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HOW TO SOLVE HAMMERSTEIN EQUATIONS

JÜRGEN APPELL AND CHUR-JEN CHEN

To Ken, with friendship and admiration

What is a good method for finding solutions u : Ω → R of the
nonlinear integral equation of Hammerstein type

(1) u(x) = v(x) + λ

∫
Ω

k(x, y)f(y, u(y)) dy, λ ∈ R

with given functions v : Ω → R, k : Ω × Ω → R, and f : Ω × R →
R ? This is the question which provides the main focus of this brief
note. More precisely, we will discuss a variety of methods (topological
degree, fixed point methods, spectral theory, variational approach,
monotonicity methods, positivity methods, etc.) which turn out to be
useful tools for solving (1). We point out that the presentation is quite
elementary, so this note may be considered as a stimulation for exercises
for students attending courses in nonlinear analysis, operator theory, or
integral equations, rather than a sophisticated research contribution.

Usually, equation (1) is written as an operator equation

(2) u − λAu = v,

where the Hammerstein operator A may be represented as composition
A = KF of the linear Fredholm operator

(3) Ku(x) =
∫

Ω

k(x, y)u(y) dy

generated by the kernel function k, and the nonlinear Nemytskij oper-
ator

(4) Fu(x) = f(x, u(x))
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generated by the nonlinearity f . For simplicity, we assume that Ω is a
compact domain in the Euclidean space Rn in what follows.

1. Topological methods. The simplest topological method is
fixed point theory or, more generally, degree theory. Of course, the
right function space for studying (1) is essentially determined by the
properties of the kernel function k and the nonlinearity f . If both
k and f are continuous, one could try to use Schauder’s theorem in
the space C of continuous functions. If f is (even locally) Lipschitz
continuous or smooth, it is worthwhile to try (a local version of) the
Banach contraction mapping principle in the space Ck. On the other
hand, if k is only measurable, a useful device is using the Lebesgue
space Lp (in case f has polynomial growth), or an Orlicz space LM (in
case f has nonpolynomial, e.g., exponential growth, see [10]).

Choosing the “right” space depends not only on the properties of
the data k and f , but also on the result we are interested in. So,
one should prove existence of solutions in a possibly narrow space,
but uniqueness of solutions in a possibly large space. If one wants
to prove both existence and uniqueness, one has to find some kind of
“compromise.” Moreover, sometimes it is necessary (or just useful) to
pass from the operator equation (2) to an equivalent operator equation
in a “better” space.

We illustrate this by means of the following equivalence principle in
Lebesgue spaces. Suppose that the operator (4) maps Lp into Lq, while
the operator (3) maps Lq into Lp, where (1p + 1)/q = 1, so one may
study (2) as an operator equation (in particular, a fixed point equation
for v = 0) in Lp. However, if we succeed in decomposing the kernel
function k in the form

(5) k(x, y) =
∫

Ω

m(x, z)m(z, y) dz,

where the integral operator M generated by m maps L2 into Lp, then
its adjoint M∗ maps Lq into L2, where MM∗ = K, and equation (2)
is equivalent to the operator equation

(6) h − λGh = w,

where u = Mh, G = M∗FM , and v = Mw, and the equivalence of
equations (2) and (6) follows from the invertibility of M . Now, what
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we have gained in this way is that the operator G in (5) acts in the
Hilbert space L2 rather than in the Banach space Lp. This makes life
easier in many applications (see below).

Using Schauder’s fixed point theorem (or one of its numerous gener-
alizations), one still has the problem of finding bounded, closed, and
convex subsets (typically closed balls) that are invariant under A. One
may overcome this difficulty by applying Vignoli’s fixed point theorem
[13] which states that a compact operator A has a fixed point if its
quasinorm

[A]∞ := lim sup
||u||→∞

||Au||
||u||

is less than 1. We illustrate the advantage of this condition by means
of a very simple example.

Example 1. For α > 0, consider the equation

(7) u(x) = v(x) + λ

∫ 1

0

ex−y log(1 + |u(y)|α) dy, λ ∈ R

which is (1) with Ω = [0, 1], k(x, y) = ex−y and f(x, u) = log(1 + |u|α).
It follows from standard calculations that the operator (3) generated by
k has norm ||K|| = e− 1 in the space C[0, 1]. On the other hand, both
the Lipschitz continuity and the growth of the operator (4) generated by
f depend on α. In case α < 1 we have f ′(u) → ∞ as u → 0+, and so f
cannot satisfy a Lipschitz condition. In case α = 1 we have |f ′(u)| ≤ 1,
and this is the best possible Lipschitz constant. In case α > 1, an
easy calculation shows that the best possible Lipschitz constant for f is
(α−1)(α−1)/α. So the Banach contraction mapping principle guarantees
existence and uniqueness for

(8) |λ| <
1

(e − 1)(α − 1)(α−1)/α
.

If we are merely interested in existence and want to apply Schauder’s
theorem, we have to find invariant balls, which usually requires the
imposition of growth restrictions on the nonlinearity f . In this example
these restrictions are rather mild, since |f(u)| = log(1 + |u|α) ≤ c|u|β
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for any β > 0. So the closed ball in C[0, 1] of radius R is left invariant
for all values of λ satisfying

(9) ||v|| + |λ|(e − 1) cRβ ≤ R,

and this may always be achieved by taking β < 1 and choosing R
sufficiently large.

However, we can do much better by employing Vignoli’s fixed point
theorem. In fact, the Nemytskij operator (4) generated by f has quasi-
norm [F ]∞ = 0 for every value of α > 0, and so Vignoli’s theorem
applies. Consequently, we are led to the following scheme concerning
existence and uniqueness of solutions of (7). Of course, one may also
apply more sophisticated methods like Darbo’s [4] or Sadovskij’s [11]
fixed point principle for maps which are condensing with respect to
some measure of noncompactness.

TABLE 1. Solvability of equation (7).

Banach Schauder Vignoli

α < 1 not applicable existence for λ existence for all λ

as in (9)

α = 1 existence and uniqueness existence for λ existence for all λ

for |λ| < (e − 1)−1 ≈ 0.582 as in (9)

α > 1 existence and uniqueness existence for λ existence for all λ

for λ as in (8) as in (9)

2. Monotonicity methods. Recall that an operator A from a
Banach space X into its dual X∗ is called monotone if 〈Au−Av, u−v〉 ≥
0, where 〈·, ·〉 denotes the duality between X and X∗. The most
important existence result for monotone operators is Minty’s celebrated
theorem [8] which states that, in case of a reflexive space X, every
monotone continuous operator A : X → X∗ which is coercive, in the
sense that

lim
||u||→∞

〈Au, u〉
||u|| = ∞

is onto, i.e., satisfies A(X) = X∗.
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In order to apply this theorem to equation (2) in the space Lp for
1 < p < ∞, say, we have to impose suitable sign and growth conditions
on k and f . For example, the following is true:

Theorem 1. Suppose that k satisfies

〈Ku, u〉 =
∫

Ω

{∫
Ω

k(x, y)u(y) dy

}
u(x) dx ≥ 0,

and f satisfies

(10) |f(x, u)| ≤ a(x) + b|u|p−1, f(x, u)u ≥ d|u|p.

Assume, in addition, that either f(x, ·) is increasing or K is compact.
Then equation (1) has a solution u ∈ Lp for v = 0.

We remark that the nonlinearity f(u) = log(1+ |u|α) from Example 1
satisfies the first estimate in (10), but not the second one. More
general hypotheses on k and f which ensure the applicability of Minty’s
theorem to equation (1) may be found in Section 28.4 of the monograph
[14].

3. Variational methods. Loosely speaking, the idea of the
classical calculus of variations consists in reducing the problem of
solving the operator equation Au = 0 to the search for critical points
of a corresponding potential J of A = ∇J . A crucial condition on J is
the Palais-Smale condition which may be formulated as follows. Any
sequence (hn)n with the property that

lim sup
n→∞

|J(hn)| < ∞, lim
n→∞ ∇J(hn) = 0

is compact, i.e., admits a convergent subsequence. The famous Moun-
tain Pass lemma [1], see also [9], states that every functional J on a
Hilbert space H satisfying the Palais-Smale condition and J(0) = 0 has
a critical point, provided that

inf
||h||=r

J(h) > 0, inf
||h||>r

J(h) ≤ 0
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for some r > 0. In order to apply this to equation (2) in the Lebesgue
space Lp, we have to consider first a potential for the Nemytskij
operator (4), viz. the Golomb functional

Γ(h) :=
∫

Ω

{∫ Mh(x)

0

f(x, u) du

}
dx

in the Lebesgue space L2, where M denotes again the integral operator
defined by the factorization (5). With this notation, the solutions of
equation (2) may then be searched for as critical points of the functional

(11) J(h) =
1
2
||h||2 − Γ(h), h ∈ L2.

A sample result in this spirit due to Tersian and Zabrejko [12] reads
as follows.

Theorem 2. Suppose that f satisfies the condition
∫ v

0

f(x, u) du ≤ μvf(x, v) + c(x), c ∈ L1,
1
p
≤ μ <

1
2

and admits a representation of the form f(x, u) = b(x)u + ω(x, u),
where

(12) |ω(x, u)| ≤ u2g(x, u) + δ|u|,

and the Nemytskij operator Gu(x) = g(x, u(x)) generated by g maps
Lp into Lp−2. Assume, in addition, that the spectrum σ(KB), with
Bu(x) = b(x)u(x) being the multiplication operator defined by b, does
not meet the interval [1,∞), and that δ||K|| ||(I − M∗BM)−1|| < 1,
where δ is the constant from (12). Then the functional J defined by
(11) satisfies a Palais-Smale condition and has a critical point.

4. Positivity methods. Sometimes it is interesting to find positive
solutions of the integral equation (1). In this situation one usually
studies the operator equation (2) in some space with cone, i.e., with a
convex subset C such that tu ∈ C for u ∈ C and t > 0. We restrict
ourselves to a classical result on cone-compressing operators in Lp due
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to Krasnosel’skij [6]. Again, we consider the factorization (5) of the
kernel function k.

Theorem 3. With m as in (5), let

(13)
α := inf

x

∫
Ω

m(x, y) dy, β := sup
x

∫
Ω

|m(x, y)|2 dy,

γ := sup
x,y

m(x, y).

Suppose that the nonlinearity f satisfies the asymptotic conditions

(14) lim
u→0

f(x, u)
u

<
1
β

, lim
u→∞

f(x, u)
u

>
γ2

α4
.

Then equation (1) has a positive solution.

Example 2. Consider the same equation as in Example 1, but now
with f(u) = log(1 + |u|α) replaced by g(u) = u log(1 + |u|α) (and
v = 0). The factorization (5) becomes trivial for k(x, y) = ex−y, since
m(x, y) = k(x, y). So for the constants in (13) we get here

α = 1 − 1
e
, β =

1
2

(e2 − 1), γ = e.

Since log(1 + |u|α) → 0, respectively ∞, as u → 0, respectively ∞,
the estimates (14) are trivially satisfied. So we deduce from Theorem 3
that the equation

u(x) = λ

∫ 1

0

ex−yu(y) log(1 + |u(y)|α) dy, λ ∈ R

has a positive solution.
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TABLE 2. How to solve Hammerstein equations.

Properties of k Properties of f Space Method

continuous continuous C Schauder theorem

continuous Lip-continuous C Banach theorem

measurable Carathéodory Lp Schauder theorem

polynomial growth (1 ≤ p ≤ ∞) Darbo theorem

measurable Carathéodory LM Schauder theorem

nonpolynomial growth Darbo theorem

positive monotone, coercive Lp Minty theorem

polynomial growth (1 < p < ∞)

positive monotone, coercive LM Minty theorem

nonpolynomial growth (M ∈ Δ2)

measurable potential Lp Mountain Pass lemma

spectral condition sign condition (2 < p < ∞)

positive strictly positive Lp Krasnosel’skij theorem

asymptotic condition (1 ≤ p < ∞)

5. Other methods. It goes without saying that there are many
more methods to derive existence, uniqueness, and multiplicity results
for solutions of equation (1). For example, in case of a more compli-
cated dependence of equation (1) on the real parameter λ, one could
try to apply the classical implicit function theorem or its numerous
generalizations; for some nonclassical results in this spirit we refer to
the survey [3]. Moreover, in recent years spectral methods for nonlinear
operators have found increasing attention in view of their applicability
to integral equations and boundary value problems, see Chapter 12 of
the recent book [2].

We summarize our discussion in the following table which describes
how to find the right method (last column) in an appropriate function
space (last but one) for solving a Hammerstein equation with given
kernel and nonlinearity.

The theorems stated above may be applied in the usual way to get
existence results for nontrivial solutions to boundary value problems for
elliptic equations or systems. For example, this refers to the classical
semi-linear equation

(15) −Δu(x) + a(x)u(x) = f(x, u(x)), x ∈ Ω,
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subject to Dirichlet boundary conditions, where f is a Carathéodory
function satisfying f(x, 0) ≡ 0. It is well-known, see, e.g., [5, 7], that
the linear problem

−Δu(x) + a(x)u(x) = f(x), x ∈ Ω,

with Dirichlet boundary condition has, for nonnegative a ∈ C(Ω), a
unique generalized solution u = Kf , where the integral operator K
maps the Sobolev space H−1(Ω) into the Sobolev space H1

0 (Ω) and is
bounded. By the classical Sobolev imbedding lemma, the operator K
is then also bounded between Lq(Ω) and Lp(Ω), where we may choose
2 < p ≤ ∞ if n = 1, 2 < p < ∞ if n = 2, and 2 < p < 2n/(n − 2)
if n ≥ 3. Consequently, one may apply all results formulated above in
the setting of Lebesgue spaces to get existence of generalized solutions
of equation (15). Moreover, one may also find additional smoothness
conditions on the function f in (4) to ensure that all generalized
solutions are actually classical solutions.
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