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THE QUASI-ELASTIC METHOD OF SOLUTION FOR
A CLASS OF INTEGRODIFFERENTIAL EQUATIONS

R.A. ZALIK AND A.M. VINOGRADOV

1. Introduction. In this paper we consider initial value problems
of the form

(1) y′′+A(x)y+B(x)L(y, x)=f(x), y(0)=α, y′(0)=β, 0≤x≤b

or boundary value problems of the form

(2) y′′+A(x)y+B(x)L(y, x)=f(x), y(0)=α, y(b)=γ, 0≤x≤b,

where L(y, x) is a Volterra integral operator, viz. L(y, x) =
∫ x

0
K(x, t) ·

y(t) dt. It is easy to reduce equations of the form (1) to a system
of linear Volterra integral equations of the second kind. Thus, if
A(x), B(x), f(x) and K(x, t) are continuous, (1) has a unique solution
(cf. [7, p. 50, Exercise 3.19]).

If A(x) and B(x) are constant, and L(y, x) is a convolution operator,
then (1) or (2) can be solved using Laplace transforms. The quasi-
elastic solution method was originally proposed by Schapery [8] as an
approximate technique for evaluating the inverse Laplace transform. In
[1, 6], the method has been applied directly to solve integral equations
of Volterra type. Also in these publications, the convergence and
accuracy of the quasi-elastic solution method (which is called by these
authors the method of variable moduli) is considered.

Boundary value problems in viscoelasticity are usually defined by in-
tegrodifferential equations involving the same integrals as those appear-
ing in the respective viscoelastic constitutive equations. Accordingly,
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the quasi-elastic method can be used to solve these equations, which is
very important for those problems that are difficult to solve by means
of Laplace transforms. In [4, 5, 10], the quasi-elastic method is applied
to solve some viscoelastic buckling problems represented by equations
related to (2). Since the method is so widely used, it is appropriate to
establish it on a firm mathematical foundation.

In this paper we study the convergence of the quasi-elastic solution
method when applied to initial value problems of the form (1), or
boundary value problems of the form (2). However, it will be clear
that the ideas developed here can be used to study other types of
integrodifferential equations that contain Volterra integral operators.

2. Description of the quasi-elastic solution method and
statement of results. We first consider the initial value problem
(1). Shapery’s idea, when applied to this problem, consists in approx-
imating L(y, x) by means of y(x)L(1, x). Thus, the solution to (1) is
approximated by the solution to

(3) y′′ +H(x)y = f(x), y(0) = α, y′(0) = β, 0 ≤ x ≤ b,

where H(x) = A(x) + B(x)L(1, x), which in turn can be solved either
numerically or by an approximation method that we shall describe in
the sequel. However, this first rudimentary quasi-elastic approximation
may not always be sufficiently accurate and a more sophisticated
approach may be required.

Vinogradov [10] noted that, if y is the solution to (1), v0 is the so-
lution to (3), and G0 = y − v0, then G′′

0 + A(x)G0 + B(x)L(G0, x) =
B(x)[L(1, x)v0(x) − L(v0, x)], G0(0) = G′

0(0) = 0. Since v0(x) is as-
sumed known, this equation is of the form (1), and therefore G0 can be
approximated by the solution v1 of v′′1 +H(x)v1 = B(x)[L(1, x)v0(x)−
L(v0, x)].

Continuing in this fashion, we see that y(x) = Sn(x) +Gn(x), with

Sn(x) =
n∑

k=0

vk(x),

where
Gk+1 = Gk − vk+1, k = 0, 1, 2, . . . ,
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(4)
v′′k+H(x)vk = ek(x); v0(0) = α, v′0(0) = β;

vk(0) = v′k(0) = 0, k = 1, 2, 3, . . .

(5)
G′′

k+A(x)Gk+B(x)L(Gk, x)=ek+1(x), Gk(0)=G′
k(0)=0,

k = 0, 1, 2, . . .

(6)
e0(x)=f(x); ek(x)=B(x)[L(1, x)vk−1(x)−L(vk−1, x)],

k = 1, 2, 3, . . . .

We shall call Sn(x) the nth order viscoelastic approximation to the
initial value problem (1). We shall also use the following notation:

A = sup{|A(t)|, 0 ≤ t ≤ b}, B = sup{|B(t)|, 0 ≤ t ≤ b},
K = sup{|K(x, t)|, 0 ≤ x, t ≤ b},

m0(x) =
∫ x

0

∫ ξ

0

|f(s)| ds dξ + |α| + |β|x,

mk(x) =
∫ x

0

∫ ξ

0

|ek(s)| ds dξ, k = 1, 2, 3, . . .

mk = sup{|mk(x)| : 0 ≤ x ≤ b}, k = 0, 1, 2, . . . ,

H = sup{|H(x)| : 0 ≤ x ≤ b},

P = sup
{∫ x

0

|K(x, t)|[cosh(
√
Hx) − cosh(

√
Ht)] dt : 0 ≤ x ≤ b

}
,

S(x) = exp[Ax2/2 +BKx3/6], R(x) =
∫ x

0

S(t) dt,

Q(x) =
∫ x

0

R(t) dt.

Our first result is:
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Theorem 1. Let A(x), B(x), f(x) ∈ C[0, b], K(x, t) ∈ C([0, b] ×
[0, b]), and let y(x) be the solution to the initial value problem (1). Let
vk(x), k = 0, . . . , n be defined by (4), and let Gn(x) be defined by (5).
Then

|Gn(x)| ≤ Q(x)(BP )n+1m0x
2n/(2n)!,

|G′
n(x)| ≤ R(x)(BP )n+1m0x

2n/(2n)!,
and

|G′′
n(x)| ≤ S(x)(BP )n+1x2n/(2n)!.

In particular, y(x) =
∑∞

k=0 vk(x), uniformly on [0, b].

The idea of approximating systems of integral Volterra equations by
means of series of functions that are solutions of differential equations
has been used before. For example, Bownds approximates K(x, t) by a
sum of the form

∑n
j=1 φj(x)ψj(t), where the functions ψj(x) form an

orthogonal sequence, and the functions φj(t) satisfy certain differential
equations (cf., e.g., [3]). This is, of course, a completely different
approach.

Assume now that the boundary value problem (2) has a solution v,
and let β = v′(0). Then v = v1 + βv2, where

(7)
v′′1 +A(x)v1 +B(x)L(v1, x) = f(x),
v1(0) = α, v′1(0) = 0, 0 ≤ x ≤ b,

and

(8)
v′′2 +A(x)v2 +B(x)L(v2, x) = 0,

v2(0) = 0, v′2(0) = 1, 0 ≤ x ≤ b.

If v2(b) = 0, then v1(b) = v(b) = γ, and therefore v1(x) is a
solution of (2). Assume therefore that v2(b) �= 0. We see readily
that β = (γ − v1(b))/v2(b). Thus, if A(x), B(x), f(x) and K(x, t) are
continuous, the solution v(x) is unique. If Sn(x), Sn,1(x) and Sn,2(x)
are the nth order viscoelastic approximations to (2), (7), and (8),
respectively, it is readily seen that Sn(x) = Sn,1(x) + βSn,2(x).

Let βn = (γ − Sn−1(b))/Sn,2(b) if Sn,2(b) �= 0, and let βn = 0
otherwise. If

m0,1(x) =
∫ x

0

|f(t)| dt+ |α|, m0,2(x) = x,

m0,j = sup{|m0,j(x)|, 0 ≤ x ≤ b}, j = 1, 2,
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and

(9) Vn(x) = Sn,1(x) + βnSn,2(x),

applying Theorem 1 we obtain:

Theorem 2. Let A(x), B(x), f(x) ∈ C[0, b], K(x, t) ∈ C([0, b] ×
[0, b]), let v(x) be a solution of the boundary value problem (2), and let
Vn(x) be defined by (9). Assume that v2(b) �= 0 (where v2(x) is defined
by (8)), and that

m0,2Q(b)(BP )n+1b2n/(2n)! < |Sn,2(b)|.

Then
|v(x) − Vn(x)| ≤ cn(BP )n+1b2nQ(b)/(2n)!,

where

cn =
|Sn,1(b) − γ|m0,2 + |Sn,2(b)|m0,1

[|Sn,2(b)| −m0,2Q(b)(BP )n+1b2n/(2n)!]|Sn,2(b)|
· cosh(

√
Hb) cosh(

√
BPb).

To decide whether to use Theorem 2, one could find an approximate
solution Sn,2(x) to (8) and, since v2(b) = Sn,2(b) + Gn,2(b), use the
upper bound for |Gn(x)| given by Theorem 1 to determine whether
|Gn,2(b)| < |Sn,2(b)|. If v2(b) �= 0, this inequality will hold for
sufficiently large n.

The proof of Theorem 1 depends on parts of the following proposition,
which is of independent interest.

Lemma. Let H(x), f(x) ∈ C[0, b], and assume that y(x) satisfies
(3). Then, for 0 ≤ t ≤ x ≤ b:

a) y(x) =
∑∞

n=0 yn(x), where

(10) y0(x) =
∫ x

0

∫ ξ

0

f(s) ds dξ + α+ βx,
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(11) yn(x) = −
∫ x

0

∫ ξ

0

H(s)yn−1(s) ds dξ, n = 1, 2, 3, . . . .

b) |y(x)| ≤ m0 cosh(
√
Hx)

c) |y(x) − ∑p
n=0 yn(x)| ≤ m0(x)Hp+1 cosh(

√
Hx)x2p+2/(2p+ 2)!

d) |y(x) − y(t)| ≤ m0(x)[cosh(
√
Hx) − cosh(

√
Ht)].

Applying part a) of the Lemma to the functions vk(x) defined by (4),
we have:

(12) vk(x) =
∞∑

r=0

vkr(x), k = 0, 1, 2, . . . ,

where

(13)
v00(x) =

∫ x

0

∫ ξ

0

f(s) ds dξ + α+ βx;

vk0(x) =
∫ x

0

∫ ξ

0

ek(s) ds dξ, k = 1, 2, 3, . . . ;

(14)

vkr(x) = −
∫ x

0

∫ ξ

0

H(s)vkr−1(s) ds dξ, k=0, 1, 2, . . . , r=1, 2, 3, . . . .

In some cases, e.g., when A(x), B(x), f(x) and K(x, t) are polynomials,
it is easy to compute the functions vkr(x) exactly using computer alge-
bra software like, e.g., MACSYMA. One could then try to approximate
vk(x) by truncating the right hand side of (12). Because we need to
know vk−1(x) first in order to evaluate ek(x) for k ≥ 1, ((6)), we replace
the functions vkr(x) by approximations ykr(x), obtained by means of
the recursive scheme described forthwith:

Let {rk : k = 0, 1, 2, . . . } be a given sequence of positive integers,

d0(x) = f(x); y0r(x) = v0r(x), r = 0, 1, 2, . . . ;

y0(x) =
r0∑

r=0

y0r(x).
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For k = 1, 2, 3, . . . ,

(15) dk(x) = B(x)[L(1, x)yk−1(x) − L(yk−1, x)];

(16) yk0(x) =
∫ x

0

∫ ξ

0

dk(s) ds dξ;

(17) ykr(x) = −
∫ x

0

∫ ξ

0

H(s)ykr−1(s) ds dξ, r = 1, 2, 3, . . . ;

yk(x) =
rk∑

r=0

ykr(x).

If Tn(x) =
∑n

k=0 yk(x), and r = min{rk, 0 ≤ k ≤ n}, we have:

Theorem 3. Under the hypotheses of Theorem 1, let T = 2BKb ·
cosh(

√
Hb), T1 = BK cosh(

√
Hb), D = P/(2Kb cosh(

√
Hb)), and

D1 = P/(K cosh(
√
Hb)). Then Sn(x) = Tn(x) + Un(x), where

|Un(x)| ≤ m0 cosh2(
√
Hb) cosh(

√
Db)TnHr+1b2r+2/(2r + 2)!

and

|U ′
n(x)| ≤ m0 sinh2(

√
Hb) cosh(

√
D1b)Tn

1 H
r+1b2r+1/(2r + 1)!.

Let
γn = [γ − Tn,1(b)]/Tn,2(b),

pn,1 = cosh2(
√
Hb) cosh(

√
Db)TnHr+1b2r+2/(2r + 2)!,

pn,2 = m0,2(pn,1 +Q(b)(BP )n+1b2n/(2n)!)

qn =
[|Tn,1(b) − γ| +m0,2pn,1]m0,2 + [|Tn,2(b)| +m0,2pn,1]m0,1

[|Tn,2(b)| − pn,2][|Tn,2(b)| −m0,2pn,1]

· cosh(
√
Hb) cosh(

√
BPb),
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σn =
|Tn,1(b) − γ|m0,2 + |Tn,2(b)|m0,1

[|Tn,2(b)| −m0,2pn,1]|Tn,2(b)| pn,1,

δn =
|Tn,1(b) − γ| +m0,1pn,1

|Tn,2(b)| −m0,2pn,1
.

If Tn,1(x) and Tn,2(x) are the approximations to Sn,1(x) and Sn,2(x),
respectively, defined in the manner described in the paragraph preced-
ing the statement of Theorem 3, then, combining Theorems 2 and 3,
we shall prove:

Theorem 4. Let A(x), B(x), f(x) ∈ C[0, b], K(x, t) ∈ C([0, b] ×
[0, b]), let v(x) be a solution of the boundary value problem (2), and
assume that v2(b) �= 0 and pn,2 < |Tn,2(b)|. Then, if Wn(x) =
Tn,1(x) + γnTn,2(x),

|v(x) −Wn(x)| ≤ qn(BP )n+1b2nQ(b)/(2n)!
+ (m0,1 + δnm0,2)pn,1 + σn|Tn,2(x)|.

3. Proofs.

Proof of Lemma. a) and b). As in, e.g., [2, p. 321], we consider the
perturbation problem

(18) y′′+εH(x)y=f(x), y(0)=α, y′(0)=β, 0 ≤ x ≤ b,

and assume it has a solution of the form

(19)
y(x) =

∞∑
n=0

yn(x)εn; y0(0) = α, y′0(0) = β;

yn(0) = y′n(0) = 0, n = 1, 2, 3, . . . .

Substituting in (18) and equating coefficients, we obtain y′′0 = f(x) and
y′′n = −H(x)yn−1, n = 1, 2, 3, . . . . The initial conditions in (19) imply
that (10) and (11) are satisfied. Thus, an inductive argument shows
that

(20) |yn(x)| ≤ m0(x)Hnx2n/(2n)!, n = 0, 1, 2, . . . ,
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whence

(21) |y′′n(x)| ≤ m0(x)Hnx2n−2/(2n− 2)!, n = 1, 2, 3, . . . .

This shows that the series in (19), with y0(x) and yn(x) defined by (10)
and (11), is indeed a solution of (18) for every ε. The conclusion now
readily follows by setting ε = 1 in (19).

c) From (20),
∣∣∣∣y(x) −

p∑
n=0

yn(x)
∣∣∣∣ =

∣∣∣∣
∞∑

n=p+1

yn(x)
∣∣∣∣ ≤ m0(x)

∞∑
n=p+1

Hnx2n/(2n)!

= m0(x)
[

cosh(
√
Hx) −

p∑
n=0

(
√
Hx)2n/(2n)!

]
,

whence the conclusion readily follows.

d) From the initial conditions in (19), we know that yn(x)− yn(t) =
− ∫ x

t

∫ ξ

0
H(s)yn−1(s) ds dξ. Thus, since m0(x) is increasing, applying

(20) we obtain:

|yn(x) − yn(t)| ≤
∫ x

t

∫ ξ

0

[|H(s)|m0(s)Hn−1s2n−2/(2n− 2)!] ds dξ

≤ [Hnm0(x)/(2n− 2)!]
∫ x

t

∫ ξ

0

s2n−2 ds dξ

= [Hnm0(x)/(2n)!](x2n − t2n).

Hence,

|y(x) − y(t)| ≤
∞∑

n=0

|yn(x) − yn(t)|

≤ m0(x)
[ ∞∑

n=0

Hnx2n

(2n)!
−

∞∑
n=0

Hnt2n

(2n)!

]

= m0(x)[cosh(
√
Hx) − cosh(

√
Ht)].

Proof of Theorem 1. From (6) we have

ek(x) = B(x)
∫ x

0

K(x, t)[vk−1(x) − vk−1(t)] dt.
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Applying part d) of the Lemma to vk−1, we conclude that

|ek(x)| ≤ Bmk−1(x)
∫ x

0

|K(x, t)|[cosh(
√
Hx) − cosh(

√
Ht)] dt

≤ BPmk−1(t).

Thus, |mk(x)| ≤ BP
∫ x

0

∫ ξ

0
|mk−1(s)| ds dξ, k = 1, 2, . . . , and by induc-

tion we infer that

(22) |mk(x)| ≤ (BP )km0x
2k/(2k)!, k = 0, 1, 2, . . . ,

and therefore that

(23) |ek(x)| ≤ (BP )km0x
2k−2/(2k − 2)!, k = 1, 2, 3, . . . .

From (5) we readily see that G′′
n(x) ∈ C[0, b], and that

G′′
n(x) = en+1(x) −A(x)

∫ x

0

∫ t

0

G′′
n(s) ds dξ

+B(x)
∫ x

0

K(x, t)
∫ t

0

∫ ξ

0

G′′
n(η) dη dξ dt.

If νn(x) = sup{|G′′
n(t)|, 0 ≤ t ≤ b}, En(x) = sup{|en(t)|, 0 ≤ t ≤ x},

and 0 ≤ s ≤ x, we have:

νn(s) ≤ En+1(x) +
∫ s

0

(At+BKt2/2)νn(t) dt.

Thus, Gronwall’s inequality (cf., e.g., [9]), yields

(24) |G′′
n(s)| ≤ νn(s) ≤ En+1(x) exp[Ax2/2 +BKx3/6].

Since Ek(x) is bounded by the right hand side of (23), vn(s) ≤ vn(x),
and the initial conditions of (5) imply that |Gn(x)|≤∫ x

0

∫ t

0
|G′′

n(ξ)| dξ dt
and |G′

n(x)| ≤ ∫ x

0
|Gn(t)| dt, the conclusion follows from (24).

Proof of Theorem 2. Part b) of the Lemma implies that |Sn(x)| ≤
cosh(

√
Hx)

∑n
k=0mk, whence from (22) we conclude that |Sn(x)| ≤
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cosh(
√
Hx) cosh(

√
BPx). This implies that |Sn,2(x)| ≤ cosh(

√
Hx) ·

cosh(
√
BPx).

Theorem 1, when applied to v1(x) and v2(x), yields

|Gn,j(x)| ≤ [m0,j(BP )n+1b2n/(2n)!]Q(x), j = 1, 2.

Since vn,2(x) = Sn,2(x)+Gn,2(x), the hypotheses imply that vn,2(b) �=
0. A straightforward computation shows that

β − βn =
[Sn,1(b) − γ]Gn,2(b) − Sn,2(b)G′

n,1(b)
[Sn,2(b) +Gn,2(b)]Sn,2(b)

whence

|β − βn| ≤ [|Sn,1(b) − γ|m0,2 + |Sn,2(b)|m0,1](BP )n+1b2nQ(b)
[|Sn,2(b)| −m0,2Q(b)(BP )n+1b2n/(2n)!]|Sn,2(b)|(2n)!

.

Since
Sn(x) = Vn(x) + (β − βn)Sn,2(x),

the conclusion follows.

Proof of Theorem 3. Clearly

vk(x) = yk(x) +Qk(x) +Rk(x),

where

Qk(x) =
rk∑

r=0

[vkr(x) − ykr(x)]

and

Rk(x) =
∞∑

r=rk+1

vrk.

Applying part c) of the Lemma to the functions vk(x), we see that

|Rk(x)| ≤ mk(x)Hrk+1 cosh(
√
Hx)x2rk+2/(2rk+2)!, k=0, 1, 2, . . . .

From (22), we thus conclude that, for 0 ≤ x ≤ b,
(25)

|Rk(x)| ≤ m0(BP )kHrk+1 cosh(
√
Hb)b2(k+rk+1)

(2k)!(2rk + 2)!
, k = 0, 1, 2, . . . .
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Applying (21) to the functions vk(x), we see that

|v′′kr(x)| ≤ mkH
rx2r−2/(2r − 2)!; k, r = 1, 2, 3, . . . ,

and, therefore, since v′kr(0) = 0, (cf. (14)),

|v′kr(x)| ≤ mkH
rx2r−1/(2r − 1)!; k, r = 1, 2, 3, . . . ,

then (22) implies that, for 0 ≤ x ≤ b,

|R′
k(x)| ≤ m0(BP )kx2k

√
H

(2k)!

∞∑
r=rk+1

(
√
Hx)2r−1

(2r − 1)!
.

Thus, as in the proof of part c) of the Lemma, we deduce that

(26) |R′
k(x)| ≤ m0(BP )kHrk+1b2k+2rk+1 sinh(

√
Hb)

(2k)!(2rk + 1)!
.

Since d0(x) = e0(x) = f(x), it is clear from their definition that
v0r(x) = y0r(x), r = 0, 1, 2, . . . . Thus,

(27) Q0(x) = 0 and Q′
0(x) = 0, 0 ≤ x ≤ b.

To find an estimate for vkr(x) − ykr(x), and therefore for Qk(x), we
proceed as follows:

Let ck(x) = ek(x) − dk(x). Clearly, c0(x) = 0. Moreover, from (6)
and (15), it is clear that, for k = 1, 2, 3, . . . ,

ck(x) = B(x)
∫ x

0

K(x, t){[vk−1(x)−yk−1(x)] − [vk−1(t)−yk−1(t)]} dt.

Thus, setting

(28)
Uk(x) = Qk(x) +Rk(x), Uk = max{|Uk(x)|, 0 ≤ x ≤ b},

U1
k = max{|U ′

k(x)|, 0 ≤ x ≤ b},

we conclude that

(29) |ck(x)| ≤ 2BKxUk−1; k = 1, 2, 3, . . . ,
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and

(30) |c′k(x)| ≤ BKxU1
k−1.

For k = 0, 1, 2, . . . , let

(31) ck0(x) = −
∫ x

0

∫ ξ

0

H(s)ck(s) ds dξ,

and

(32) ckr(x) = −
∫ x

0

∫ ξ

0

H(s)ckr−1(s) ds dξ; r = 1, 2, 3, . . . .

From (13) and (16) it is clear that

ck0(x) = vk0(x) − yk0(x).

Thus, by an inductive argument involving (14), (17), (29), (30), (31),
and (32), we see that

ckr(x) = vkr(x) − ykr(x); k, r = 0, 1, 2, . . . ,

|ckr(x)| ≤ 2BKHr+1x2r+3

(2r + 3)!
Uk−1; k = 1, 2, 3, . . . , r = 0, 1, 2, . . . ,

and

|ckr(x)| ≤ BKHr+1x2r+3

(2r + 3)!
U1

k−1; k = 1, 2, 3, . . . , r = 0, 1, 2, . . . .

The latter inequality, combined with (31) and (32), yields

|c′kr(x)| ≤
BKHr+1x2r+2

(2r + 2)!
U1

k−1; k = 1, 2, 3, . . . , r = 0, 1, 2, . . . .

Thus,

|Qk(x)| ≤ 2BKxUk−1

rk∑
j=0

(
√
Hx)2j+2

(2j + 3)!

≤ 2BKx cosh(
√
Hx)Uk−1; k = 1, 2, 3, . . . ,
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and, similarly,

|Q′
k(x)| ≤ BK cosh(

√
Hx)U1

k−1; k = 1, 2, 3, . . . .

Thus, from (28),

(33) Uk ≤ TUk−1 +Rk; k = 1, 2, 3, . . . ,

and

(34) U1
K ≤ T1U

1
k−1 +R1

k; k = 1, 2, 3, . . . ,

where T and T1 are defined in the statement of the theorem. Let

Rk = sup{|Rk(x)|, 0 ≤ x ≤ b}.

Using (27) and (33), a straightforward inductive argument shows that

Un ≤
n∑

j=0

Tn−jRj ; n = 0, 1, 2, . . .

whence, by (25),

Un ≤ m0 cosh(
√
Hb)

n∑
j=0

Tn−j(BP )jHrj+1b2(j+rj+1)

(2j)!(2rj + 2)!

= m0T
n cosh(

√
Hb)

n∑
j=0

DjHrj+1b2(j+rj+1)

(2j)!(2rj + 2)!

= m0T
n cosh(

√
Hb)

n∑
j=0

(
√
Db)2j(

√
Hb)2j+2

(2j)!(2rj + 2)!

≤ m0T
n cosh(

√
Hb)

∞∑
j=0

(
√
Db)2j

(2j)!

∞∑
i=r+1

(
√
Hb)2i

(2i)!

= m0T
n cosh(

√
Hb) cosh(

√
Db)

[
cosh(

√
Hb) −

r∑
i=0

(
√
Hb)2i

(2i)!

]
,

whence the assertion for Un follows. The proof for U1
n is completed in

a similar fashion using (26).
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Proof of Theorem 4. Let Vn(x) be defined as in (9), and

Sn,j(x) = Tn,j(x) + Un,j(x), j = 1, 2.

Since

v(x)−Wn(x) = [v(x) − Vn(x)] + [Vn(x) −Wn(x)]
= [v(x)−Vn(x)]+Un,1(x)+βnUn,2(x)+(βn−γn)Tn,2(x),

applying Theorems 2 and 3, we have

|v(x) −Wn(x)| ≤ cn(BP )n+1b2nQ(b)/(2n)! + (m0,1 + |βn|m0,2)pn,1

+ |βn − γn| |Tn,2(x)|.
From Theorem 3 we see that cn ≤ qn, |βn| ≤ δn, and |βn − γn| ≤ σn,
whence the conclusion follows.

4. Examples.

Example 1. In this example we use Theorems 1 and 3 to find an
approximate solution to the initial value problem (2) with A(x) = 0.1x,
B(x) = 0.001, K(x, t) = 10(x − t), f(x) = 0.2, α = 0.1, β = 0.2, and
b = 1, (i.e., 0 ≤ x ≤ 1).

Clearly, A = 0.1, B = 0.001, K = 10, and

m0(x) =
∫ x

0

∫ ξ

0

0.2 ds dξ + 0.1 + 0.2x = 0.1(x+ 1)2,

whence m0 = 0.4. Also,

L(1, x) =
∫ x

0

10(x− t) dt = 5x2;

thus,
H(x) = A(x) +B(x)L(1, x) = 0.1x+ 0.005x2,

whence H = 0.105.

Using MACSYMA, we see that∫ x

0

K(x, t)[cosh(
√
Hx)−cosh(

√
Ht)] dt = 10(x2/2−H−1) cosh(

√
Hx)

+ 10H−1,
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whence

P = 10(1/2 −H−1) cosh(
√
H) + 10H−1 = 0.22090,

and therefore BP = 2.209 × 10−4. Since

Q(x) ≤ (x2/2) exp(Ax2/2 +BKx3/6) ≤ 0.5 exp(A/2 + BK/6) ≤ 0.53,

we have:

(35) |Gn(x)| ≤ 4.69 × 10−5(2.21 × 10−4)n/(2n)!.

On the other hand,

T = 2BKb cosh(
√
Hb) ≤ 0.02 cosh(

√
0.105) ≤ 0.0211,

and
D = P (2Kb cosh(

√
Hb))−1 = 0.01049.

Thus,

(36)
Un ≤ m0 cosh2(

√
Hb) cosh(

√
Db)TnHr+1/(2r + 2)!

≤ 0.047(0.0105)n(0.105)r/(2r + 2)!.

Assume that we want to approximate the solution to this initial value
problem with error not to exceed 10−3. From (35), it is clear that
|G0(x)| ≤ 4.69 × 10−5. This means that we need to approximate the
solution y(x) by means of S0(x), and S0(x) in turn by T0(x), with
error not to exceed 10−3 −4.69×10−5, i.e., we need to find r such that
U0 ≤ 10−3−4.69×10−5. This is clearly achieved by setting r = 1 (and
n = 0) in (36).

Let r0 = 1. Then

y00(x) = v00(x) =
∫ x

0

∫ ξ

0

f(s) ds dξ + α+ βx = 0.1(x+ 1)2

y01(x) = v01 = −
∫ x

0

∫ ξ

0

H(s)v00(s) ds dξ

= −0.1
∫ x

0

∫ ξ

0

(0.1s+ 0.005s)(s+ 1)2 ds dξ

= −(2x6 + 66x5 + 205x4 + 200x3)/(120, 000),
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and therefore

T0(x) =
12, 000+24, 000x+12, 000x2−200x3−205x4−66x5−2x6

120, 000

(y01(x) and T0(x) were computed using MACSYMA).

Example 2. We now find an approximation to the boundary value
problem (2), with A(x) = 0.1, B(x) = 0.001, K(x, t) = 10(x − t),
f(x) = 0, α = 0.1, γ = 0.03, and b = 1.

Clearly m0,1 = 0.1, m0,2 = 1, K = 10, and, as in Example 1,
L(1, x) = 5x2, whence H(x) = 0.1 + 0.005x2, and therefore H = 0.105.
Also, as in Example 1, P = 0.22090, BP = 2.209× 10−4, Q(x) ≤ 0.53,
T ≤ 0.0211, and D = 0.01049.

We now generate approximations Tn,1(x) and Tn,2(x) to Sn,1(x) and
Sn,2(x):

d0 = f(x) = 0; y00,1 = α = 0.1; y00,2 = x.

y0r,1(x) =
∫ x

0

∫ ξ

0

(0.1 + 0.005s2)y0r−1,1(s) ds dξ

= 0.1
(

0.1x2r

(2r)!
+

0.005x2r+2

(2r + 2)!

)
,

and, similarly,

y0r,2(x) =
0.1x2r+1

(2r + 1)!
+

0.005x2r+3

(2r + 3)!
.

Thus,

T0,1(x) =y0,1(x)=
r∑

j=0

y0j,1(x) = 0.01
r∑

j=0

x2j

(2j)!
+0.0005

r∑
j=0

x2j+2

(2j + 2)!
,

T0,2(x) =y0,2(x)=
r∑

j=0

y0j,2(x) = 0.1
r∑

j=0

x2j+1

(2j+1)!
+ 0.005

r∑
j=0

x2j+3

(2j+3)!
.

In particular, if r = 1, we obtain:

T0,1(1) = 0.01527, T0,2(1) = 0.11754,
p0,1 = 5.12 × 10−4, p0,2 = 1.167 × 10−4,

|T0,1(1) − γ| = 0.01473, γ0 = 0.12532.
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Thus,

W0(x) = T0,1(x) + γ0T0,2(x)
= 0.01(1 + x2/2) + 0.0005(x2/2 + x4/24)

+ 0.012532(x+ x3/6) + 0.0006266(x3/6 + x5/120)
= 0.01 + 0.012532x+ 0.00525x2 + 0.0021931x3

+ 0.0000208x4 + 0.00000522x5.

We now estimate the error, assuming that v2(1) �= 0. Using the
definitions, we readily obtain:

|T0,2(1)| − p0,2 = 0.11742, |T0,2(1)| +m0.2p0,1 = 0.11805,
|T0,2(1)|−m0,2p0,2 = 0.11703, q0 = 2.07271,

q0BP = 4.579×10−4, δ0 = 0.12630, σ0 = 9.858 × 10−4,

whence
(m0,1 + δ0m0,2)p0,1≤ 1.59 × 10−4,

|σ0T0,2(x)|≤σ0T0,2(1)≤1.159 × 10−4,

and therefore,

|v(x)−W0(x)| ≤ 2.42× 10−4+1.16× 10−4+1.16× 10−4 = 4.74× 10−4.

(This computation was verified using MACSYMA). In particular, this
shows that we can approximate v(x) by the first four terms of W0(x),
i.e., a cubic polynomial, with error less than 0.0005.
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