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AN UNCONVENTIONAL QUADRATURE METHOD
FOR LOGARITHMIC-KERNEL INTEGRAL

EQUATIONS ON CLOSED CURVES

IAN H. SLOAN AND B.J. BURN

ABSTRACT. A new, fully discrete method is proposed for
the logarithmic-kernel integral equation of the first kind on a
smooth closed curve. The method uses two levels of numerical
quadrature: a trapezoidal rule for the integral containing the
logarithmic singularity; and a special quadrature rule for the
outer integral, which compensates, in part, for the errors in
the first integral. A convergence and stability analysis is given,
and the predicted orders of convergence verified in a numerical
example. A numerical experiment suggests that the method
can be useful even for a curve with corners.

1. Introduction. In this paper we propose and analyze a fully
discrete method for the approximate solution of

(1.1) − 1
π

∫
Γ

log |t− s|z(s) dls = g(t), t ∈ Γ,

where z is an unknown function, dls the element of arc-length, |t − s|
the Euclidean distance between t, s ∈ Γ, and Γ a smooth simple closed
curve in the plane. The curve is assumed to have transfinite diameter
(or conformal radius) different from 1, in which case (1.1) has a unique
solution.

If we assume that Γ can be parametrized by a 1-periodic C∞ function
ν : R → Γ, with |ν′(x)| �= 0, then (1.1) can be written

(1.2) −
∫ 1

0

2 log |ν(x) − ν(y)|u(y) dy = f(x), x ∈ [0, 1],

or

(1.3) Lu = f,

where

(1.4) u(x) = z(ν(x))|ν′(x)|/(2π), x ∈ [0, 1],
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and

(1.5) f(x) = g(ν(x)), x ∈ [0, 1].

The method is applied to the equation in the form (1.2). The method
is described in the next section and then discussed in relation to other
methods in Section 3. A convergence result for an important special
case of the method is stated in Section 4. The theoretical analysis
begins in Section 5. Arising out of that analysis there emerges a
convergence theorem, stated and proved in Section 6. Before one can
make use of the general theorem, one must show that particular versions
of the method are ‘stable’ and of appropriate ‘order.’ That task is taken
up in Section 7, one fruit of this being the result already stated in
Section 4. Finally, some numerical examples are discussed in Section 8.
The numerical examples include ones for which Γ is not smooth, so that
the theory does not strictly apply. Even in this case, the experiment
suggests that the method is of practical value, provided the curve is
parametrized in an appropriate way in the vicinity of a corner.

2. The approximation. The first step, possibly surprising, is
to approximate Lu, defined by (1.2) and (1.3), by a trapezoidal rule.
Thus, with N a positive integer and h = 1/N , Lu is approximated by
Lhu, defined by
(2.1)

Lhu(x) = −h
N−1∑
k=0

2 log |ν(x) − ν(kh)|u(kh), x ∈ [0, 1], Nx /∈ Z.

Needless to say, this is not a good approximation for most values of x;
but the damage can be repaired later.

The proposed method is reminiscent of the Petrov-Galerkin method
in that we require a ‘test’ space Sh, here chosen to be the space of
1-periodic smoothest splines of order r (i.e., degree ≤ r − 1), with the
uniformly spaced knots

(2.2) {kh : 0 ≤ k ≤ N − 1}.

If r = 2, then Sh is the space of continuous piecewise-linear functions
with these knots. If r = 4, then Sh is the space of C2 cubic splines.
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Instead of the inner product

(2.3) (v, w) =
∫ 1

0

v(x)w(x) dx,

as used in the Galerkin method, the method makes use of a discrete
inner product

(2.4) (v, w)h = Qh(vw̄),

where

(2.5) Qhg = h

N−1∑
k=0

J∑
j=1

wjg((k + ξj)h),

with
0 < ξ1 < ξ2 < · · · < ξJ < 1,

and

(2.6)
J∑

j=1

wj = 1, wj > 0, for 1 ≤ j ≤ J.

Thus, Qh is a composite quadrature rule, obtained by copying onto
each subinterval [kh, (k+ 1)h] the J-point quadrature rule for the unit
interval

(2.7) Qg =
J∑

j=1

wjg(ξj).

We shall have much to say about the choice of the quadrature rule.
For now, it suffices to say that the rules to be developed here are quite
different from conventional quadrature rules.

The method may now be described as: find uh such that

(2.8) (Lhuh, χ)h = (f, χ)h ∀χ ∈ Sh.

Remark . Since Lhuh depends on the values of uh only on the discrete
set (2.2), it is clear that (2.8) can determine uh only on that set. If
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values of uh are needed at intermediate points, then some form of
interpolation is needed. For theoretical purposes, we shall, in Section
4, define uh by trigonometric interpolation between the points of (2.2).

In practice, one must choose a basis {v0, . . . , vN−1} for Sh. For
example, in the important case r = 2, one may choose vk to be the
hat-function centered at kh, i.e.,

(2.9) vk(x) =
{

1 − |x− kh|/h, if |x− kh| ≤ h,
0, otherwise.

In general, the 1-periodic B-splines centered at kh, for k = 0, . . . , N−1,
form a convenient basis.

Given a basis, the approximation becomes: find uh such that

(2.10)
N−1∑
k=0

al,kuh(kh) = (f, vl)h, l = 0, . . . , N − 1,

where
(2.11)

al,k = −h(2 log |ν(·) − ν(kh)|, vl)h

= −h2
N−1∑
k′=0

J∑
j=1

wj2 log |ν((k′ + ξj)h) − ν(kh)|vl((k′ + ξj)h).

Remark . A complete specification of the method requires both a
value for r and a specific choice for the quadrature rule Q. To fix ideas,
we mention now that the following choice turns out to be particularly
interesting. We take for the spline space r = 2 (i.e., piecewise-linear
functions), and for the quadrature rule

(2.12)

J = 2,

ξ1 =
1
6
, ξ2 =

5
6
,

w1 =
1
2
, w2 =

1
2
.

We shall see that this choice gives a stable method and an O(h3) order
of uniform convergence, if u is sufficiently regular.
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An interesting special case of a different kind is that in which J = 1.
In this case, the quadrature rule (2.5) is a (shifted) trapezoidal rule,
and there is only one parameter to be chosen, namely ξ = ξ1. In this
case, it is easily seen that (2.8) is mathematically equivalent (provided
the matrix {vl((k + ξ)h)}N−1

l,k=0 is nonsingular) to

(2.13) Lhuh((k + ξ)h) = f((k + ξ)h), k = 0, . . . , N − 1.

Thus, in this situation, the test space Sh becomes irrelevant, and the
method may be described simply as: replace Lu by the trapezoidal rule
approximation Lhu, as in (2.1), and then collocate at the set

(2.14) {(k + ξ)h : 0 ≤ k ≤ N − 1}.

If ξ = 1/2 we shall see (in Theorem 7.1) that the method with r = 2 and
J = 1 is unstable. If 0 < ξ < 1/6 or 1/6 < ξ < 1/2, then it turns out
that the method is stable but yields only O(h) convergence, even if u is
smooth. But for one special ξ value, namely ξ = 1/6, the convergence
is O(h2) if u is smooth. All of these properties are developed in Section
7. At the end of that section we try to explain the special quality of
the abscissa ξ = 1/6 in the 1-point rule and also in the 2-point rule
(2.12).

3. Related methods. Several existing methods for the numerical
solution of (1.1) have some relation to the present method, though none
is really similar.

Ruotsalainen and Saranen [9] have proposed a Petrov-Galerkin
method, in which the trial functions are Dirac delta functions and the
test functions smoothest splines. Their use of delta functions as trial
functions is equivalent, from the point of view of the linear system that
results, to the use of the trapezoidal rule in (2.1). Their linear sys-
tem is nevertheless different, because they use the exact inner product
(2.3) instead of the discrete inner product (2.4). At a theoretical level,
the difference of view influences the whole analysis, and through it the
very design of the quadrature rules typified by (2.12). Related to this
is the different nature of the theoretical results: the delta-function ap-
proach in [9] requires little in the way of regularity of the solution u,
but obtains convergence estimates only in negative norms; whereas the
present results (for example, those in the next section) obtain uniform
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estimates for the error, but require substantial regularity of the solution
to get high orders of convergence.

Another method based on the Petrov-Galerkin method with a trial
space of delta functions, but this time with a trigonometric function
test space, is that of Cheng and Arnold [7]. That paper also proposes
a fully discrete method, based on the use of the trapezoidal rule in the
outer integral of the Petrov-Galerkin method.

Another fully discrete method, based this time on a trigonometric
choice for both trial and test space, combined with a trapezoidal rule
approximation of the integrals, is that of Atkinson [4].

The fully discrete methods mentioned above, those of [7] and [4],
differ from the present method in a significant way, in that in both
cases the quadrature approximation is applied only to the part of the
integral operator L (with smooth kernel) that represents the departure
of the curve Γ from a circle; whereas the principal part of the operator
L (that is, the part which is appropriate to the case of a circle) is
handled exactly. While both methods are undoubtedly effective for
smooth curves, this exact treatment of the principal part may make it
difficult to extend the methods to curves which are not smooth (such
as, for instance, the curve in the second and third examples in Section
8).

In a different direction, the present method is related to the qualo-
cation method of [12, 13, 6]. In those papers detailed Fourier series
arguments, in the manner of [10, 3], were used to design a method
similar to, but with a higher order of convergence than, the collocation
method. Here similar Fourier series arguments are used to find quadra-
ture rules Q which, when used in the manner described in the preceding
section, lead to high orders of convergence. The present quadrature
rules are different from those which occur in the qualocation method
[12, 13, 6] but are also quite different from conventional quadrature
rules because of the different purposes the rules aim to achieve.

4. Convergence theorem special case. A convergence analysis
requires uh to be defined everywhere, not just on the discrete set
{kh}N−1

k=0 . Given the values of uh on this set, we choose to define its
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values elsewhere by trigonometric interpolation, as follows. Define

(4.1) Λh =
{
m ∈ Z : −N

2
< m ≤ N

2

}

and

(4.2) Th = span {ei2πmx : m ∈ Λh}.
Then uh is chosen to be the unique element of Th which has the
prescribed values on the set (2.2). Its explicit formula, as is easily
verified, is

(4.3) uh(x) = h
∑

m∈Λh

N−1∑
k=0

uh(kh)ei2πm(x−kh).

We shall measure errors usually in Sobolev norms || · ||s, defined for
s ∈ R, by

(4.4) ||v||2s = |v̂(0)|2 +
∑

m∈Z∗
|m|2s|v̂(m)|2,

where v̂(m) is the Fourier coefficient

(4.5) v̂(m) =
∫ 1

0

v(x)e−i2πmx dx, m ∈ Z,

and Z∗ denotes Z\{0}. The Sobolev space Hs is the closure of C∞
p

(the set of 1-periodic C∞ functions) with respect to the norm || · ||s.
Occasionally, we also use the uniform norm

(4.6) ||v|| = max
x∈R

|v(x)|,

for v in Cp, the space of 1-periodic continuous functions.

Theorem 4.1. Let r = 2 and let Q be the 2-point quadrature rule
with abscissae and weights given by (2.12). If f is continuous and 1-
periodic, then (2.8) has a unique solution uh ∈ Th for all h sufficiently
small. If u ∈ Ht, and if

(4.7) s >
1
2
, s+

1
2
< t ≤ s+ 3,
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then, for h sufficiently small,

||uh − u||s ≤ Cht−s||u||t.

(In this paper C is a generic constant, which may take different values
at its different occurrences.) Later in this paper, we shall state and
prove a more general result, Theorem 6.1, in which the quadrature
rule is not specified, but certain conditions must be satisfied. Theorem
4.1 then follows as a special case, with the help of results obtained
in Section 7. Theorem 4.1 is quoted here as a separate result both
because of its greater transparency and also because it is arguably the
most important special case.

Corollary 4.2. Let uh be as in Theorem 4.1. If u ∈ Ht with t > 7/2,
then for all h sufficiently small,

||uh − u|| ≤ Ch3||u||t.

Thus the method yields uniform errors of order O(h3), for u suffi-
ciently smooth.

Proof of Corollary 4.2. With s chosen as t− 3, Theorem 4.1 yields

||uh − u||s ≤ Ch3||u||t.
The result then follows from the well-known imbedding of Hs in Cp for
s > 1/2.

If Q is replaced by the 1-point quadrature rule with ξ = 1/6, as
described at the end of Section 2, then Theorem 4.1 still holds except
that (4.7) is replaced by

(4.8) s >
1
2
, s+

1
2
< t ≤ s+ 2.

Thus, the uniform error bound in Corollary 4.2 is now replaced by

||uh − u|| ≤ Ch2||u||t,
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provided t > 5/2. In other words, the method now yields errors of
order O(h2) under appropriate smoothness conditions on u.

Other special cases (including ones with higher orders of convergence)
can be constructed by using the general Theorem 6.1 and the results
in Section 7.

5. Analysis. For the present, we allow the quadrature rule (2.7) to
be general and proceed by applying Fourier analysis to the approximate
method (2.8), where uh is the trigonometric interpolant given by (4.3).

We may begin with the well-known Fourier series for the (log ◦ sin)
function,

(5.1)

− log(2| sinπt|) =
∞∑

m=1

1
m

cos 2πmt

=
1
2

∑
m∈Z∗

1
|m|e

i2πmt, t /∈ Z,

where, as always when dealing with nonabsolutely convergent Fourier
series, we shall understand symmetric partial sums, i.e.,

(5.2)
∑
m

= lim
L→∞

∑
|m|≤L

.

On multiplying (5.1) by two and adding one to each side, we obtain

(5.3) −2 log(2e−
1
2 | sinπt|) =

∑
m∈Z

1
m̃
ei2πmt, t /∈ Z,

where

m̃ =
{

1, if m = 0,
|m|, if m �= 0.

Now define an integral operator A with (5.3) as convolutional kernel,
that is,

(5.4) Au(x) = −
∫ 1

0

2 log(2e−
1
2 | sin π(x− y)|)u(y) dy.
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Then it follows from (5.3) that

(5.5) (Au)∧(m) =
1
m̃
û(m).

Thus, as is well known, A is a pseudodifferential operator of order −1.
Moreover, A is a particular case of the operator L defined by (1.2) and
(1.3); in fact, it is L for the case of a circle of radius e−1/2.

For the general case of a smooth curve Γ, we may write

(5.6) L = A+B,

where

(5.7) Bu(x) = −
∫ 1

0

2 log
∣∣∣∣ ν(x) − ν(y)
2e−

1
2 sinπ(x− y)

∣∣∣∣u(y) dy.
Because ν ∈ C∞, the kernel of the operator B is smooth, and from this
it follows that B is a smoothing operator, in the sense that

(5.8) B : Hs → Ht ∀ s, t ∈ R, s ≥ 0.

For this reason, B can be treated by a perturbation argument and so
plays only a secondary role in the analysis.

We recall that the first step in the approximate method is to replace
L by the trapezoidal rule approximation Lh, defined by (2.1). Corre-
spondingly, we may write

(5.9) Lh = Ah +Bh,

where

(5.10)

Ahu(x) = −h
N−1∑
k=0

2 log(2e−
1
2 | sin π(x− kh)|)u(kh)

= h

N−1∑
k=0

∑
m∈Z

1
m̃
ei2πm(x−kh)u(kh), Nx /∈ Z,

and

(5.11) Bhu(x) = −h
N−1∑
k=0

2 log
∣∣∣∣ ν(x) − ν(kh)
2e−

1
2 sin π(x− kh)

∣∣∣∣u(kh), Nx /∈ Z.
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The approximate method may now be expressed as: find uh ∈ Th

such that

(5.12)
((Ah +Bh)uh, χ)h = (f, χ)h

= ((A+B)u, χ)h ∀χ ∈ Sh.

For the remainder of this section, we shall consider the special case
B = 0 or, in other words, the case in which Γ is a circle of appropriate
radius. In this case the approximate method is: find uh ∈ Th such that

(5.13) (Ahuh, χ)h = (Au, χ)h ∀χ ∈ Sh.

Equation (5.13) may be analyzed by Fourier series techniques. From
(4.3) and (4.5), we have

ûh(m) =
{
h

∑N−1
k=0 e−i2πmkhuh(kh), m ∈ Λh,

0, m /∈ Λh.

Since the sum on the right is unchanged if m is replaced by m + αN
for α ∈ Z, we conclude that

h
N−1∑
k=0

e−i2πmkhuh(kh) = ûh(m0(m,N)), m ∈ Z,

where m0(m,N) is the unique element of Λh which differs from m by
a multiple of N . From the latter and (5.10), we now obtain

(5.14) Ahuh(x) =
∑
m∈Z

1
m̃
ûh(m0(m,N))ei2πmx.

On writing m = μ+ lN in the latter sum, where μ ∈ Λh and l ∈ Z, we
obtain

Ahuh(x) =
∑

μ∈Λh

1
μ̃
ûh(μ)ei2πμx

∑
l∈Z

μ̃

(μ+ lN)∼
ei2πlNx,

and on separating out the μ = 0 and l = 0 terms,

Ahuh(x) = ûh(0)
[
1 + h

∑
l∈Z∗

1
|l|e

i2πlNx

]

+
∑

μ∈Λ∗
h

1
|μ| ûh(μ)ei2πμx

[
1 + |μ|h

∑
l∈Z∗

1
|l + μh|e

i2πlNx

]
,
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or

(5.15)

Ahuh(x) = ûh(0)[1 + hG1(Nx)]

+
∑

μ∈Λ∗
h

1
|μ| ûh(μ)ei2πμx[1 + Γ1(Nx, μh)],

where Λ∗
h = Λh\{0}, and where for α > 0, ξ ∈ R and η ∈ [−1/2, 1/2],

we define

(5.16) Gα(ξ) = 2
∞∑

l=1

1
lα

cos 2πlξ,

(5.17) F+
α (ξ, η) =

∑
l∈Z∗

1
|l + η|α e

i2πlξ,

and

(5.18) Γα(ξ, η) = |η|αF+
α (ξ, η).

The function F+
α , and the similarly defined

(5.19) F−
α (ξ, η) =

∑
l∈Z∗

sign l
|l + η|α e

i2πlξ,

have appeared before in Fourier analyses of boundary integral methods
[8, 11, 3, 13, 6], and their properties have been studied in [5]. Here
we use the notation of [6].

The next step towards analyzing (5.13) is to define a suitable basis
for Sh. We follow [6] in defining the basis to be {ψμ : μ ∈ Λh}, where

(5.20) ψμ(x) =
{ 1, if μ = 0,∑

m≡μ( μ
m )rei2πmx, if μ ∈ Λ∗

h,

and where, here and elsewhere, m ≡ μ means m ≡ μ (mod N). (That
ψμ is a periodic spline of order r follows from the characterization of
such splines through the recurrence relation [2]

mrv̂(m) = μrv̂(μ) if m ≡ μ
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between their Fourier coefficients.) The particular virtue of this basis
lies in the transformation property

(5.21) ψμ(x+ h) = ei2πμhψμ(x), μ ∈ Λh, x ∈ R,

expressing the fact that ψμ behaves under translations by h = 1/N
in exactly the same way as the exponential function φμ, where φm is
defined by

(5.22) φm(x) := ei2πmx, m ∈ Z, x ∈ R.

In terms of the functions F±
α defined above, we may write the basis

function (5.20) as

(5.23) ψμ(x) =
{

1, if μ = 0,
φμ(x)[1 + Δ(Nx, μh)], if μ ∈ Λ∗

h,

where

(5.24) Δ(ξ, η) = ηrF±
r (ξ, η),

with the + or − sign holding when r is even or odd, respectively. It
may be noted that, if Δ is replaced by zero, then the test space Sh

reduces to the trigonometric space Th defined by (4.2).

The equation (5.13) is now equivalent to

(5.25) (Ahuh, ψμ)h = (Au,ψμ)h, μ ∈ Λh.

The right side of the equation can easily be worked out by using

(5.26)

(φm, ψμ)h =

⎧⎪⎨
⎪⎩

0, if m �≡ μ,∑
j wje

i2πmξjh, if m ≡ μ = 0,∑
j wje

i2π(m−μ)ξjh[1 + Δ(ξj , μh)], if m ≡ μ ∈ Λ∗
h,

which follows easily from the definitions and the transformation prop-
erty (5.21).

For u ∈ Ht with t > −1/2, the Fourier series for Au (using (5.5)) is

(5.27) Au(x) =
∑
m∈Z

1
m̃
û(m)ei2πmx,
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which converges absolutely, since by an application of the Cauchy-
Schwarz inequality,∣∣∣∣ ∑

m∈Z

1
m̃
û(m)ei2πmx

∣∣∣∣ =
∣∣∣∣ ∑

m∈Z

1
m̃1+t

m̃tû(m)ei2πmx

∣∣∣∣
≤

( ∑
n∈Z

1
ñ2+2t

) 1
2
( ∑

m∈Z

m̃2t|û(m)|2
) 1

2

= C||u||t.

From (5.27) and (5.26), we obtain

(5.28) (Au,ψμ)h

=

⎧⎨
⎩
û(0) +

∑
j wj

∑′
m≡0

1
|m| û(m)ei2πmξjh, if μ = 0,

1
|μ|

∑
j wj

∑
m≡μ | μ

m |û(m)ei2π(m−μ)ξjh[1 + Δ(ξj , μh)], if μ ∈ Λ∗
h,

where
∑′

m≡μ denotes the sum over all values of m congruent to, but
different from, μ.

In a similar way, from (5.15) and (5.21), together with the fact that
Gα(ξ) and Γα(ξ, η) are 1-periodic in ξ, we obtain

(5.29) (Ahuh, ψμ)h =

{
ûh(0)dh, if μ = 0,
1
|μ| ûh(μ)D(μh), if μ ∈ Λ∗

h,

where

(5.30) dh = 1 + h
∑

j

wjG1(ξj),

(5.31) D(η) =
∑

j

wj [1 + Γ1(ξj , η)][1 + Δ(ξj , η)].

Values of ûh(μ) can now be determined (uniquely) by equating the
two sides of (5.25), provided only that dh and D(μh) are different from
zero. The former is certainly bounded away from zero if h is sufficiently
small, but the latter may not be. We therefore introduce a concept of
stability:
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Definition. The method is stable if

inf
{
|D(η)| : η ∈

[
− 1

2
,
1
2

]}
> 0.

Conditions under which the method is stable are explored in Section
7. For the present, we simply assume that it is so. On equating the
two sides of (5.25) and then solving for ûh(μ), we find

(5.32) ûh(μ) − û(μ) =

{− eh

dh
û(0) + rh, if μ = 0,

−E(μh)
D(μh) û(μ) +Rh(μ), if μ ∈ Λ∗

h,

where

(5.33) eh = dh − 1 = h
∑

j

wjG1(ξj),

(5.34)

E(η) = D(η) −
∑

j

wj [1 + Δ(ξj , η)]

=
∑

j

wjΓ1(ξj , η)[1 + Δ(ξj , η)],

(5.35) rh =
1
dh

∑
j

wj

∑′

m≡0

1
|m| û(m)ei2πmξjh,

(5.36)

Rh(μ) =
1

D(μh)

∑
j

wj

∑′

m≡μ

∣∣∣ μ
m

∣∣∣ û(m)ei2π(m−μ)ξjh[1 + Δ(ξj , μh)].

The terms rh and Rh(μ) in the error expression depend only on
the higher Fourier coefficients of u (specifically, only on û(m) with
|m| ≥ N/2) and can, therefore, be made small by imposing appropriate
conditions on u. The first terms in (5.32), on the other hand, determine
the rate of convergence of the error independently of u, provided
û(μ) �= 0. That rate of convergence depends on the behavior of eh

and E(μh) when h is small. Thus, we say:
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Definition. The method is of order p if p is the least nonnegative
number such that

eh = O(hp) as h→ 0

and
E(η) = O(|η|p) as η → 0.

6. Convergence theorem general case. We now state a
convergence theorem for the case of the general equation (1.3), where
Γ is a C∞ curve. The theorem is expressed in terms of the notions of
stability and order defined in the preceding section.

Theorem 6.1. Let u be the unique solution of (1.3). Moreover, let
uh ∈ Th be determined by (2.8) and assume the method to be stable and
of order p > 1/2. If f is continuous and 1-periodic, then uh exists and
is unique for all h sufficiently small. Further, if u ∈ Ht, and if

(6.1) s >
1
2
, s+

1
2
< t ≤ s+ p,

then, for h sufficiently small,

||uh − u||s ≤ Cht−s||u||t.

Corollary 6.2. Let the method and uh ∈ Th be as in Theorem 6.1.
If u ∈ Ht with t > p+ 1/2, then, for all h sufficiently small,

||uh − u|| ≤ Chp||u||t.

The corollary follows by the same argument as Corollary 4.2.

Proof of Theorem 6.1. We first prove the result for the case in which
Γ is a circle of radius e−1/2. In this case the operator B defined by
(5.7) vanishes, and L = A. In this part of the proof, the conditions
(6.1), which govern s and t in the theorem, can be weakened to

(6.2) −1 ≤ s ≤ t ≤ s+ p, t > −1
2
.
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The analysis in the preceding section establishes, under the assump-
tion that the method is stable, that the nonvanishing Fourier coeffi-
cients of uh are uniquely determined and differ from the Fourier coef-
ficients of the exact solution by the expression (5.32).

By definition,

(6.3) ||uh − u||2s = |ûh(0) − û(0)|2 + |uh − u|2s,
where

|g|2s =
∑

m∈Z∗
|m|2s|ĝ(m)|2.

Now, from (5.32),
(6.4)
|ûh(0) − û(0)|2 = | − (eh/dh)û(0) + rh|2 ≤ 2|(eh/dh)û(0)|2 + 2|rh|2

≤ C|eh|2|û(0)|2 + C

(∑
j

wj

∑′

m≡0

|m|−1|û(m)|
)2

≤ Ch2p|û(0)|2 + C

( ∑′

m≡0

|m|−1−t|m|t|û(m)|
)2

≤ Ch2p|û(0)|2 + C
∑′

n≡0

|n|−2−2t
∑′

m≡0

|m|2t|û(m)|2

≤ Ch2p|û(0)|2 + C
∑
l∈Z∗

|lN |−2−2t|u|2t

≤ Ch2(t−s)|û(0)|2 + Ch2+2t
∞∑

l=1

l−2−2t|u|2t

≤ Ch2(t−s)|û(0)|2 + Ch2(t−s)|u|2t
= Ch2(t−s)||u||2t ,

in the course of which we have used the stability property |dh|−1 ≤ C
for h sufficiently small and the conditions (6.2), as well as, in the first
line, (a + b)2 ≤ 2a2 + 2b2. Thus, the first term of (6.3) satisfies the
desired inequality.

Because ûh(m) = 0 for m /∈ Λh, the second term of (6.3) may be
written as
(6.5)
|uh − u|2s =

∑
μ∈Λ∗

h

|μ|2s|ûh(μ) − û(μ)|2 +
∑

m/∈Λh

|m|2s|û(m)|2 = U + T,
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where, from (5.32),
(6.6)

U =
∑

μ∈Λ∗
h

|μ|2s

∣∣∣∣ − E(μh)
D(μh)

û(μ) +Rh(μ)
∣∣∣∣
2

≤ C
∑

μ∈Λ∗
h

|μ|2s|E(μh)û(μ)|2 + 2
∑

μ∈Λ∗
h

|μ|2s|Rh(μ)|2

≤ C
∑

μ∈Λ∗
h

|μ|2s|μh|2p|û(μ)|2 + C
∑

μ∈Λ∗
h

|μ|2s

( ∑′

m≡μ

∣∣∣ μ
m

∣∣∣ |û(m)|
)2

= Ch2(t−s)
∑

μ∈Λ∗
h

|μh|2(p+s−t)|μ|2t|û(μ)|2

+ C
∑

μ∈Λ∗
h

|μ|2(s+1)

( ∑′

m≡μ

|m|−1−t|m|t|û(m)|
)2

≤ Ch2(t−s)
∑

μ∈Λ∗
h

|μ|2t|û(μ)|2 + C
∑

μ∈Λ∗
h

|μ|2(s+1)
∑′

n≡μ

|n|−2−2t

·
∑′

m≡μ

|m|2t|û(m)|2

≤ Ch2(t−s)|u|2t +C
∑

μ∈Λ∗
h

|μ|2(s+1)
∑
l∈Z∗

|lN+μ|−2−2t
∑′

m≡μ

|m|2t|û(m)|2

= Ch2(t−s)|u|2t + Ch2(t−s)
∑

μ∈Λ∗
h

|μh|2(s+1)
∑
l∈Z∗

|l + μh|−2−2t

·
∑′

m≡μ

|m|2t|û(m)|2

≤ Ch2(t−s)|u|2t + Ch2(t−s)
∑

μ∈Λ∗
h

∑′

m≡μ

|m|2t|û(m)|2

≤ Ch2(t−s)|u|2t ,

in which, in addition to the stability property |D(μh)−1| ≤ C and the
conditions (6.2), we have used |μh| ≤ 1/2,

sup
{ ∑

l∈Z∗
|l + η|−2−2t : η ∈

[
−1

2
,
1
2

]}
<∞,
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and

sup
{
|Δ(ξ, η)| : ξ ∈ R, η ∈

[
−1

2
,
1
2

] }
<∞.

(For the latter, see [6, Lemma 1(iv)].)

It only remains to show that the term

T =
∑

m/∈Λh

|m|2s|û(m)|2

in (6.5) also satisfies the desired inequality. Because t ≥ s and
|m| ≥ N/2 for m /∈ Λh,

(6.7)

T =
∑

m/∈Λh

|m|2(s−t)|m|2t|û(m)|2

≤
∑

m/∈Λh

|N/2|2(s−t)|m|2t|û(m)|2

≤ Ch2(t−s)|u|2t .

Combining terms, we obtain

(6.8) ||uh − u||2s ≤ Ch2(t−s)||u||2t .

The result is now proved for the case B = 0.

We now turn to the general case L = A+B. In this case the method
is: find uh ∈ Th such that

(6.9) ((Ah +Bh)uh, χ)h = ((A+B)u, χ)h ∀χ ∈ Sh.

Assume initially that a solution uh of this equation exists. Then uh

satisfies

(Ahuh, χ)h = (A(u+A−1(Bu−Bhuh)), χ)h ∀χ ∈ Sh.

In other words, uh is the solution of the equation (5.13) which we have
analyzed already, if the exact solution is u+A−1(Bu−Bhuh). Applying
the result in the theorem to this special case, we obtain

(6.10) ||uh−u−A−1(Bu−Bhuh)||s ≤ Cht−s||u+A−1(Bu−Bhuh)||t.
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To proceed further, we revert to the stronger conditions on s and t
imposed in the theorem, i.e.,

s >
1
2
, s+

1
2
< t ≤ s+ p.

We also make use of the following properties of Bh established in the
appendix. The first is that because s > 1/2 (I + A−1Bh)−1 exists as
a uniformly bounded linear operator on Hs for all h sufficiently small;
i.e., there exists C such that

(6.11) ||(I +A−1Bh)−1||s ≤ C.

Other needed properties are that for σ ∈ R and ν > 1/2 there exists
C (possibly depending on σ and ν, but not depending on h or v) such
that

(6.12) ||A−1(Bh −B)v||σ ≤ Chν ||v||ν ,

and

(6.13) ||A−1Bhv||σ ≤ C||v||ν .

We may now write

uh − u = (I +A−1Bh)−1[uh − u−A−1(Bu−Bhuh)−A−1(Bh −B)u].

Using (6.10) (6.13), we obtain, because s > 1/2, t− s > 1/2,

||uh − u||s ≤ ||(I +A−1Bh)−1||s[||uh − u−A−1(Bu−Bhuh)||s
+ ||A−1(Bh −B)u||s]

≤ C[ht−s||u+A−1(Bu−Bhuh)||t + ht−s||u||t−s]
≤ Cht−s[||u||t + ||A−1(B −Bh)u||t + ||A−1Bh(u− uh)||t

+ ||u||t−s]
≤ Cht−s[||u||t + ||u− uh||s].
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Thus, for h sufficiently small, we have

(6.14) ||uh − u||s ≤ Cht−s||u||t,

and the estimate in the theorem is now proved.

It remains only to prove the existence and uniqueness of the solution
to the approximate equation (2.8). To prove uniqueness, assume that
uh ∈ Th is a solution for the case in which f = 0. Since u is zero in
this case, it follows from (6.14) that ||uh||s = 0 and, hence, uh = 0.
Thus, the solution, if it exists, is unique. But (2.8) is a linear system
of N equations in N unknowns, which has full rank because of the just
established uniqueness property. Thus, (2.8) has a solution for every
right-hand side, and the proof is complete.

Remark . It is clear from the proof of Theorem 6.1 that the method
and the theoretical results extend almost trivially to the more general
equation

(6.15) − 1
π

∫
Γ

log |t− s|z(s) dls +
∫

Γ

m(t, s)z(s) dls = g(t), t ∈ Γ,

if m ∈ C∞(R × R), provided that the solution of this equation is
unique. After parametrizing Γ as before, equation (1.3) is replaced now
by (L+K)u = f , where K, which maps Hs into Ht for all s ≥ 0 and
all t ∈ R, is defined in the obvious way. And in the approximation
we similarly replace Lh by Lh + Kh, where Kh is the trapezoidal
approximation to K (cf. (2.1)). Then, in the proof of Theorem 6.1
we need only replace B by B + K and Bh by Bh + Kh. As these
changes have no affect on the argument, the theorem stands as before.

7. Stability and order. The stability and order of the method, we
recall from Section 5, depend on the properties of the functions

(7.1) D(η) =
∑

j

wj [1 + Γ1(ξj , η)][1 + Δ(ξj , η)], η ∈
[
− 1

2
,
1
2

]
,

(7.2) E(η) =
∑

j

wjΓ1(ξj , η)[1 + Δ(ξj , η)], η ∈
[
− 1

2
,
1
2

]
,
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and

(7.3) eh = h
∑

j

wjG1(ξj),

where Γα, Δ and Gα are defined by (5.18), (5.24) and (5.16).

From the definitions, we obtain

(7.4) Γα(ξ,−η) = Γα(ξ, η), Δ(ξ,−η) = Δ(ξ, η),

and from these follow

(7.5) D(−η) = D(η), E(−η) = E(η).

Thus, when studying the stability and order of the method, we may
restrict attention to η ≥ 0.

Let G±
α and H±

α denote the real and imaginary parts of F±
α , so that,

from (5.17) and (5.19),

(7.6) G±
α (ξ, η) =

∞∑
l=1

[
1

(l + η)α
± 1

(l − η)α

]
cos 2πlξ,

(7.7) H±
α (ξ, η) =

∞∑
l=1

[
1

(l + η)α
∓ 1

(l − η)α

]
sin 2πlξ.

Then, it follows from (7.1) and the definitions of the quantities therein
that

(7.8)
ReD(η) =

∑
j

wj [(1 + ηG+
1 (ξj , η))(1 + ηrGσ

r (ξj , η))

+ η1+rH+
1 (ξj , η)Hσ

r (ξj , η)], η ≥ 0,

where σ is + if r is even and − if r is odd. Now we make use of
properties of G±

α and H±
α proved in [5]. (A convenient summary, in the

present notation, is given in the appendix of [6].) There it is shown,
for all α > 0, that

(7.9) 1 + ηαG+
α (ξ, η) ≥ 0, ξ ∈ (0, 1), η ∈

[
0,

1
2

]
,
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with equality if and only if (ξ, η) = (1/2, 1/2);

(7.10) 1 + ηαG−
α (ξ, η) ≥ 0, ξ ∈ [0, 1], η ∈

[
0,

1
2

]
,

with equality if and only if (ξ, η) = (0, 1/2);

(7.11) H+
α (ξ, η) ≤ 0, ξ ∈

[
0,

1
2

]
, η ∈

[
0,

1
2

]
,

(7.12) H−
α (ξ, η) ≥ 0, ξ ∈

[
0,

1
2

]
, η ∈

[
0,

1
2

]
,

together with
H±

α (ξ, η) = −H±
α (1 − ξ, η).

With the aid of these results and (7.8), we obtain the following sta-
bility result for the case of splines of even order (e.g., piecewise-linear
functions).

Theorem 7.1. Let the order r of the splines be even. Then the
method is stable unless J = 1 and ξ1 = 1/2, in which case it is unstable.

Remark . We have no result for the case of splines of odd order.
Numerical experiments suggest that such methods can be unstable.

Proof. For the case of splines of even order, it follows from (7.9) (7.12)
that each term of the expression (7.8) for ReD(η) is nonnegative.
Moreover, each term is continuous in η (see [6, Lemma A.2]), and the
expression (1 + ηG+

1 (ξ, η))(1 + ηrG+
r (ξ, η)) can vanish only if ξ = 1/2.

Thus, provided ξ = 1/2 is not the only quadrature point, ReD(η) is
bounded away from zero, and the method is stable.

On the other hand, if J = 1 and ξ1 = 1/2, then it is easily verified
that D(η) is real. Thus, from (7.9) D(1/2) = 0 so that in this case the
method is unstable.

It may be noted that the stability theorem holds also if Δ is replaced
by zero, thus it holds for the case Sh = Th, in which the test space
consists of trigonometric polynomials.
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The following theorem shows that the order of the method, as defined
at the end of Section 5, depends sensitively on the choice of the abscissae
{ξj} and the weights {wj} in the quadrature rule Q. (The quadrature
rule Q, given by (2.7), is said to be symmetric if ξj = 1 − ξJ−j+1 and
wj = wJ−j+1.)

Theorem 7.2. (a) Every choice of the quadrature rule Q yields a
method of order ≥ 1.

(b) The method is of order ≥ 2 if and only if

(7.13)
∑

j

wjG1(ξj) = 0.

(c) Assume r ≥ 2. If the quadrature rule Q is symmetric and (7.13)
holds, then the method is of order ≥ 3.

Proof. Since
Γ1(ξ, η) = |η|F+

1 (ξ, η)

and
Δ(ξ, η) = ηrF σ

r (ξ, η),

it follows from (7.2) that

(7.14) E(η) = |η|
∑

j

wjF
+
1 (ξj , η)[1 + ηrF σ

r (ξj , η)].

Thus, E(η) = O(|η|) as η → 0 for every choice of the quadrature rule
Q. Since eh = O(h) as h → 0, the order of the method is always at
least 1, thus proving part (a). On the other hand, it follows from (7.3)
that unless (7.13) holds the order cannot be higher than 1.

For fixed ξ ∈ (0, 1) and α > 0, it is known (see [6, Lemma A.2]) that
the real and imaginary parts of F+

α have the expansion

(7.15) G+
α (ξ, η) =

∞∑
k=0

(−α
2k

)
Gα+2k(ξ)η2k,

(7.16) H+
α (ξ, η) =

∞∑
k=1

( −α
2k − 1

)
Hα+2k−1(ξ)η2k−1,
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where
(−α

j

)
denotes (−α)(−α− 1) · · · (−α− j + 1)/j!, and

Hα(ξ) = 2
∞∑

l=1

1
lα

sin 2πlξ,

with the power series uniformly convergent for η ∈ [−1/2, 1/2].

Since r ≥ 1, it follows from (7.14) that

E(η) = |η|
∑

j

wjG1(ξj) +O(|η|2).

Thus, (7.13) is both a necessary and sufficient condition for the order
to be two or greater, proving part (b).

If the rule is symmetric, then it is easily seen that E is real, so that,
from (7.14),

(7.17)
E(η) = |η|

∑
j

wj [G+
1 (ξj , η) + ηr(G+

1 (ξj , η)Gσ
r (ξj , η)

+H+
1 (ξj , η)Hσ

r (ξj , η))].

If, in addition, r ≥ 2, then

E(η) = |η|
∑

j

wjG
+
1 (ξj , η) +O(|η|3)

= |η|
∑

j

wjG1(ξj) +O(|η|3).

Thus, if (7.13) holds, then E(η) = O(|η|3), and, therefore, the order is
at least three, proving part (c).

If we note, from (5.1) and (5.16), that

G1(ξ) = −2 log(2| sinπξ|),

then we can re-express (7.13) as the condition

(7.13′)
∑

j

wj log(2| sinπξj |) = 0.
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There are, of course, many choices of the parameters {J, ξ1, w1, . . . , ξJ ,
wJ} which satisfy the condition. Here we consider just the two simplest
cases:

Lemma 7.3 (a) If J = 1, then the condition (7.13) is satisfied if and
only if ξ1 = 1/6 or 5/6.

(b) If J = 2 and the rule Q is symmetric, then (7.13) is satisfied if
and only if ξ1 = 1/6, ξ2 = 5/6.

This follows immediately from (7.13′).

The special cases discussed in Section 4 (and, in particular, Theorem
4.1) now follow as special cases of Theorem 6.1 with the aid of Theorems
7.1 and 7.2 and Lemma 7.3.

We conclude this section by attempting to give some insight into the
special virtue of the number 1/6 as an abscissa in the rule Q. Suppose
that the exact solution u happens to be identically 1. Then, from
(5.27), we have

(7.18) Au(x) = 1, x ∈ R,

whereas, from (5.15),

(7.19)
Ahu(x) = 1 + hG1(Nx)

= 1 − 2h log(2| sinπNx|), x ∈ R.

For most values of x the trapezoidal rule approximation to the loga-
rithmic integral Au is in error. However, (7.18) and (7.19) show that
the trapezoidal rule is exact at the points

{(
1
6

+ k

)
h : k ∈ Z

}
∪

{(
5
6

+ k

)
h : k ∈ Z

}
.

A quadrature rule Q that uses 1/6 or 5/6 as abscissae is therefore at an
initial advantage, at least for the case u = constant. This observation is
relevant even for nonconstant u, since as h→ 0 every smooth solution
u looks more and more like a constant function on the scale given by
the mesh size h.
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8. Numerical examples. In the following examples we report not
the values of the unknown function u in (1.2), or equivalently z in (1.1),
but rather values of the potential

(8.1)
φ(τ ) = − 1

π

∫
Γ

log |τ − s|z(s) dls

= −
∫ 1

0

2 log |τ − ν(y)|u(y) dy

at some point τ not on Γ. In addition to replacing u by the approximate
solution uh, we take the further step of approximating the integral in
(8.1) by the trapezoidal rule with spacing h. Thus, the approximation
is

(8.2) φh(τ ) = −h
N−1∑
k=0

2 log |τ − ν(kh)|uh(kh).

Note that this uses only the N values of uh that come directly from
the linear system (2.10), thus explicit trigonometric interpolation is not
needed. Of course, this final trapezoidal rule approximation would not
be appropriate for τ very near Γ.

In each of the examples the version of the method used in the
calculations is that described in Theorem 4.1, except that in Examples
1′ and 3′ the parameters in the quadrature rule Q are varied from the
theoretically ideal values.

Example 1. In this case Γ is the ellipse

(8.3)
x2

4
+
y2

64
= 1,

and we solve (1.1) with the right-hand side

(8.4) g(x, y) = (x+ y)2.

With the curve parametrized by

(8.5) (x, y) = ν(σ) = (2 cos 2πσ, 8 sin 2πσ), σ ∈ [0, 1],
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we obtain the results shown in Table 1 for the potential at τ =
(6/7, 8/7). (The errors eh are calculated by reference to the ‘exact’
value, which is obtained from a careful calculation by a different
method. The apparent rates of convergence are defined by αh =
log2(e2h/eh).)

After initial fluctuation, the numerical results in Table 1 settle down
to the predicted O(h3) order of convergence. They also demonstrate
satisfactory accuracy. Similar results are obtained for the potential at
other points.

Example 1′. To assess the importance in practice of using the
correct quadrature rule, Example 1 was repeated with the abscissae
in the symmetric 2-point rule Q chosen to be

(8.6) ξ1 = ξ, ξ2 = 1 − ξ,

for the values of ξ in Table 1′. The results in Table 1′ demonstrate con-
vincingly the magical quality of the choice ξ = 1/6; all the other values
yield, as expected, only an O(h) rate of convergence and dramatically
larger errors at h = 1/256.

In each of the remaining examples, Γ is the cardioid-like curve

(8.7) (x, y) = r(θ)(cos θ, sin θ), θ ∈
[
0,

3π
2

]
,

where

(8.8) r(θ) = 2θ
(

3π
2

− θ

)
,

and the right-hand side of (1.1) is

(8.9) g(x, y) = (x− 1)2.

The interior point τ at which the potential φ is computed is taken to
be (17/70, 281/70). Because of the right-angled re-entrant corner at
the origin, the theory of this paper is not strictly applicable. On the
other hand, the algorithm is still available, and it seems interesting to
explore experimentally whether it can be made to give good results.
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Example 2. For the example described above, we initially ignore the
effects of the inevitable singularity in the solution z at the right-angled
corner. Thus, the curve is parametrized in the obvious way,

(8.10) (x, y) = ν(σ) = r

(
3π
2
σ

) (
cos

3π
2
σ, sin

3π
2
σ

)
, σ ∈ [0, 1],

so that the parameter is roughly proportional to arc-length in a neigh-
borhood of the origin.

In this situation, we obtain the results shown in Table 2. The
apparent order of convergence is O(hα) with α = 1.4 or less.

Example 3. The example is now repeated with a new parametriza-
tion,

(8.11) (x, y) = ν(σ) = r(s(σ))(cos s(σ), sin s(σ)), σ ∈ [0, 1],

where

(8.12) s(σ) =
3π
2
σ2(3 − 2σ), σ ∈ [0, 1].

Note that for σ small, we have

s(σ) ≈ Cσ2,

and that
s(1 − σ) =

3π
2

− s(σ).

The effect is that the uniform partition with respect to the parameter,
as in (2.1), results in a ‘grading of the mesh’ (with grading exponent 2)
as the corner is approached. In effect, we are trying, by concentrating
more break-points near the corner, to counteract the effects of the
expected singularity.

In this case the results shown in Table 3 are obtained. They suggest
(but certainly do not prove) that one can obtain close to O(h3) con-
vergence even in the case of corners by parametrizing the curve in an
appropriate way. Similar results, with the apparent orders of conver-
gence differing but all close to three, were obtained at other points in
the interior.
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Example 3′. Example 3 is repeated with the abscissae of the rule
Q given instead by (8.6). Notwithstanding the absence of a theory, the
results in Table 3′ still firmly suggest that the value ξ = 1/6 has a
special status.

In summary, for a smooth curve the numerical results confirm the
predicted rates of convergence for this fully discrete method. For a
curve with a corner and an appropriate choice of parametrization,
the numerical results suggest that the same rate of convergence can
be achieved. For the case of a corner, no theoretical results are yet
available, and further research is needed.
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Appendix. Properties of Bh.

Let Thv denote the trapezoidal rule, with spacing h = 1/N , applied
to the 1-periodic function v; i.e.,

(A1) Thv = h
N−1∑
k=0

v(kh).

The operator Bh is, by definition, obtained from the exact operator B
by using this rule to approximate the integral in

(A2) Bw(x) =
∫ 1

0

b(x, y)w(y) dy,

where b(x, y) is the kernel in (5.7). Thus,

(A3)
Bhw(x) = h

N−1∑
k=0

b(x, kh)w(kh),

= Th[b(x, ·)w(·)].
In the following lemma Iv denotes the exact integral

Iv =
∫ 1

0

v(x) dx.
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Lemma A1. If v ∈ Hν with ν > 1/2, then

|Thv − Iv| ≤ Chν ||v||ν .

Remark . The condition ν > 1/2 is natural because only if ν > 1/2
can we be sure that a function v in Hν is continuous.

Proof. We may express v in terms of its Fourier series,

v(x) =
∑
m∈Z

v̂(m)ei2πmx,

which converges absolutely, by an application of the Cauchy-Schwarz
inequality, because ν > 1/2. Thus,

Thv =
∑
m∈Z

v̂(m)Thφm

=
∑
m≡0

v̂(m).

Therefore,

|Thv − Iv| =
∣∣∣∣ ∑′

m≡0

v̂(m)
∣∣∣∣ =

∣∣∣∣ ∑′

m≡0

|m|−ν |m|ν v̂(m)
∣∣∣∣

≤
( ∑′

m≡0

|m|−2ν

) 1
2
( ∑′

m≡0

|m|2ν |v̂(m)|2
) 1

2

=
( ∑

l∈Z∗
|lN |−2ν

) 1
2
( ∑′

m≡0

|m|2ν |v̂(m)|2
) 1

2

≤ Chν ||v||ν .

It follows from the lemma that, for fixed x ∈ R, we have

|Bhw(x) −Bw(x)| ≤ Chν ||[b(x, ·)w(·)]||ν ,
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and because b is a C∞ function on R × R, it follows easily that

(A4) ||Bhw −Bw||L∞ ≤ Chν ||w||ν
if ν > 1/2. A similar argument shows that any derivative of Bhw
converges to the corresponding derivative of Bw in the fashion of (A4);
the only change in (A2) and (A3) is that b(x, y) is replaced by the
appropriate partial derivative with respect to x in each expression. By
the use of appropriate imbedding arguments, we then obtain the same
order of convergence in any Sobolev norm. Thus, we obtain

Lemma A2. Let τ ∈ R. If v ∈ Hν with ν > 1/2, then

||Bhv −Bv||τ ≤ Chν ||v||ν .

We may now prove the property (6.12). Noting that

||Aw||τ = ||w||τ−1, τ ∈ R,

(which follows immediately from (5.5) and the definition of the Sobolev
norms), we have

||A−1(Bh − B)v||σ = ||(Bh −B)v||σ+1

≤ Chν ||v||ν ,
provided ν > 1/2, which is just (6.12). From the triangle inequality,
we also have

||A−1Bhv||σ ≤ ||A−1(Bh −B)v||σ + ||A−1Bv||σ
≤ Chν ||v||ν + ||Bv||σ+1

≤ Chν ||v||ν + C||v||ν
≤ C||v||ν ,

where we have used (5.8). Thus, (6.13) is proved.

It remains to prove (6.11). This we do by means of the collectively
compact operator approximation theory of [1]. Because s > 1/2, it
follows from (6.13) that

||A−1Bhv||s ≤ C||v||s,
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and
||A−1Bhv||s+ε ≤ C||v||s, ε > 0.

From the first, it follows that {A−1Bh} is uniformly bounded in
Hs. From the second, together with the compact imbedding of Hs+ε

in Hs, it follows that {A−1Bh} is collectively compact in Hs. In
addition, from (6.12) we have ||A−1(Bh − B)v||s → 0 for all v ∈ Hs.
Since (I + A−1B)−1 is a bounded operator on Hs, the conditions of
the collectively compact theory [1] are satisfied, and it follows that
(I + A−1Bh)−1 exists as a uniformly bounded set of operators on Hs,
that is (6.11) holds, provided h is sufficiently small.

TABLE 1. Errors and apparent convergence rates for Example 1, i.e., for the

ellipse (8.3) and the potential at the interior point (6/7, 8/7).

The exact value is 9.992797118847 . . . .

Apparent

No. of rate of

subintervals Error convergence

8 -2.99

16 2.06(-1)

32 1.71(-2) 3.59

64 5.21(-4) 5.04

128 4.91(-5) 3.41

256 6.13(-6) 3.00

TABLE 1′. Errors and apparent convergence rates at h = 1/256 for
Example 1 with the modified quadrature rule (8.6).

Apparent

rate of

ξ Error convergence

1/4 -1.16(-1) 1.00

1/5 -5.39(-2) 1.00

1/6 6.13(-6) 3.00

1/7 4.72(-2) 1.00

1/8 8.89(-2) 1.00
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TABLE 2. Errors and apparent convergence rates for Example 2, i.e., for
the cardioid-like curve parametrized as in (8.10) and the potential
at the point (17/70, 281/70). The exact value is 17.99584807 . . . .

Apparent

No. of rate of

subintervals Error convergence

8 -1.54

16 -4.70(-1) 1.71

32 -1.58(-1) 1.57

64 -5.70(-2) 1.47

128 -2.16(-2) 1.40

256 -8.38(-3) 1.36

TABLE 3. Errors and apparent convergence rates for Example 3,
i.e., the same problem as in Table 2, but with the revised

parametrization (8.11), (8.12).

Apparent

No. of rate of

subintervals Error convergence

8 -2.48(-2)

16 1.19(-2)

32 1.98(-3) 2.59

64 3.07(-4) 2.69

128 4.74(-5) 2.70

256 7.71(-6) 2.62

TABLE 3′. Errors and apparent convergence rates at h = 1/256 for
Example 3 with the modified quadrature rule (8.6).

Apparent

rate of

ξ Error convergence

1/4 -7.02(-2) 1.00

1/5 -3.27(-2) 1.00

1/6 7.71(-6) 2.62

1/7 2.87(-2) 1.00

1/8 5.40(-2) 1.00
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