the function f : I ×R→R is continuous
and satisfies the hypotheses (a3) and (a4) of Theorem 1. Moreover,
suppose that

(b1) for every t ∈ I, the function s→ k(t, s) belongs to Lp(I),

(b2) for every τ ∈ I, limt→τ ‖k(t, ·) − k(τ, ·)‖p = 0,

(b3) limt∈I, |t|→+∞ ‖k(t, ·)‖p = 0,

(b4) for almost every s ∈ I, the function x→h(s, x) is continuous
and, for every x ∈ R, the function s→h(s, x) is measurable,

(b5) for every r > 0, the function s→ sup|x|≤r |h(s, x)| belongs to
Lq(I).

Let
br = sup

t∈I

∫
I

|k(t, s)| sup
|x|≤r

|h(s, x)| ds , r > 0 .

If there exists ρ > 0 such that

Lρbρ < 1 and ‖z0‖ + (‖f0‖ + ρLρ)bρ ≤ ρ ,

then Equation (9) admits at least one solution z ∈ Cb(I) satisfying

lim
t∈I, |t|→+∞

[z(t) − z0(t)] = 0 .
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The proof is easily obtained by verifying that the assumptions of
Theorem 1 hold.
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